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In order to investigate the microstructure lenght-scale effect on a dyna-
mic response of a composite body, a new general modelling approach to
periodic material structures is proposed. Applications of the resulting
equations to the micro-vibration analysis are illustrated by numerical
examples. Considerations are restricted to the linear elastic composites
with a perfect bonding between constituents.

1. Introduction

The existing macro-modelling methods for elastic periodic composites are
mostly based on the homogenization approaches, leading to the concept of
a homogeneous equivalent body. As it is known, material properties of this
body are determined by so called effective modulus theories. The list of re-
ferences to this subject is rather extensive, monographs by Bensoussan et
al. (1978), Sanchez-Palencia (1980), Bakhavalov and Panasenko (1984), Abo-
udi (1991), Nemat-Nasser and Hori (1993), can be mentioned as showing the
general lines of macro-modelling approach. However, the effective modulus
theories are not able to describe the effect of the microstructure length dimen-
sions on the macro-behaviour of the periodic composite medium. This effect
plays an important role mainly in dynamic problems and has been analysed
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by means of modelling procedures developed separately for some special pe-
riodic structures (¢f Aboudi (1981); Achenbach and Herrmann (1968); Green
and Naghdi (1965); Grot and Achenbach (1970); Hegemier (1972); Sun et
al. (1968); Tiersten and Jahanmir (1977); Tolf (1983); and others). In this
contribution there is proposed a new general approach to the formulation
of averaged models for elasto-dynamics of periodic composites, which takes
into account the microstructure lenght scale effect on overall properties of
the body. The main advantage of this approach is a relatively simple form
of resulting equations which can be applied to the analysis of engineering
problems and constitute the basis for numerical calculations. Moreover, for
quasi-stationary problems the aforementioned equations describe a certain,
special effective modulus theory, which was independently formulated and ap-
plied in a series of paper by Bielski and Matysiak (1992), Kaczyiski (1993),
(1994), Kaczyiiski and Matysiak (1989), Matysiak (1989), (1992), Matysiak
and Wozniak (1987), Naniewicz (1987), Wagrowska (1988), Wozniak (1987).
The new approach proposed in this contribution is a certain alternative to that
leading to the equations of the refined macrodynamics, developed in a series of
papers by Wozniak (1993), Mazur-Sniady (1993), Wierzbicki (1995), Mielcza-
rek and Wozniak (1995), Jedrysiak and Wozniak (1995), Baron and Wozniak
(1995), Matysiak and Nagérko (1995), Michalak et al. (1995), Cielecka (1995),
Wagrowska and Wozniak (1995).

Notations. Tensorial subscripts i,j,k,... are related to the carthesian
orthogonal coordinate system Oxjxoz3 in the plysical three-space [ and
hence run over the sequence 1,2,3. Non-tensorial superscripts A, B,...
run over 1,...,N. For all the aforementioned indices summation conven-
tion holds unless otherwise stated. Points of the physical space are denoted
by z = (21,22,23), ¥ = (1,%2,¥3), etc., and t stands for time coordi-
nate; fourtuples (z,z2,23,t) are assumed to represent inertial coordinates
in the space-time. The representative valume element of a periodic material
structure is denoted by V = (={;/2,11/2) x (=12/2,12/2) x (=l3/2,{3/2) and
I = /1% 4+ 12 4 (2 is said to be the microstructure length parameter. It is assu-
med that ! is small enough as compared to the smallest characteristic length
dimension L of the region {2 in F, occupied by the composite body in its
natural state. An arbitrary translation of V by a radius vector z is defined
by V(z)=V +z, theregion 2°={z € 2: V(z)C 2} is referred to as the
macro-interior of 2 and 2\ £2° is called the near-boundary layer. For any
integrable (time dependent) function f(-,1) defined on {2, its averaged value
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over V(z), z € 129 is defined by

1
(f)=z,1) = A / f(y, 1) dv(y) dv(y) = dy,dyadys z € 2°
v(T)

If fis a time-independent V-periodic function, then

=g [ 1w )
(z)

Lol
14

represents, for any z € §2°, its averaged (constant) value. The components
of displacements, strains, stresses and body forces will be denoted by u;, €;;,
oi;, bi, respectively; for sake of simplicity the body forces are assumed to be
constant.

2. Foundations

The subject of analysis is a heterogeneous linear-elastic body occupying in
its natural state the region (2 of the pliysical space. The elastic modulus and
mass density fields, denoted by ¢;;i(-) and p(-), respectively, will be treated
as V-periodic functions. Restricting considerations to composite materials
the above functions have to be assumed as piecewise constant, i.e., constant
in regions occupied by each constituent. The main aim of analysis is to pro-
pose a new macro-modelling procedure which makes it possible to determine
properties of this body in a certain averaged manner but depending explicity
on the microstructure length parameter {. Hence the resulting macro-model
has to describe the effect of size of the representative volume element V on
the global behaviour of the composite.

The proposed approach is based on certain modelling hypotheses. In order
to formulate those hypotheses, two auxiliary concepts have to be defined (cf
Wozniak (1993)).

First, it will be assumed that the periodic heterogeneous structure of
the solid under consideration implies certain disturbances in a displacement
field. These disturbances from the qualitative wievpoint will be described
by a certain postulated a priori system h4(-), A = 1,..., N, of continuous
piecewise differentiable V-periodic linear-independent real valued functions,
satisfying conditions: (h4) = 0, h4(z) € O(!/) and the extremum values
of h# , are independent of the microstructure length parameter !. Func-
tions A4(-) will be called micro-shape functions. As an example we can take
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hA = lsin(2nkwzy/ly)sin(2nywzy /ly) sin(2ndwa3/l3), where nl,n%, nd are
arbitrary positive integers. The choice of micro-shape functions will deter-
mine the character (shape) of disturbances we are going to investigate in the
problem considered.

Second, to every real valued function F(z),z € 2, introduced as a certain
kinematic variable, a numerical accuracy ¢g related to calculations of its
values will be assigned. Function F£(-) will be called a macro-function if for
every z,y € §2 condition ||z — y|| < ! implies |F(z)— F(y)| <ep. If F(-)is
a differentiable function and similar conditions hold also for all derivatives of
F(-) (with pertinent numerical accuracies related to those derivatives) then
F(+) is said to be a regular macro-function. Hence increments of any macro-
function within an arbitrary but fixed cell V(z), £ € {2, from a numerical
viewpoint are small and can be neglected.

Using the aforementioned concepts three modelling hypotheses will be in-
troduced.

e [(inematic Hypothesis (KI).

The displacement fields w;(-,t) in every problem under consideration
will be assumed in the form

wi(z,t) = Ui(z,1) + kA (2)Q4(z, 1) T € (2.1)

where h4(-), A =1,...,N is the postulated a priori micro-shape function
system and U;(+,1), Q#(z,1) are arbitrary regular macro-functions.

The physical sense of KH is strictly related to the meaning of a micro-shape
function. Macro-functions U;(-,t), Q#(z,t), represent new kinematic varia-
bles and will be called macro-displacements and internal macro-parameters,
respectively. It is evident that Q# describe, from the quantitative viewpoint,
the micro-disturbances of displacements; it will be shown that these distur-
bances are caused by periodic material structure of the composite.

As it is known, within the framework of micromechanics the governing
equations of a linear elastic body are given by

(cijkitr) j = pii; + pb; = 0

Under the kinematic constraints introduced by Eq (2.1) the above equations
are satisfied only in a certain averaged form. This statement will be represen-
ted by the following assumption.
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o Averaging Assumption (AA).
The following averaged form of equations of motion
((cijriurg),; — piti + pbi)(z,1) = 0
T e (2.2)
([(cijrrury),; — piti + pbi k) (z, 1) = 0

is assumed to hold.

o Macro-Modelling Approzimation (MMA).

In the calculations of averages in Eqs (2.2) terms O(efr) will be neglected
as compared to the values F(z) of an arbitrary macro-function F. In
the sequel F runs over macro-functions U;(+,t), Q#(z,t) and all their
derivatives.

The physical meaning of MMA is implied by the concept of macro-function.
Since in calculations of averages hAQiA’a € O(eq) + O(evg) we obtain

(h1Q1) .0 = b4 aQi + O(eq) + Olevq) (2:3)

Similary, for an arbitrary integrable V-periodic function f(-) and any inte-
grable macro-funtion F(-,?), we obtain

(fF)(z,1) = ([)F(z,1) + Oer) (2.4)

By means of MMA terms O(eg), O(evg) in Eqs (2.3), (2.4) will be neglected.
It has to be emphasized that MMA has nothing in common with an asymptotic
approximation procedure since terms O(cp) are neglected only as compared
to the values F(z) of an arbitrary macro-function F(-).

3. Results

Substituting the right-hand sides of Eqs (2.1) into Eqgs (2.2), using MMA,
i.e., neglecting terms O(eg), O(efr) in formulae of the form (2.3), (2.4), and
taking into account that c¢;;x(-), p(+) are V-periodic functions, after rather
lenghty calculations not given liere, we arrive at the system of equations in /;
and Q7.
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Let us introduce functions k4(-) defined by k4 = h4l~1; it can be seen
that extremal values of k4(z) are independent of the microstructure length
parameter [. Setting

Sij(2,t) = {ciji)Uppy (2, 1) + {cijih® QL (,1)

(3.1)
HA(z,1) = (cijh® ;YU (z,1) + (cijih® 1h2 NQR (2, 1)
the resulting averaged equations of motion have the form
Sij(2,1) = (p) Uiz, 1) — Lpk™)Qf (2, 1) + (p)bi = 0 (3.2)

P{pkAkBYQB (2, 1) + Hpk™Ui(z, 1) + H (z,1) = 0

The above equations for every z € 2° have been derived from Eqs (2.2).
Since fields S;;(-, 1), HA(-,t) are defined on §2 then Eqs (3.2) are well defined
also in the near-boundary layer 2\ 2°. Moreover, due to the condition
| « L, formulated in Section 1, the layer 2\ £2° is relatively small. Hence
in the sequel it will be assumed that Eqs (3.2) have to be satisfied for every
z € f2. It has to be remembered, however, that Eqs (3.2) have the physical
interpretation as averages (2.2) only for z € £29.

The obtained Eqs (3.1), (3.2) have constant coefficients and represent a
certain macro-model of the periodic composite body. In the framework of
this model material properties of the body are described by constant ave-
raged modulae in Eqs (3.1); that is why these equations will be referred to
as constitutive equations. The inertial properties are given by the averaged
mass density (p) and the modulae [{pk4), I?{(pk?kB) in equations of mo-
tion (3.2). Since in general HA(z,1) € O(l) and in the stationary processes
HA =0, then HA(z,t) will be termed micro-dynamic forces. At same time
Sij(z,1) are said to be macro-stresses. It can be shown that for every z € 2°
macro-stresses, micro-dynamic forces and macro-displacements have a simple
physical interpretation given by

Sij(2,1) = (0i;)(z,1) + O(evv) + O(eq)
H(2,1) = (030" ;)(2,1) + Olevu) + O(eq) z € 2°
Ui(z,1) = (ui)(z, 1) + Oleq)

The above interpretation does not hold in the vicinity 2\ £2° of the boun-

dary 0{2. Hence boundary values of U; and 5;; will be treated similarly as
displacements and stresses in boundary conditions of solid mechanics.
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Let us observe that all averaged modulae in Eqs (3.1), (3.2) are invariant
under arbitrary rescalling of the representative volume element V. It follows
that Eqs (3.2) depend explicitly on the microstructure length parameter /.
Hence the proposed model describes in the explicit form the effect of the
microstructure size on the global behaviour of the body. It is easy to conclude
that this effect is caused by the inertia forces because in quasi-stationary
processes all terms in Eqgs (3.2) involving length parameter ! are neglected.

Substituting the right-hand sides of Eqs (3.1) into Eqgs (3.2) we arrive
at the system 3(N + 1) equations in macrodisplacements U; and internal
macro-parameters QA. The second characteristic feature of the model is
that unknowns Q¢ are governed by a system of ordinary differential equ-
ations involving exclusively time derivatives. That is why the macro-fields
Q% were referred to as the internal macro-parameters, being independent of
the boundary conditions. This fact plays an important role in a formulation
of initial-boundary value problems for Egs (3.1), (3.2), where the boundary
conditions can be postulated in a form similar to that known in the linear
elasticity theory.

For a homogeneous body the conditions (pk?) = p(k4) = 0, (cijuh? ;) =
cijki{h? ;) = 0 hold. In this case from Eqs (3.1), (3.2) we obtain the well
known equations of the linear elasticity theory. Moreover, under homogeneous
initial conditions all internal macro-parameters Qf are equal to zero. Using
Eqs (2.1) we jump to the conclusion that macro-parameters Q# describe the
disturbances in displacements caused by the inhomogeneity of the medium
and/or by the initial distribution of these disturbances.

The analytical form of the proposed macro-models, for every special pro-
blem, depends on the choice of micro-shape functions. Hence in every problem
under consideration a special class of micro-disturbances is investigates. It
has to be emphasized that solutions to the problem considered have a physical
sense only if U;, Q4 are sufficiently regular macro-functions.

4, Stationary problems

For stationary problems the second one from Eqs (3.2) reduces to the
form HA = 0. Moreover, it can be also shown that the linear transformation
R3N — R3N represented by 3N X 3N matrix of elements (cijuh? jhB ) is
invertible. It follows that for stationary problems macro-parameters Q¢ can
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be eliminated from governing equations by means of
Q4 (z) = =D (cirtmh® k) Uqtmy(2) (4.1)
where terms D{‘}-B represent the pertinent inverse transformation
DB (cikimh® kh© ) = 64C8im

Denoting
Cijit = (cijit) = (Cijmnh® m) D2 (criprh® ;) (4.2)

we obtain the following equations describing stationary processes within the
framework of the proposed macro-model of a composite body

Sii(z) = CijuUgrpy(z) (4.3)

Sijg(z) + (p)bi =0

From the formal viewpoint Eqs (4.3) have the form similar to that appearing
in the linear elasticity theory for stationary problems. Terms Cjjx defined
by Eq (4.2) will be called the effective module of the composite material for
deformations of the form (2.1). Ilence for stationary problems the proposed
model of a composite body reduces to a certain effective modulus theory. This
theory has been applied to the analysis of engineering problems in a series of
papers by Kaczyniski (1994), Kaczyiiski and Matysiak (1991), Matysiak (1992),
Naniewicz (1989), Wagrowska (1988), Wierzbicki (1989), Wozniak (1987).

5. Applications to micro-dynamics

In this section we shall apply the obtained general results to a special case
of the micro-vibration analysis for composite materials under consideration.
To this end assume that the micro-shape functions satisfy the extra condition
(ph*) = 0, A = 1,...,N. Under this condition Egs (3.1), (3.2) yield the
following system of equations for U;, Q%

(cijin)Urij + (cijuh® Q% ; — (0)Ui + (p)bi = 0
(5.1)

12(pkAkBYQP + (cijiuh® jhP )QP + (cijuh™® ;)Uky = 0
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The above equations have been derived independently by Wozniak (1993).
In the sequel we shall restrict consideration to a special class of solution to

Eqs (5.1) given by
U; = Ui(z) Qi (z) = =D& (cirumh® k) U my(z) + V) (5.2)

where macrodisplacements  U;(z) satisfly Eqs (4.3) and regular macro-
functions V/A(t) are solutions to the system of 3N ordinary differential

equations
lz(pkAkB)ViB + (CijklhA'thJ)VkB =0 (5.3)

At the same time using Eqs (2.1) and (5.2) we obtain
ui(z, 1) = Ui(z) = k4 (2) DEP (ciumh® k) Umy(2) + R4 (2)VA(R)  (54)

Thus, we conclude that under extra conditions (pk4) = 0 imposed on k*
there exist the decomposition of the problem into stationary deformations
described by the macro-displacement field U; governed by Eqs (4.3) and su-
perimposed micro-displacements v(z,t) = h4(z)VA(t) determined by the
internal macro-parameters V4 satislying Eqs (5.3). Since the form of Egs
(4.3) in macrodisplacements coincides with that of equations for homogeneous
linear-elastic bodies, then the subsequent analysis will be restricted to Egs
(5.3). In order to simplify the considerations we shall restrict ourselves to the
unbounded medium. Setting V.Z(t) = AP cos(wt), where AP are arbitrary
constants and w is the micro-oscillation frequency, the non-trivial solution to
Eqgs (5.3) exists only if the well known frequency equation holds

det ((C{thA,J‘hB'[) — w2(ph‘4h3)6ik) =0 (5.5)

The general analysis of conditions having the above form is well known and
we shall pass to the investigations of special problems. For sake of simpli-
city let us confine ourselves to the one-dimensional space-problems, in which
microdisplacements v;(-,t) depend only on one spatial coordinate z;. Let
us assume that wv;(x;,t) = vi(xy + Ly,t) for every z; € R, where the po-
sitive constant L, represents the micro-oscilation wavelength. Due to the
[,-periodicity of micro-shape functions h4(z,), z1 € R, only the waveleng-
ths given by L, = ;/n, n = 1,2,3,... can be taken into account. Thus the
wavenumbers, defined by K, = 27/L,, belong to {27n/l;; n = 1,2,3,...}.
For the above values of I, {unctions h#(-) will be assumed in the form
hA(zy) = Aln cos(AK,z1), A = 1,...,N for any fixed n. Let z; = const
be the elastic symmetry planes for every constituent of the composite. In
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this case, under denotation (here and in the sequel no summation over the
subscript )

Cl-AB(I\"n) = AB(cia sin(AKqaq) sin(BK 1))

(5.6)
pAB(K,) = (pcos(AK,21) cos(BK ,z1))
Eqs (5.5) yield the interrelation between w and I,
AB( Jr W2 4B ]
det [CAP(I,) — (Tn) p*B(K,)] =0 (5.7)

for every wavenumber K. If ¢ =1 then Lqs (5.7) is the dispersion relation
for the longitudinal waves, if 7 = 2,3 then it represents pertinent relations
for the transversal waves. For a two-constituent composite medium, where
there is a decomposition of V into two disjointed parts V', V” occupied by
different constituents, V =V UV", V' NV" =0, for every z € V' U V" we
obtain

{ chan if zeV’

Ci1i1 =

" lf x e V// p(z) =

p if zeV’
i { o if zev” (5.8)

Denoting [ci1:1] = ¢/;1 — ¢ [Pl = p7 = p/, for every A # B

an]AB [ . . : .
CAB(L,) = % /sm(A]x’nzl)sm(BIx‘nxl) dv(z)
1t2(3

pAB(IK,) = [r] cos(AL21) cos(BLK, zq) dv(z)

Thus we conclude that all non-diagonal elements of N x N matrices of ele-
ments CAB(K,)— (w/K,)*p4B(K,)in Eq (5.7) are linear functions of jumps
[ci1i1], [p] of material properties of the composite. For homogeneous materials
[ci111] = 0, [p] = 0 and for every mode N we obtain from Eq (5.7) the known
result (w/K,)? = ¢;141/p. For heterogeneous periodic materials, with increa-
sing values of N we formulate more detailed description of the micro-vibration
problem in the framework of one-dimensional model. It has to be emphasized
that this model can be applied solely to problems for which the oscillations of
micro-displacements wv;(-, 1) in directions of z,- and a3-axes are sufficiently
small and can be neglected.

The numerical calculations related to the longitudinal vibrations and based
on the formulas (5.6) + (5.8), were carried out for fibre-reinforced composites
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the cross sections of which are shown in Fig.1, where | =l; = I, p"/p’ = 10,
{111/ ¢ 111 = 10 and n =1,3,5 are taken as parameters. The results related
to the cases a = {/3,b € [0,{] and b =1/3, a € [0,!] are given by diagrams
in Fig.2 on the lelt and right-hand sides, respectively. The dashed lines are
related to N = 2 and the continuous lines to N = 4. The diagrams of w/K,
for a €[0,{],b € [0,!] are shown in Fig.3 + Fig.5 for n = 1,3, 5, respectively.
The comparison of results obtained for N = 2 and N = 4 shows that the
results obtained nearly coincide.

6. Conclusions

At the end of the paper let us summarize the main advantages and draw-
backs of the proposed macro-modelling methods.

First, the obtained macro-models ol periodic composite materials describe
the microstructure length-scale effect on the behaviour of the body. This effect
plays an important role in the analysis of dynamic problems, being neglected
in the known homogenization theories which are restricted mainly to quasi-
stationary problems.

Second, the proposed method is rather general, i.e., it can be applied
to an arbitrary material structure of the representative element. For some
special composite materials, such as laminates, the results derived from Eqs
(3.1), (3.2) have been compared with those of the linear elasticity theory and
the known effective stiffness theories leading to a satis[ying approximation (cf
Matysiak and Nagérko (1995)).

Third, the internal parameters Q¢ in Eqs (3.1), (3.2) are governed by a
system of ordinary differential equations and hence do not enter the boundary
conditions. This fact plays an essential role in applications of the theory to
engineering problems. At the same time the obtained governing equations
have a simple analytical form and can be formulated by simple calculations
of averaged modulae. It means that the proposed macro-modelling approach
does not require any solution to a boundary-value problem on a unit cell,
which is necessary in asymptotic homogenization methods.

On the other hand, Eqs (3.1), (3.2) can be lormulated only if a certain
system of macro-shape functions A is previously postulated. The choice of
those functions depends on the character of the problem under consideration
and in many special cases has to be based on the intuition of researcher. It
means that the form of expected disturbances in the displacement field should
be a priori postulated.
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Applications of the theory have been illustrated by the simple example of
micro-vibrations in a fibrous medium. For other applications the reader is
referred to the papers mentioned in Section 1.
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Streszczenie

Praca omawia nowe podejscie do modelowania zagadnien dynamiki periodycz-
nych materialéw kompozytowycl, uwzgledniajace wplyw wielkosci mikrostruktury na
globalne wlasnosci kompozytu. Otrzymane réwnanie modelu zastosowano do analizy
pewne] klasy mikro-drgai ilustrujac analize przykladami numerycznymi.
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