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The Karhunen-Loeve expansion, known in (luid dynamics as the Pro-
per Orthogonal Decomposition (POD), ol random vector fields is de-
termined. These fields are the velocity ol nonstationary flow past the
cylindrical contour and uniform at infinity. The velocity field has been
calculated with the Vortex Blobs Method. The POD procedure is car-
ried out on the assumption of ergodicity which lecads to an algebraic
eigenvalue problem.

1. Introduction

Turbulent flows are characterized by highly irregular dependence of kine-
matic and dynamical parameters on time and space. Currently it is generally
believed that the nature of these phenomena is purely deterministic. The
chaotic or "stochastic” evolution of a flow is implied by extremely complica-
ted phase-space structure of the nonlincar dynamical system defined by the
mathematical model of fluid motion. This structure and its bifurcations due
to changes of flow characteristics are responsible for all known features like
hydrodynamic instabilities, sensitive dependence on boundary and/or initial
data, laminar-turbulent transition, etc.

The nature of turbulent flows makes the application of stochastic tools
particularly advantageous. Leaving aside the problem of phenomenological
models of turbulent flows we concentrate rather on the stochastic analysis of
structures "hidden behind” a chaos.

The methods to perform this task have been known for a relatively long
time. The mathematical foundation of thein consists in the Karhunen-Loeve
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theorem (cf Loeve (1955), Lumley (1970)) on the orthogonal decomposition of
a random process. Lumley (1967) proposed the algorithm for extracting re-
gular structures from turbulent flow fields. Since the Karhunen-Loeve expan-
sions are in a way (to be explained later) optimal Lumley called his method
the Proper Orthogonal Decomposition (POD). Practical application of this
method had to be delayed to middle 80’s. It seems that the main reason
was the lack of data of appropriate quality. The heart of POD procedure is
the space-correlation analysis of a velocity field. Reasonable results can be
obtained only when the spatial resolution of the velocity in the whole flow
domain is sufficient. It is difficult (and expensive) to satisfy this requirements
in an experiment and only in the last decade the quality of numerical simu-
lations reached the desired level. Since 1986 real ”explosion” of interest in
the POD technique has been noticeable. Probably the most remarkable result
lays in realization that the structures generated via the POD can be used as
basic functions in the construction of finite dimensional approximations of the
Navier-Stokes equations. Such an approach has been successfully applied to
boundary and mixing layers (cf Aubry et al.(1988), Glauser et al. (1991), Deli-
ville et al. (1991) and references herein) where the existence of large structures
with complicated dynamics has been strongly evidenced by experiments and
direct numerical simulation of the full Navier-Stokes equations. In our opi-
nion the POD provides also an eflective method for validation and comparison
between different numerical methods when applied to viscous flows.

In this paper we present the results of POD procedure applied to the
random flow obtained in the random-vortex simulation. The vortex method is
a "natural” source of stochastic velocity fields since diffusion of the vorticity
is simulated by the random walks of vortex blobs (cf Chorin (1973), Styczek
(1987) for details on random vortex algorithms).

It should be emphasized that the results of pliysically meaning can be
achieved only after some averaging process and the comparison of an isolated
realization to a flow obtained with the use of other method is generally mea-
ningless. However, after the POD analysis comparison between the "internal
structures” of flows is possible.

2. Mathematical foundations of the POD procedure

Here we present the general idea of POD procedure. Detailed exposition
of the theory can is given be found by Loeve (1955) and Lumley (1970).
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Let U = U(t,z) denote a random velocity field defined in a bounded
subset D of R™ (n = 2 or 3). We assume that all realizations of U are
square-integrable in D at any fixed time ¢

/U2(t,x) dz < oo (2.1)
D

In other words, realizations of the random field are from L?(D).
Consider a deterministic field F = F(z) such that F € L?(D) and

/F%) dz = 1 (2.2)
D

Let the time t be fixed and define the following random value

r = /UF de (2.3)
D

Thus the value r is the orthogonal projection of the realizations of U on
the deterministic field F'. The existence of the integral (2.3) is guaranted by
Eqs (2.1) and (2.2).

We calculate the mean value (or expectation) of 72

I

E{r?} E{/ U(z)F(z) cl:c/U(y)F(y) dy} =
D D

1

[ EW@ 0 V@) F@)F() dedy
D

where ® denotes the tensor product of two vectors.
It is important to note that the operator F concerns the realizations of the
random field and thus it commutes with any operator dealing with 2 and ¢.
What we obtain is the bilinear functional which is induced by the integral
operator

(KP)(2) = [ E{U(2)@ Uw) F(y) dy (25)
D

The kernel of this operator
K(z,y) = E{U(z) @ U(y)} (2.6)

is called the correlation tensor.
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The operator K is symmetric, compact in L?(D) and nonnegative. Hence
it possesses a denumerable set of real and positive eigenvalues Ay > Ay > As...
The only accumulation point of this serics is zero and the largest eigenvalue
is equal to the norm of the operator X

A= |IK]| = max |Kf|
IIfli=1
The eigenspaces are finite dimensional and orthogonal for different eigenva-
lues. The denumerable and orthonormal set of eigenfunctions {¢,,¢,,...} is
complete, i.e., any square-integrable field H in D can be expressed as the
Fourier series

J
where scalar coeflicients are given by

hi = | He, dz (2.8)
[[ :

Using the notion of the scalar product in L2%(D) we can write

E{r?} = /K.FF dz =<K F,F>= B(F) (2.9)
D

Up to now F has been an arbitrary field satisfying the normalization con-
dition (2.2). We want to choose F'in the way that maximizes the functional
B in the set of all normalized ficlds

Soz{f; /f2 d:r:l} (2.10)
D
The properties of K mentioned above enable drawing the conclusion that
max B(F) = B(¢,) = M (2.11)
€50

i.e., the maximum is achieved for the eigenfunction of K corresponding to the
largest eigenvalue A;. More general

max B(F) = B(¢,,) = Ami (2.12)
Fes,,

where

S = {1 /f2 de = 1N <f,4;>=0 j=1,.,m} (2.13)
D
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We will call the eigenfunctions {@,,¢,,...} the eigenstructures of the random
field U (or "coherent” structures). At any fixed time U can be written as an

expansion
U(z) =) a;¢(z) (2.14)
where a; are random values given by the scalar products a; =< U, ¢,; >.
These values are uncorrelated (see the formula (2.5) defining the correlation
operator K)

E{aia;} = E{/ U(2)di(z) d:c/U(y)¢>j(y) dy} =<Kd;,¢;>= Abij (2.15)
D D

e., E{a;a;} =0 when 1 # jand E{d?} = A,
The correlation tensor can be expanded as follows

K(z,y) = > igi(2) © $i(y) (2.16)
The series (2.16) is uniformly convergent (Mercer’s theorem, c¢f Vladymirov
(1976)).
The average energetic norm of U given by the followin integral
E(UIP} = [ EY) da (2.17)
D

can be calculated

E{UU}(z) = traceK(z,z) Z/\ #(z)

BN = [ £ Adha) de = 3o x
D

As we see, each eigenstructure has its own contribution to the average kinetic

energy of the flow U.
Assume that the random flow has been approximated by the truncated

series

(2.18)

M
U~ Uapr = Zai¢i (219)
1=1
Then the energetic norm of U,y is determined by
M M
E{[UaplI?) = /E{Ua,,, Uup) do= [ E{S Y aiaib(),(2)} dz =
D i=1j5=1

(2.20)
M M

/ZZE{G%M(xwx da:—ZA /¢2(a: (la:—z,\

D:l]l
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We see that the portion of total kinetic energy coutained in the finite linear
combination of M leading eigenstructures is the largest possible one. In
the sense of average energetic norm the expansion of U in the basis of its
eigenstructures is optimal.

It should be again emphasized that the time has been treated as fixed
parameter. This means that eigenvalues and eigenstructures of U are in
general time-dependent. Providing that U(t,z) is sufficiently regular one can
expect the continuity of (A;,¢;),%2=1,2,...in time. If U is the flow field with
"developed turbulence” then only weak dependence on time can be suspected.
This is exactly the case we are going to consider farther on.

3. The ergodic assumption and the stroboscopic method

The basic problem is how to apply the general theory outlined above to cal-
culation of the eigenstructures on the basis of finite set of realizations obtained
from a certain numerical or experimental procedure. In order to determine
the eigenstructures of the random flow U the correlation tensor K should be
calculated with reasonable accuracy.

The crucial point in the POD procedure is ensemble averaging and thus
sufficiently numerous sample of realizations of U ought to be available. Since
the number of all realizations is infinite the probability of any single realization
is exactly zero. However some realizations are, in certain sense, more probable
than others.

In other words, a reasonable averaging process should take into account
the variation in relative frequency of occurrence of dillerent realizations. The
naive arithmetic averaging is not likely to produce good results. This problem
becomes more severe when the number of realization available is rather small.
On the other hand, to collect the sufficiently large set of realizations usually
strenuous work has to be done — experimental or numerical.

It seems that in some cases these difliculties can be removed. Many real
flows can be regarded as stationary ones in statistical meaning. Some of them
can be additionally assumed to be ergodic, at least within the acceptable
accuracy. In such a case the ensemble averaging is known to be equivalent to
time averaging with the use of single and arbitrary chosen realization.

Let u(?,z) denote the realization of the random flow U. The expectation
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of the random value 7% (cf Eq (2.4)) can be now expressed in the form of

T
1
E{r?) :Tli_{noof/<u,F> di (3.1)
0

where the product in L?(D) is defined by Eq (2.3).
Changing the order of integration we have

T
E{r?} = /[/( limc>o % /u(t,a:) ® u(t,y) dt) F(y) dy] F(z);dz (3.2)

T—
D D 0

Again we introduce the correlation tensor

T
K(z,y) = lim 1 /u(t,x) ®u(t,y) dt (3.3)
T—oco T
0
and the integral operator
(KF)(#) = [ K(z,0)F(y) dy (3.4
D

which, in turn, induces the bilinear functional B(F) by Eq (2.9). Time
averaging is performed over the infinite time interval. Obviously in practical
situation this interval should be cut at some, possibly long, time 7. The
correlation tensor is then given by

T
1
K(z,y) = T/u(t,a:) ® u(t,y) dt (3.5)
0
This integral is evaluated with tlie use of some rule of numerical integration.
For simplicity we assume that the interval [0,7]is divided into N parts with
the length 7. Then

T N
T/ (t,z) @ u(t,y) d gﬁz_: z) @ uj(y) (3.6)
o -

where wu;(:) = u(jr,-) are instantaneous velocities at sample instants ;7
(the "strobes” of velocity field) and the coefficients «; are prescribed by the
integration rule.
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In result we obtain the integral operator

(KnF)(e /KN z,9)F(y) dy (3.7)

where the kernel Ky is given by the right-hand side of Eq (3.6). This operator
is finite dimensional since the kernel has the form of finite sum with separated
variables z and y. Indeed

N
/KN (z,y)F(y) dy = — ZQJ <F,u;> u; (3.8)

_] =0

e., KnF belongs to the finite dimensional subspace spanned by the ”strobes”
{ug,...,un}. We assume that the ”strobes” are linearly independent, so the
dimension of this subspace is N + 1.

The eigenfunctions of Ky are sought in the following form

N
¢ = E(Lj-u]- (3.9)
3=0

where the constants a;, j = 0,.., NV should be found. After substitution of Eq
(3.8) into Eq (3.7) we have

Kneg = Z(Z aj<u,,uj>aj) (3.10)

10_]0

Then the eigenvalue problem Ky¢ = A¢ yiclds

N N

Z(Z %aj <up,u; > (LJ) Zz\a u; (3.11)

=0 3=0
Since the "strobes” are assumed to be linearly independent we have
y

N

1
Z Na'j <uup> a; = Ay 1=0,..,N (3.12)

i=0

or, in vector notation

Ka = Aa (3.13)

where .
K]i; = Naj <up,u; > a= [ao,..,aN]T
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The matrix K is symmetric and nonnegative. The eigenvalues are real
and positive; the eigenvectors can be clhiosen to form the orthonormal basis in
RN+1. Components of the eigenvectors are the coelficients of linear combina-
tions of uj;, j = 0,.., N which determine the sct of N 41 eigenstructures ¢,

N N
b = Z(ao)iui by = Z(aN)ui (3.14)
1=0 =0

The eigenstructures exhibit two important properties. First, divg, =
1= 0,..,N since they are linear combinations of divergent-free instantaneous
velocity fields u;. Secondly, they are orthogonal in L?( D). Indeed

N N
B> = LY (anhan); [ do = NI 3 (@ Kls(on) -
7=01=0 D 7=014=0
(3.15)
= N(l Ka-n =N /\ma n@n = N/\m&m.n

We have used the orthogonality of the cigenvectors of K. The set of the eigen-
structures can be orthonormalized by taking the eigenvectors a;, ¢ = 0,..,N
such that ||a;]| = 1/(NA)).

It is also interesting to ask how the projections < U,¢, >, ¢ = 1,., N
evolve in time. If we consider the set of instants when the velocity is sampled
then

<uj, ¢, >= NA(a,); j=1,.,N

This means that the discrete temporal evolution of < U, ¢, > on the cigen-
structure ¢, is just the rescaled eigenvector a,.

4. Application of the POD to random flow analysis

The procedure described in the previous paragraphs has been applied to
extract "coherent” structures out of the random velocity field of the two di-
mensional flow past a cylindrical contour. This field has beenobtained by the
stochastic vortex method. Details of the numerical algorithm are presented
by Styczek and Wald [9]. The flows at two differcnt Reynolds numbers have
been considered: (a) Re = 100, (b) Re = 100000.

The eigenvalue problem for the corrclation matrix is solved by the Jacobi
iterations. The spectra put into decreasing order are shown in Fig.1.
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If we calculate the fraction of the kinetic energy contained in first M most

nificant eigenstructures
M
L A
e(M) = =
N
2 A

1l
—

-

M=1,..N

then we obtain the distributions presented in Fig.2.

The POD analysis is carried out on the flow history sample, covering large
number of time steps and begining far enough from the initial transient stage
of simulation. Then the average has been calculated and subtracted from each
intantaneous field in the recorded flow. In both cases the dimension N of the
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Fig. 3. The velocity field of selected eigenstructures for Re
(b) - no

eigenvalue problem is 200. The eigenstructures are numbered in decreasing

order with respect to the magnitudes of corresponding eigenvalues. We show

the results in the following order:

=100

e Re

6 and 10 are presented.

2,

?

In Fig.3 the velocity fields of the structures 1

First two of them are the most energetic and the rest are shown to give

an idea how other structures can look like. ['ig.4 shows the temporal evo-
lution of the instantaneous field projections on these four structures. As
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it was mentioned above we see in fact the components of corresponding
eigenvectors of the matrix K.

E{<U, 8>}k
0.5}

05 s Loy | R S Y PR S G ] g

Fig. 4. Evolution in time of the projections of an instantaneous velocity field on the
selected eigenstructures for Re=100

e Re = 100000

In Fig.5 the velocity fields of the structures 1, 2, 4 and 12 are presented.
The reason for this choice is the same as for Fig.3. Also Fig.6 contains
the information analogous to that gven in Fig.4.

5. Conclusions

The most vivid feature of the POD results is that the spectrum of cor-
relation matrix is more concentrated near most significant structures in case
of lower Reynolds number. This behavior is consistent with the expectations.
IFrom the other side even at Re = 100000 the number of structures containing
most of the kinetic energy (say 99%) is rather low (say twenty). This suggests
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structures — it corresponds to the vortex shedding frequency. The structures,
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Ekuéﬂ%
0.6

Fig. 6. Evolution in time of the projections of an instantaneous velocity field on the
selected eigenstructures for Re = 10°

contribution of which to mean kinetic energy is lower present more irregular
time behavior. In order to draw more information the substantial increase of
the number of time steps considered is necessary.
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Analiza stochastycznego pola przeplywu mectoda dekompozycji
ortogonalncj

Streszczenie

W artykule opisano metode Karhunena-Loeve rozkladu pola losowego zastoso-
wana do analizy struktury pola predkosci niestacjonarnego oplywu profilu kolowego.
Pole predkosci otrzymano w wyniku symulacji numerycznej metoda liniowa. Przyje-
to zalozenie ergodycznosci przeplywu, co pozwolilo analizowal jedna, dostatecznie
dluga realizacje pola predkosci. Struktury pola wyznaczono numerycznie przy uzyciu
standardowych procedur dla algebraicznego zagadnienia wlasnego.
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