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The paper presents two diflerent ways in which dry friction is taken into
account in dynamic analysis of multibody systems considered as planar
open kinematic chains witli rotary joints (kinematic pairs). In both cases
there are diflerent methods of calculating reactions in kinematic pairs.
The first method, based on constraint equations, is used mainly in dyna-
mic analysis of systems with flexible links when the rigid finite element
method is applied. Another method is used for analysis of chains with
rigid links when the equations of motion are formulated using transfor-
mation matrices in accordance with the Denavit-Ilartenberg notation. In
this case unknown quantities are calculated from equations of dynamic
equilibrium of a particular link. Both methods enable us to take into
account the complex model of dry friction in pairs, 1.e., consideration
of not only kinetic friction S_Coulomb friction) but also stiction phases.
Numerical results obtained for both methods, in the case of analysis of
the chain simplified with rigid links, are compared and good correlation
between them proves the correctness of the methods used.

1. Introduction

Planar open kinematic chains built of = links connected by rotary joints
(Fig.1) are considered in this paper.

The links are independently driven by drive moments MJP (where
i = 1,.,n).
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Fig. 1. Example of a planar open kinematic chain

2. Review of literature concerned with dynamic analysis of
multibody systems with dry friction in kinematic pairs

The expression "multibody system” means any mechanical system compo-
sed of rigid bodies or particles connected by springs, dampers and kinematic
pairs. These systems can form both open and closed kinematic chains of planar
or spatial configuration. The review presented below concerns only publica-
tions which deal with direct problems of dynamics of multibody systems with
dry friction in pairs. This means problems of analysis of motion of systems
forced by known drive moments (forces). Thus, the review does not include
papers dealing with inverse dynamics problems, i.e., when the motion of the
system is known and drive moments (forces) necessary for this motion have to
be calculated.

First publications discussed in this review concern analysis of multibody
system in the form of planar linkage mechanism. Bagci (1975) presents one
of the first extensive studies devoted to the subject. Equations of dynamic
equilibrium of each link released from constraints are formulated and Cou-
lomb friction and liquid f[riction in kinematic pairs are taken into account.
These equations enable him to calculate reaction forces and drive link motion
and in consequence the motion of the whole mechanism. Selected crank-and-
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rocker and slider-crank mechanisms are analysed. The procedure presented
gives three times as many equations of motion as the number of moving links.
Moreover, the coefficients are formulated in complicated forms even for simple
mechanisms. In order to avoid these problems simplified models of so-called
linkage mechanisms with varying transmission ratio are presented by Maczy-
fiski (1980). It is assumed there that only external links have masses whereas
internal links are massless. The method described enables both kinematic and
static friction to be taken into account. The author gives several examples of
real mechanisms in which the simplification is acceptable.

An interesting method of dynamic analysis of planar linkage mechanisms is
presented by Suwaj and Géral (1987). Having assumed that a mechanism has
one degree of freedom, its motion can be analysed as motion of one link with
reduced mass, and all external loads and friction forces are reduced to this
link, so the motion of the mechanism is represented by one nonlinear differen-
tial equation with reduced parameters. Iriction is considered by subtraction
of the dissipation term at each step of integration. In order to calculate re-
duced parameters and reduce forces together with friction forces (moments),
so-called transfer functions are used. Reaction forces in pairs, which are neces-
sary to calculate the dissipation term, are calculated using iterative procedure
from conditions of kinetostatic equilibrium of links. The method is applied
to analysis of a slider-crank mechanism. A somewhat similar procedure for
linkage mechanisms is presented by Benedict and Tesar (1971). The notion
of so-called ”influence coefficients” of velocities, accelerations, forces and in-
ertia is introduced. The possibility of the use of these coefficients in dynamic
analysis of planar linkage mechanisms with one or two drive links is discussed.

Wojciech (1984), Harlecki and Wojciech (1992) analyse planar linkage me-
chanisms with flexible links and dry friction in rotary and sliding joints. Not
only the Coulomb friction is discussed but the large probability of the occur-
rence of stiction phases, in the case of flexible systems, is taken into account.
Flexible links are modelled using the rigid finite element method. Reaction
forces and unknown moments of stiction are calculated from additional con-
straint equations. The number of these equations varies and depends on the
type of friction occurring in each pair.

Over the last few years papers have started being published which deal
with dynamic analysis of spatial multibody systems. Among them, papers by
Schiehlen (1983) and (1984), Schiehlen and Schramm (1982) and (1983) have
a particular place. The motion of systems is described using the Newton-Euler
formalism and reaction forces necessary for definition of moments of kinetic
friction are calculated from transformed equations of motion in which the
acceleration vector has been eliminated by premultiplication of these equations
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by a special distribution matrix.

Papers by Haug et al. (1986) and Wu et al. (1986a,b) are also quoted very
often. The authors describe a method of dynamic analysis in which the equa-
tions of motion of systems are defined using both Lagrange and Newton-Euler
formalisms. In these systems Coulomb friction and stiction are taken into ac-
count and also the impact phenomenon. Unknown quantities are calculated
by formulating constraint equations. The authors present models of rotary
and prismatic kinematic pairs for both planar and spatial systems and give
algorithms for calculating kinetic friction moments (forces) in these pairs. The
algorithms worked out are used for dynamic analysis of a simple slider-crank
mechanism when the slider is connected with an additional mass by a spring.

In paper by Schwertassek and Tiirk (1986) the theoretical principles of a
certain method of dynamic analysis of multibody systems are presented. These
systems can be treated as both open and closed structures with dry friction
in pairs. A lot of attention is devoted to formulation of constraint equations.

Muir and Neuman (1988) describe an effective dynamic analysis of open
and closed chains with the Coulomb and static friction. According to the
authors this method enables both inverse and forward dynamics problems to
be solved, yet no details about the second problem are given.

Fraczek (1993a) also considers the dynamics of spatial multibody systems
with Coulomb and static friction in any kind of kinematic pairs. The author
states that his method enables both open and closed chains to be considered.
He discusses the formulation of constraint equations for different kinds of kine-
matic pairs. Next paper by Fraczek (1993b) describes the computer program
DAMS for dynamic analysis of such systems. lle verifies the program using
simple mechanical systems without friction.

A special place among work devoted to multibody dynamics is taken up
by papers which deal with manipulators modelled as spatial open kinematic
chains. Thus, in papers by Gogoussis and Donath (1988) and (1990) there
is an interesting description of calculating reaction forces in kinematic pairs.
Interactions between links can be described by forces and moments acting in
joints between them. These quantities called joint forces and moments can
be calculated from equations of the dynamic equilibrium of each link. The
equations have to be formulated starting from the last free link. If joint forces
and moments are known tlie moments of Coulomb friction can be calculated.
In dynamic analysis {riction in drives is also taken into account.

An other method is presented by Klosowicz (1990). The author derives
the equations of motion of the spatial manipulator with rotary joints using
the Newton-Euler formalism. Reaction forces in pairs are defined by premul-
tiplication of the equations of motion by the inverse of an incidence matrix
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(cf Wittenburg (1977)). The equations of motion are solved using an iterative
procedure in order to consider moments of kinetic friction.

An interesting method of taking into account dry friction in dynamics of
spatial manipulators is presented by Wojciech [26]. The author presents a
detailed algorithm for integrating equations of motion which are formulated
using the Lagrange formalism. The essence of the method is described later on
in this paper. The author gives results of numerical calculations for the model
of a drilling vehicle which is treated as a manipulator with seven degrees of
freedom.

Papers by Szwedowicz (1991) and Ostachowicz et al. (1989) are also devo-
ted to dynamic analysis of a spatial manipulator with rotary and sliding pairs.
The method of calculating reaction forces in pairs, using transformation ma-
trices according to the Denavit-Hartenberg notation, is given by Szwedowicz
and Szwedowicz (1989).

3. Analysis of chains with flexible links

In the case when bending flexibility of links is taken into account the
links can be modelled in the form of a system of rigid finite elements (RFE)
connected by elastic elements (EE). The main idea of the method is described
in detail by Wojciech (1984), Harlecki and Wojciech (1992). Fig.2a presents
a system of n; of RFE and n; — 1 of EE which model the link ¢ of a
kinematic chain. This model is a part of the model of the whole chain and
is called subsystem ¢. Thus, the model of the whole chain can be treated
as a collection of n subsystems. Each RFE has one degree of freedom in
relative motion (rotation). The motion of the subsystem can be described by
generalized coordinates which are elements of the following vector

Ei = [CL‘,‘, yiaailv "'70im, -'-70in;]

where
x;,¥; — coordinates of point 0; in the inertial coordinate system
Ozy
Oim ~ angles of inclination of axes of each RI'E to the axis 0z
(i=1,...,n;m=1,..,n;).

The compohents of reaction forces F;, F;;1 as well as reaction moments
M;, M;,, are indicated in Fig.2a. In the case of the last free link = (Fig.2b)
the following should be assumed: F,,; =0 and M,y =0.
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Fig. 2. (a) - Model of the :ith link of the chain; (b) — End of the last link =n

There can be two kinds of input of relative motion input for the 7 kinematic
pair:

e Force input

This occurs when a link s — 1 acts on the link s, where 1 < s < n,
with the known drive moment MP and there is relative motion in the
pair s. Moreover, if the dry friction occurs in this pair, then the real
moment acting in the pair sis

M, =MP - MF (3.1)
The moment of kinetic friction M[ is defined as

MFE = signf,u,r  Fy (3.2)
where

p1s — coefficient of kinetic friction for the pair s

rs — radius of the pin (sleeve) of the pair considered
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F; - normal reaction force, F; = /(FZ)2 + (F¥)2

g, - relative velocity in this pair, 8, = 051 — ,_1n,_,-

Naturally, the moment of the same value M,, opposite in direction, also
acts on the link s — 1.

e Kinematic input

This occurs when the relative velocity in a pair p, where 1 < p < n,
is the known function of time (). In this case the moment M from
the p — 1 link, which is necessary to assure the dynamic equilibrium of
the link p, is unknown. It can happen that the link p — 1 acts on the
link p with the drive moment MpD but in the pair connecting both links
the relative motion will be interrupted because of frictional drag. This
situation is treated as a special case of kinematic input. Transmission
from the stiction phase to the kinetic friction phase will follow when the
condition is fulfilted

|MP — px| > MF (3.3)

The moment of stiction is given by the formula

TF — 5

M, = prpk, (3.4)
where fi,, is the coefficient of stiction in the pair p.

The equations of motion of the system considered can be derived using the
Lagrange formalism of type Il. The equations form a set of nonlinear ordinary
differential equations of the second order which can be written in a matrix
form

A,'E,--}-B,'éi-{-cifi +D,'P,‘—Tf=Gi+T,‘ 1=1,...,n (3.5)

How to define matrices A;, B;, C;, D; and vectors of gravity forces Gj is
described by Wojciech (1984), Harlecki and Wojciech (1992).
The vector of reaction forces in kinematic pairs ¢ and ¢ 4 1 has the form

Pi = [-FiI,F‘ya iﬁ-la-F{l{}_IJT

1

The components of the friction moments T and T; are defined as follows

Tf = [07 0>5iA’1i*a 07 vevy 07 _6i+1A/‘[i:-1]T
T; =[0,0,p:M;,0, .--,0,—Pi+1Mi+1]T
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~_J 1 when there is a kinematic input in the pair i
"7 1 0 when there is a force input in the pair %

)1 when there is a force input in the pair
Pi=1 0 wlien there is a kinematic input in the pair ¢

As can be seen, that the components of the vector T which are not equal to
zero appear only when there is a kinematic input in either ¢ or 7+ 1 kinematic
pair. The corresponding components of the vector T; are then zero.

The equations of motion of the whole system are formulated as a com-
position of n equations of all subsystems (cf Wojciech (1984); Harlecki and
Wojciech (1992))

AL +BE+CE+DP-T =G +T (3.6)

In order to calculate reaction forces F; 2n equations of constraints have
to be formulated in the following form

Ny—1
T =20 + Z Liimcosti_ym
m=1
ni—1
Y = Yo + Z 1,’_1'm sin 01'—1,m (37)
m=1
1=1,..,n 2o =1y =0 ng =0

Having differentiated these equations twice they can be written in the form
RE+BRE=D0 (3.8)

In order to calculate unknown components of the vector T a varying
number of constraint equations has to be formulated in the general form

Op1 = bp—1n,, = ¥(1)
- (3.9)
ng = 0 000 =0
The number of equations (3.9) equals the number of kinematic pairs in
which, at the moment considered, there is a kinematic input.

Having differentiated twice these equations with respect to time they can
be written in the following matrix form

fué =9 (3.10)
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The equations of motion together with the constraint equations (3.8) and
(3.10) are considered as a set of equations

AE+BE+CE+DP-T =G +T* (3.11)

It should be underlined that tlese equations can be used for solving both
direct and inverse dynamic problems when we search for the components of
the vector T°. In the first case phases of kinetic friction as well as stiction
can be considered. The signal for possible occurrence of the stiction phase in
the pair s is the change of the sign of the relative velocity of links s and
8 — 1. However, motion stops only when the following condition is fulfilled at
the same time

|\MP — M7 < mF (3.12)

If not, the relative motion at once changes its direction. As has been said,
the stiction phase changes to the kinetic friction phase when the condition
(3.3) is fulfilled.

Eq (3.11) has been solved numerically and calculations have been carried
out for a two-link chain when its links are driven by drive moments ML and
MP (Fig.3).

a4

Fig. 3. Kinematic chain considered

Link 1 is treated as a beam with bending flexibility (Fig.4). It is modelled
using the rigid and elastic elements (subsystem 1). Link 2 is treated as a rigid
body (subsystem 2).

For calculations link 1 is divided into n; = 5 rigid finite elements. Because
of concurrence of the results it is not necessary to use a larger number of rigid
elements. The selected results of calculations are presented in diagrams. They
are for the case when link 2 is driven by the drive moment and joint 1 (and so
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Fig. 4. Model of the analysed kinematic chain

the RFE 1) is motionless. One factor examined was a quantitative influence
of friction on vibration of the end FE of the chain (Fig.5). This problem
can be interesting, for example in analysis of accuracy of robot positioning
(the chain considered can be treated as a model of the robot manipulator).
For further calculations equality of kinetic and static friction coefficients is
assumed pxp = jix = 0.05 (k= 1,2).

e (ml )
0.03} ==~
0 — —‘_A L 3 L 1 L } I— L >
\
4 \\\ 8 t [s]
-0.09+ -
AR -
-0.18¢ \\V-/ \\\ JI’_ _\\ b
\_/ 7
-0'27F ~a

Fig. 5. Influence of friction on displacements of the end of the chain with a flexible
link: (a) - lack of friction in joint 2; (b) — [riction in this joint

Fig.6 presents the course of the relative velocity 6y — 65 of link 2 and
the last rigid element. The velocity in the case (b), after an increase which is
caused by the drive moments, decreases under the influence of friction. Phases
of stiction and kinetic friction in joint 2 are shown.



ON CERTAIN METHODS OF CONSIDERING DRY FRICTION... 889

6,615 sk
stiction kinctic friction
0.32f - [a
I * !
1\
0.16L I P ,'
" \ Py
0 pr—= —‘_r——“'ni I/"\\tlr ’I"—l'\ L
\ N 25T et
11 \ ]
-0.16¢ \ )‘ v Vo
\\\_’/,' ‘ ] \ ’
-0.32} \ oy v \\ ,’
\y v %

Fig. 6. Course of the relative velocity 02 — 015: (a) = lack of friction in joint 2;
(b) = friction in this joint

Fig. 7. Coordinate system for planar chains with rotary joint

11 — Mechanika Teoretyczna
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4. Verification of the method presented

The formulae presented above become more simple in the case of rigid
link chains. In this case subsystems consist only of one rigid element without
elastic elements. Then the dynamic analysis can be also carried out using
the Lagrange formalism together with Denavit-Hartenberg (cf Craig (1993))
notation for transformation of coordinate systems. This notation in principle
refers to spatial systems. In the case of planar chains with rotary joints only the
coordinate systems according to the Denavit-Hartenberg notation are defined
as in Fig.7. Then the angles §; between the axes z;_; and z; are generalized
coordinates.

If the vector r; = [z;,]7, defining the position of a chosen point in the
coordinate system z;y; connected with the link ¢, is known, then the vector
r;_1 defining the position of this point in the z;_jy;_; coordinate system
connected with the link 7 — 1 is defined as

Ti-1 = A,'T,' 1= 1, ey (4.1)

where A; is the transformation matrix from z;y; to z;_1y;_1 coordinate
systems.

When transformation matrices A;,...,A; are known, the position of the
point with respect to the inertial system zgyo can be calculated according to
the formula

ro = Bir; (4.2)

where B; = AjA,...A; is the transformation matrix from the coordinate system
z;y; to the inertial coordinate system.

Potential and kinetic energies of the chain as well as the equations of motion
are formulated according to the procedure presented by Jurevic et al. (1984).
Having differentiated matrices B;, the kinetic energy of the whole chain can
be expressed as

T = 1f:t(B-H-BT) (4.3)
- 2 i=1 AR .
where
tr(-) — trace of the matrix (+)
H; — inertial matrix of the link 1.

Potential energy can be calculated according to the formula which contains
the scalar product

V =g(a-b) (4.4)
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where .
a=[0,1,0] b= Zm,-B,-rC,.
i=1
and
g — acceleration due to gravity
m; — mass of the link 1
r., ~— position vector of the center of mass of the link 7 in the

system x;y;.
For further consideration the following is defined

. OB.
IT= 5,7 =1,...
B 20, i,j=1,..,n
(4.5)
. 9B?
1= L 7,8 =1,...
B’ 78, ,7,8=1,...,n
The above quantities can be presented as
BJ — A]A]_101A1A1+1A1 when ] S 1
! 0 when j >
(4.6)
. Ai..A;_1D;A;..A,_iDA,.. A when j<s<1
B® = A1...A]-_1D§A]-...A,- when j=s<1
0 when j>17 and s> ¢

where D; = 0A;/00;.
The relations presented enable a complicated matrix differentiation to be
replaced by simple multiplication. Thus

B, = ) BY4; (4.7)
J=1
and so the kinetic energy (4.3) can be written in the following way
T = Z tl(B‘ZH,BiT)HJHI (4.8)

1
2; 140=1

n 1
1=

Using the above formulation the variable number s of equations describing
the motion in the pairs with force input can be defined

ZDsgé; + ZZ Dsjiéjé; + D, = M, (4.9)
1=1

j=1i=)
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where

Dy= S t(BjHB})
{=max{i,s}

Dsji = 611 Z tl(B'IﬂH{BfT)

{=max{1,j,s}

D, =g(a-b")

n

* RS

b = Z m;Bir.,
t=s

6. = 1 when j=3:
71 2 when j#£i

The number of Eqs (4.9) is equal to the number of pairs in which, at the
moment considered, there is a force input. The moment A, is calculated
from Eq (3.1).

In this approach normal reaction forces in the case of force input and equ-
ilibrium moments in the case of kinematic input are calculated in a different
way than in the rigid finite element method. The approach proposed is ba-
sed on the recursive Newton-Iuler formulation (¢f Lult et al. (1980)) which
consists in realization of two calculation loops. The first of them enables ki-
nematic parameters of each link and then inertial forces and moments to be
calculated. In the other loop the reaction forces I (in the case of force input)
or equilibrium moments Af; (in the case of kinematic input) are calculated.
Naturally, this last case includes the cecasing of relative motion in pairs as
a consequence of friction. Calculations in the first loop are realized starting
from the first link, while in the second loop from the last free link n. The
iterative algorithm, worked out by Wojciech [26] for calculating kinetic friction
moments M[ and integrating the cquations ol niotion, has been used in this
approach.

For numerical calculations, in the case of the chain with two rigid links
(Fig.3), first the inverse dynamics problein has been simulated using both
methods considered.

Fig.8 shows the courses of coordinates 8; = 8;; and 8, = 83, — 6;; which
are to be realized in the time given. As can be seen, movements of links are
realized one after another in the phases I and 11, respectively. Both methods
enable necessary drive moments A} and Ay to be easily calculated.

In order to check the correctness of the results obtained, the calculated
drive moments are used for the solution to direct dynamics problems. Thus,
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Fig. 8. Example of the inverse dynamics problem
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Fig. 9. (a) — Direct dynamics with [friction in joints; (b) — Correction of the drive
moment of the link 2
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these moments act on links the movement of which is examined. When omit-
ting friction, identical courses of coordinates 6,, 82 are found (Fig.8), and
regardless of the fact whether Eqs (3.11) or (4.9) are used. Thus both me-
thods give the same results.

However, completely different courses are obtained when friction is taken
into account.

When the drive moment MJP is assumed to be as the first part of M7 in
Fig.8, the course of the coordinate 8, (solid line Fig.9a) is completely different
from the course required (broken line). In order to guarantee the initial lack of
motion in joint 2 the moment MZP (broken line in Fig.9b) should be applied
which is different than the calculated M3 (solid line in Fig.9b). Phases of
kinetic and static friction in joint 1 are shown in Fig.9a. It appears that if the
friction is not taken into account in the real systems unsuitable drive moments
can be assumed in control tasks and in consequence the motion of links will
differ from the expected one.

It is also important that the above diagrams have been obtained using
both methods discussed. They are identical, which proves the correctness of
the methods.

5. Conclusions

Both methods of considering dry friction in dynamic analysis of planar
open kinematic chains with rigid links, using different rules, have given con-
sistent numerical results. So the calculations carried out have been proved to
be correct. Once again it is proved that friction considerably influences the
motion of mechanical systems, especially when flexibility of links is taken into
account. Neglect of friction can mean that wrong results are obtained, for
example in control.
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O pewnych metodach uwzgledniania tarcia suchego w analizie
dynamicznej otwartych taricuchdéw kincimatyceznych o konfiguracji plaskiej

Streszczenie

W pracy przedstawiono dwa odmienne sposoby uwzgledniania tarcia suchego w
analizie dynamiczne] ukladéw wielomasowych, rozwazanych w postaci plaskich otwar-
tych lanicuchéw kinematycznych z parami obrotowymi. W obu przypadkach zastoso-
wano rozne metody obliczania reakeji w parach kinematycznych. Pierwszy sposob,
oparty na uwzglednieniu réownan wiezdw, stosowany jest zasadniczo w przypadku
analizy dynamicznej laricuchéw z czlonami podal:nymi, przeprowadzanej przy uzyciu

"metody sztywnych clementéw skoriczonych”. Rozwazono pouadto mozliwosé analizy
szczegllne] postaci tych lancuchdw z ulondml sztywnymi przy uzyciu innej metody,
w ktorej do sformulowania réwnaii ruchu wykorzystuje sie macierze transformacji
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ukladéw wspdélrzednych zwiazanych z poszczegélnymi czlonami wg notacji Denavita-
Hartenberga W tym pr/ypddl\u me\vmdomc wiclkogel wyznacza sie, korzystajac z
réwnarn okreslajacych rownowage dynamiczng poszczegdlych czlondw. Obie met,ody
pozwalaja uwzgledniac zlozony model tarcia suchego w parach, tzn. rozwazaé nie
tylko stany tarcia kinetycznego (Coulomba), ale takze stany tarcia statycznego. Po-
rownano wyniki obliczenn numerycznych olrzymane w przypadku analizy uproszczonej
wersji laficucha z czlonami sztywnymi przy wykorzystaniu obu metod. Zgodnosé tych
wynikéw stanowl potwierdzenie poprawnosci uzytych metod.
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