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In this article it is shown for the formulation of contact kinematics that
continuity requirements are necessary To guarantee the continuity, ma-
terial damping (relaxation time 7} terms must be taken into account.
i.e., the corresponding equations are regularized  Furthermore, it is
shown that a boundary layer occurs always behind the point ol con-
tact (velocity  v) and that the characteristic length of the houndary
layer is 7v. Because of the hittle influence of the boundary layer it can
be concluded that the material damping can be dropped as a mean of
regularzation il the nonsmooth velocities are calculated in front of the
pomt of contact. Thus the numerical treatment of railway wheel models
can be simplified

1. Introduction

In investigations of railway wheels running on rails their bending is fre-
quently modelled by an elastically supported beam (e.g., the Bernoulli-Euler
beam}, their longitudinal deflection and their torsion by elastically supported
bars (cf e.g., Bogacz et al. (1991); Brommundt (1991); Grassie et al. (1982);
Grassie (1992); Knothe et al. (1994), Meywerk and Brommundt (1993); Oster-
meyer (1987), (1989a,b,c): Triantafullidis and Prange (1994)). The interaction
hetween wheel and rail is described by a contact theory, e.g., the theory of
Kalker (1990), cf Gross-Thebing (1993). These descriptions permit calcula-
ting of the forces and the moment acting between wheel and rail in the contact
patch which is idealized as a contact point. For these calculations it is neces-
sary to know the creepages and the spin at the point of contact. When the

"The paper was presented during the First Workshop on Regularization Methods in Me-
chanics and Thermodynamics, Warsaw, April 27-28, 1995
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point of contact moves along the rail the velocities of the deflections become
discontinuous there. Thus, the creepages and the spin which depend on these
velocities are not defined. Ostermeyer introduced material damping to avoid
these difficulties (cf Ostermeyer (1989a,b.c)). For very small material dam-
ping there arise problems in the numerical calculations due to nearly singular
(stiff ) partial differential equations (the coefficient of the highest order deri-
vative with respect to the space variable is verv small).

In this article it is shown, that the regularization is necessary to calculate
the spin (cf Ostermeyer (1989b)), the longitudinal creepage for longitudinal
deflection (cf Ostermever (1989c)) and the lateral creepage for a twistable
rail. Furthermore. for the three cases a perturbation technique shows that
the material damping always affects a boundary layer behind the point of
contact. It is demonstrated by a simple model with a moving load and a
moving moment on the Bernoulli-Euler beam, that the spin at the point of
contact in the damped rail is nearly the same as the spin in front of the
point of contact in the undamped rail. Knowing that the boundary layer is
always behind the point of contact, and that small material damping for small
velocities have little influence on the results (c¢f Ostermeyer {(1989b)), one can
avoid the material damping and the numerical difficulties by calculating the
creepage and spin taking the velocities in front of the point of contact.

2. Procedure of solution

To demonstrate the procedure of solution we model the rail as the
Bernoulli-Euler beam which is flexible in the ¢;-direction (Fig.1, bending
stiffness EI, mass density i, stiffness of the Winkler fonndation £,). The
deflection of the beam in the ey-direction is ,(z,t). The same deflection is

denoted by wv,(£,1) as a function of the moving coordinate &, & = 2 — vt
(Fig.1). Between 7, and w, hold the following relations

(2, 1) = v, (€, 1) E=a—wt (2.1)

We assume the whole model to be governed by linear equations. Thus, the
time can be split off by 7.(z,t) = 7,(z)e’, and we assume A to be a given
value?. A load F., = F.,e™ and a moment M = ﬁcge’\’ move at a constant
velocity v along the beam. The force F.y and the moment M.3 represent
the actions of the wheel upon the rail.

>The whole procedure ol solution, which includes the wheel, is given by Meywerk
and Brommundt (1993) or Ostermeyer (1989a)
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Fig. 1. The model

The equations of motion are established via the Hamilton-Ostrogradsky
principle

f2
= / (8T = 6U + 6W) dt =0 (2.2)
“t
where
T - kinetic energy
U - potential energy
) - variational operator
§W - virtual work of the non-potential forces.
Here we have
1 [e.e] 1 [oe)
T [ e U= [ (B15 4 brt) de
—.OO — 00
(2.3)

(ﬂ/V F.obv, + ./\/163(3?}

and obtain for 45 after integration by parts and transformation? to the moving

3For details of the transformation see Brommundt (1991) or Ostermeyer (1989a)

3 — Moechanika Teoretyczna
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coordinate £ (Fig.1)

io 29
fs = / / [(=nlb, = 200 + vol)ow, — ELelY b0, — kyo,év,) dé +
l=t; —o0
(2.4)

+ EI6)t — EI0S0,]t + Fabv, + Mabvl | dt =0

where

[f1T = lim f(&)— lim f(€)

£—0%+ £—0-

From Eq (2.4) we get the julnp and smoothness conditions
(] =0 [o]

EI[U',’]J_F = ”A‘MCB l*,‘[[l):,"]*— — Fc:')

T

and the field equation

EIvY 4 koo, + i, — 208! + v20) = 0

‘Lo solve Eqs (2.6) to (2.8) we assume

v (E.1) = De e

(2.8)

(2.9)

By substituting Eq (2.9) into Eq (2.8) we obtain four characteristic values ry
(k= 1.....4)which depend on A. k. = kr(A). Since the boundaryv conditions.
lime— 4o 0, = 0. we have to distinguish between &y with a positive real part
and g with a negative real part. Thus the solution can be expressed as

4

Z aTke':k{
k=1

Re( ). )<0

m(E.1) = e

Z i}r,\.e""kt
k=1
Re(r)>0

(2.10)

For £ > 0 we have to sum over the terms ,.e™¢ with real part of x; lower

than zero and for € < 0 vice versa.

We substitute Eq (2.10) into Eqs (2.6) and (2.7) and obtain an inhomoge-
neous system of four linear equations for the constants 2., (k= 1,...,4).
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3. Spin and a beam model

The angular velocity w. of the rail al the point of contact 5. (cf Fig.1)
is given by
we = (0 — vu!)(0,1) (3.1)

It is not defined if ¢/ is discontinuous. The angular velocity is needed to

calculate the spin which is proportional to the difference between angular
velocities of the rail and the wheel, respectively at the point of contact. FEq
(2.7), shows that the spin is not defined for an undamped bean.

To overcome this difficulty the material damping is introduced vja the
Voigt model (relaxation time 7 (cf Fung (1965))

I

o= E(l—l—T%)E (3.2)

The equations of motion [or the damped Bernoulli-Fuler heam are

[e:]F =0 [v/]T =0 [t =0 (3.3)

7 —

roE [0t = M EIY + o — reolV)t = 1y (3.4)

—roETvY + ETo!Y + 1 ETe!Y + kyo, 4+ p(d, — 200! + 0%0") = 0 (3.5)

where I = Fipe and M,y = M.ge.
The differences between the equations for the damped and undamped be-
ams, respectively, are:

e The second derivative is continuous at the point of contact instead of
being discontinuous

e The order of field equation with respect to the space variable £ is five
instead of four.

To solve the equations we assume wv.(£.1) = B, e, Then, we get [rom
Eq (3.5) a polynomial of fifth degree in &

0= —ToEI&® + EIRT+ 7 EIAY + ky 4 n(A? = 2006 + 0257) (3.6)

In the following we approximate the eigenvalues k by an expansion with
respect to the small parameter ¢, € := 79 (7 and ¥ are the nondimensional
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relaxation time and velocity, respectively). To do this we choose realistic
values of the parameters

El=5-10° Nm? ko= 1-10° — w=60 =5
n m q -
(3.7)
1
v =502 r=1-107s A= dm 107 <
S S
and scale Fq (3.6) using the following reference quantities
€0 = 05 m = ! fj 10 =5- ]0_.‘3 S (2OUHZ)
{ (3.8)
Fot}
Fo=5-10"N Mg 1= 0—10 =2.5kg
o

Tildes mark nondimensional parameters. Having done this all the coefficients
in Eq (3.6) are either of the magnitude? 1/(7¢) = 1000 or of the magnitude
(7510 = 1

— _ ERRT RS ET k* + 7T &Y Eow. 4 GNE — 02PNk 4 an? k2 (
O=—-70FIr" 4+ FEl k" +7EINK -{—\\A/U,-{—@J H20N k + i k* (3.9)
~0.5 500 x5 2400 2470 238 ~3

We do not apply the usual approach of a perturbation technique,

K = Kg + €x; + ..., but use an expansion similar to the Laurent se-
ries

1 1

K= -—K_,+

oIl cn—1
£ £

1
K,_,1+]+...+ —:H,_1+I€0+Eh',]+... (310)

We put ~ from Eq (3.10) into Eq (3.9) and collect the terms of equal powers
™. The conditions that the coefficient of €™ must vanish for each m lead
sucessively to

K_p, =0, K-y =0, ..., K2=0 (3.11)
by looking at the coefficients 1/e. 1/e3(*=1) 1/¢'0 one after another.
From the coefficient of (1/¢%)-term we obtain five solutions for s_;
] ] 0 for k=1,...,4 .
ALk = { 1 for k=5 (3.12)

We call a coefficient « to be of magnitude g" if |a/8"| € [L//B, VB]



REGULARIZATION IN THE GOVERNING EQUATIONS. .. 37

The following comparisous of terms with the same magnitude yield succes-
sive terms for kns5. (7 = 0....). The first value n for not vanishing x, .
(k= 1,...,4)is n =0 and these kg, are the eigenvalues of the undamped
system. The solution is of similar structure as given in g (2.10). By substi-
tuting it into Eqgs (3.3) and (3.4) we obtain the constants v, (k= 1....,5).
The constant 9,5 for the boundary laver e"¢ (characteristic length 70)
is very small and its contribution to the deflection is small. As an example
the deflection v, is depicted in Fig.2 (parameters L1, k,. v, u see Iq (3.7)
and A = 0, i.e.. a moving static Joad and static moment), Fo = 1-10°N.
M. =1-102Nm.

0.749

B
£ 0.748

- _without
damping

& [Imm] 2

Fig. 3. The second derivative of the deflection u, of the undamped rail and for
three different relaxation times

In Fig.3 we see the smoothing influence of the boundary layer on the second
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derivative @!. Furthermore we see that for a very small relaxation time
(1 = 107%s) the second derivative in the undamped rail in front of 5, (i.e.,
€ = 0%) is about the same as in the damped rail at 5,..

If the rail is modelled as the Timoshenko beam the perturbation techni-
que results in two space eigenvalues K_j;5 = K_16 = 1/(Tv) 4+ ..., l.e.. two
boundary layers.

4. Lateral creepage and torsion

For a bended rail the velocity in lateral direction at the point of contact
is smooth, no regularization is necessary. If the rail is modelled as a twistable
bar the lateral velocity is discontinuous again. Thus we repeat the procedure
given in Section 3. We assume that the rail rotates about the axis through
S.r. The distance between 5., and S, is equal to r (see Fig.1). Then the
lateral velocity in S, is

vey = (ré, — vral)(0,1) (4.1)

We establish the equations of motion by the Hamilton-Ostrogradsky principle
Eq (2.2) with

(o)
1 s o 2
U= / (GIra? + koa?) de
— o0
(4.2)
¥
r= / J&? de S = Foréa,
— 0
where
GIr - torsional stiffness
J - density of the moments of inertia
kq - Winkler foundation for the torsion.
We obtain from Eq (4.2) for the undamped rail the jump condition
For = —GIrla’]t and the field equation. We see that the velocity v

is not defined. Taking material damping into account the equations of motion
become

[a,]T =0 (4L =0 (4.3)
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roGlirlel |t = Fay (4.-h)

TG Ipal’ — Glra! — TGIpd” + kaa, + J(é, — 2véd + v2a”) =0 (4.5)

We choose the following parameters

Glr =2-10° Nm? ke =3-10%N J = 0.285 kg m
(.1.6)
_ ) .
v =50 = r=1-10""s A=w-10° -
S S

and scale the field equation with respect to the following reference quantities

(1 ,
lo=025m =,/ L ly = 210775 (500 Hz)
) (1.7)
Fot?
Fo=5-10"N my = CAL kg
lo
Let «, be a, = a,e“e’. We obtain from Eq (1.5) a polvnomial in x.

Multiplying the polynomial by 10 the coefficients are of the magnitude 1 and
1/(70) = 500
0= 'F?"JCT]T K3 — HIT K~ %&T;\HQ + /1'0 + I 2] 0Nk + JD?K? {4.8)
— ——— ~— —~ =~ = S~~~
~0.3 ~64 ~2 ~60  RO6 =18 =14
We apply the approach Eq (3.10) and get w_13 = x_12 =0 and xk_ 5= I.
That means that we have the boundary layer a,e"*¢, ny = 1/(7r)+ ... for
the deflection «, behind S§,.. The characteristic length 70 is the same as
for the deflection wv,, ¢f Section 3. The effects on the deflection and its first
derivative are small.

5. Longitudinal Velocity and Elongation

Applying the procedure presented in Sections 3 and 4 we get with

_ 1 i 2
U= 3 / (EAu,. + Auu,,) d¢
—o0
(5.1)
T )
T= B / /1*1'1'72- d€ W = F.bu,

-



40 M. MEYWERK

from Eq (2.2) a jump of the first derivative of u,. Thus the velocity in S,.
ver = (1 — vu,.)(0,1) (5.2)

is not defined.
Taking material damping into account the equations of motion become

[u ]t =0 [ul]t =0 (5.3)
ToE AT = Fa (5.4)
ToEAu" — EAu! — 1EAW + kyu, + p(it, — 200 + 02) =0 (5.5)

With the choice of parameters

- N 3
EA=165-10°N ky = 1-10 - ;1.:601(—%
m m - o
(5.6)
1
» =502 r=1-10"5% A =21 10% -
S S
and the reference quantities
EA
lo=13m ~ p to=1-10"%5 (100Hz)
‘ (5.7)
Fot?
Fo=5-10N mo = —0 = 08 kg
L0

we obtain the dimensionless polynomial (see Sections 3 and 4) from Eq (5.5).
Multiplying the polynomial by 10? the coefficients are of the magnitude |
and 1/(79)=2.6 104

0= FOEA K% — EAK? — FEAARE + hy + AN = 2000+ A0 k% (5.8)
N—— N~ S— M e N~ —
~0.00013 ~3.3 ~0.02 ~34 a8 005 ~0.0003

The same procedure as in the previous sections yields x_17 = x_12 = 0 and
k-13 = 1. The influence of the boundary layer to the elongation is small.
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Regularyzacja réwnan konstytutywnych modeli két kolejowych

Streszczenie

W artykule wykazano, ze warunki ciaglosct sa konieczne do sformulowania ki-
nematvki kontaktu. W celu zagwarantowana ciaglodci nalezy uwzgledni¢ tlumienie
materialowe (czas relaksacji 7), to znaczy odpowiednie rownania sa regularyzowane.
Ponadto pokazano. ze warstwa brzegowa (wyznaczona przez predkosé ¢) pojawia sie
zawsze za punktem kontaktu. a jej dlugos¢ charakterystyczna wynosi 7v. Ze wzgledu
na maly wplyw warstwy brzegowe] mozna stwierdzic, ze tlumienie materialowe moze
by¢ narzedziem regularyzacji przy obliczaniu nwg(adlnch predkosci pl/ed punktem
kontaktu. Obliczenia numeryczne modeli kol kolejowych moga by¢ wéwezas upro-
szezone.
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