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There are several competing phenomenological niodels for the propaga-
tion of heat pulses. The semi-empirical heat conduction model uses the
internal variable approach. It was previously shown that this model is
in accordance with observed behaviour. The aim of the present paper is
to choose material functions in a way to obtain good quantitative agre-
ement with experimental data over the whole admissible temperature
range. New approximations of experimental data are introduced and
discussed together with the Clausius-Duhem inequality. The new model
is verified by numerical results.

1. Introduction

The main idea of hyperbolic heat transfer models is that the heat flux ¢ is
not given as an immediate response to a temperature gradient V4, but rather
as a somehow delayed reaction. This delay may be introduced by history
dependence (materials with memory, ¢f Gurtin and Pipkin (1968)), by an
ordinary differential equation for the heat flux ¢ with the classical Fourier
law as forcing term (velocity type materials, c¢f Maxwell (1867); Cattaneo
(1948); Vernotte (1958); Morro and Ruggeri (1987)). or by an internal (hidden)

!The paper was presented during the First Workshop on Regularization Methods in Me-
chanics and Thermodynamics, Warsaw, April 27-28, 1995
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state variable (material with internal variables, ¢f Coleman and Gurtin (1967);
Perzyna and Kosiniski (1972)).

We will study here the latter case, and introduce one internal variable 3
— called the semi-empirical temperature. In that approach, the heat flux is
related to the gradient of 3 by a Fourier-type law, rather than to that of
the classical absolute teinperature 6. The main problem is now definition
of the kinetic equation which governs the time evolution of 3. Further, the
coefficient in the constitutive low of the heat flux and the specific heat have
to be specified, respectively.

We have to study the following system of partial differential equations:

— constitutive law

g = —a(8.3)V3 (1.1)
- kinetic equation
f=f6,5) (1.2)
- energy balance
= —divg + r (1.3)
The easiest possible choice is the following
€ — internal energy, € = ¢(#)
k(8) - heat conductivity. n( ) = (
T - relaxation time, f(0.3)= (08— 4J)/T.

Note, that for constant & a,nd ¢, = € the above system is equivalent
to the classical Maxwell-Cattaneo-Vernotte equation. Hence it is natural to
support the present assumptions by comparison with that classical case.

Further, for relaxed states. e.g., for stationary solutions, [ coincides
with 6.

In a more general approach, also depeudencies on the gradients of 4 and
g are considered (cf Frischmuth and Cimmelli (1994); Kosifiski and Wojno
(1995)). Coleman and Neumann (1988), allow ¢ to be a function of ¢. In
the present paper, we remain within the {ramework given by Cimmelli and
Kosinski (1991). So, we assume the internal energy ¢ and the conductivity «
to be functions of & only, the free energy is allowed to depend on # and V3.
The form of the right-hand side of the kinetic equation is now not assunied a
priori, but identified from measurements of wave speeds and thermodynamical
restrictions. Hence, we put aside the assumption that for refaxed states it holds
g = 6. Consequently, a(f) does no longer coincide with its counterpart for
the stationary case x(6).
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2. Experimental basis

We found NakF to be the best measured material which shows heat pulses.
But even here, we have only three curves at our disposal from which we have to
induce all constitutive functions. Of course, this is only possible, if we assnme
reasonable a priori restrictions, i.e., we must focus on the dependencies we
believe to be essential.

The measured data are (¢f Coleman and Neumann (1988); Jackson and
Walker (1971) and papers cited there):

o The specific heat conductivity & in the critical temperature range where
heat waves are observed, i.e., between 10 and 20 k.

An approximation? of measured data is given by

e*0t s In 64y ln2 2]

r(f) = e (2.1)
where
Ko = —7.150703 k) = 6.530065 Ky = —1.204074
o The wave velocity. derived from the appearance time of heat waves.

We denote by Up the speed of a wave travelling through material at an
equilibrium state, i.e., into a domain where ¢ = 0.

Approximation of measured data is given by
U = ug+ w0 (2.2)

where
ug = 0.41943 w; = —0.0127398

o The specific heal ¢, from (modified) Debye’s Law. approximated by
co(8) = (co + €18)6° (2.3)

where
€g = 2.154452 €1 = 0.023421

All theses three approximations are valid in the interval [10,20] (and
should not be applied out of that range or to different materials).

*Throughout this paper we use only dimensionless variables. The values of con-
stants and parameters of functions correspond to the following units: temperature
(6 and 3) m K, length in cm, time in ps, speed in cm/(pus). energy in J.
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3. Clausius-Duhem inequality

We exploit now thermodynamics in order to obtain additional relations
which are useful for the identification of constitutive functions.
First, we define the Helmholtz free energy 1 by

v =¢€—06n (3.1)

with the entropy 7.
The second law of thermodynamics takes the form

7> —div(%) + -;1 (3.2)

This, together with the energy balance, gives the Clausius-Duhem inequality
—d’—ﬁé—¥20 (3.3)

For the present version of the semi-empirical model, i.e., for the system
g =-a(0)Vp B = f(6.) e(0)8 +divg=r,  (34)

we obtain, on the assumption that the Helmoltz free energy % depends on 8
and V3 only, i.e.,
P =1(0,VP) (3.5)

the following relations
n= =g g = —vgfeb 02> vvgfsVi (3.6)

We denote 77! = fy and 07! = — f3. From Eqs (3.4); and (3.6); it follows

$(8,V5) = %w(e)(vm? T wo(6)
(3.7)

Ta
Y2(0) = 7
We conclude from Eq (3.7); and from f = f(8,4) that 7 = 7(8). Further,
fgg = 0.
So we have

f(0,8) = 11(8) + f2(8), (3.8)
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with

4
A0
F(6) =/ (9) e (3.9)

7(
bo

From Eqs (3.6); and (3.1) it follows

, 1 . 1 .
€(0) = o — Oy = 5&"2(9)(Vﬁ)2 + tho(0) - 590-‘4'2(9)(V/3)2 —fuy(0) =

S G = 0uL0) = ald) = gt = T (3.10)
02
= T:%bzom

4. Relaxed states

A discussion of stationary solutions leads to the following consistency con-
dition
aVi3 =krVo (4.1)

In this case the semi-empirical temperature J is in its relaxed state 3g(6)
which is defined as the (unique) solution to

B=0=f(8,8) (4.2)
The implicit function theorem gives BE(8) = og/T with
op(f) = —0f(0,8r(8))/95. Hence, using (4.1) and the chain rule, we arrive
at
a=—_« (4.3)
OF

Note that og is still allowed to depend on ¢ while ¢ is a function of 3 only.
On the other hand from the hyperbolic system (3.4) we have the wave

velocity Ug given by
Up = 2 = [-5 (4.4)
CyT CyOE

which gives, together with (4.3) a formula for og in terms of the three given

curves

(4.5)
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Simple calculation yields now formulas for « and 7

a = 0\/4a0c, R T=90 61/«;[02 (4.6)

where 19 is the constant from (3.10). Let us pursue our analysis under the
additional hypothesis o = const.
The right-hand side of the kinetic equation reads now as follows

[
G _
f(ﬁ,/ﬁ’)z/d—~é+c (4.7)

T(8) o
0o

Since, the calculation of ¢ from (4.5) does not give exactly a constant function,
we define hence ¢ as the integral mean value of the function (4.5).

Now, we have to choose the two constants w99 and (. Note that
(" = Bp/og renders fp relaxed at By. The choice of (' is hence equivalent to
the choice of the intersection fp between the classical and the relaxed semi-
empirical temperature scales, respectively. We choose 8y [rom the interval
[10,20] where our approximations of the experimental data are valid.

Finally. the present version of the semi-empirical model can be re-written
in a lorm very similar to the classic case

g=—! (4.8)
OE
wlhere

g

~ O’E

=6 a6 1.

6 0+9/ (0) (4.9)

0

If 7 = const = ¢ the original model is reobtained. Otherwise we impose the
condition 7(8y) = op which allows us to determine 0. In this case the
present model equations coincide with the original ones in the neighborhood
of 8y up to the second order terms in 8 — 6.

We perform now numerical experiments and study the influence of both
parameters g (resp. (') and 50 on the behaviour of the numerical solutions
to (3.4)z and (3.4)3. Fig.1 presents a typical pulse. We assumed here a homo-
geneous and relaxed state as the initial condition, a Dirichlet condition 6 = 8y
on the left boundary z = 0 and a Neumann condition ¢ = 0 at the right
boundary » =[. For details of the set-up of heat pulse experiments (geome-
try of the specimen, pulse duration and height), ¢f Frischmuth and Cimmellj
(1995).
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length [mm] lime [z5]

Fig. 1. Numerical solution for 8y = 15

It turns out that the decay of the amplitude depends very strongly on
o while the influence ol 8y and 1wy is negligible. Most essential is the
dependency of the arrival times on the initial value of the temperature. Fig.2
presents the temperature increment on the right end of the specimen as a
function of initial temperature and tine.

0.201

0.154

0.101

lemperature increment [K]|

time | 4¢5)

I'ig. 2. Temperature increment at right end of the specimen

Comparison with the experimental appearance times (leading edge as well
as maximum) shows an acceptable agreement. However. it is obvious that the
maximal pulse amplitude occurs at a slightly lower temperature than in the
experiments.
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5. Concluding remarks

We have constructed a thermodynamically admissible semi-empirical heat
conduction model which reproduces the wave speeds ohserved in second sound
experiments. We removed two drawbacks of the previous variant which was
used in the first numerical experiments. The first concerns available data of
the specific heat and heat conductivity, in particular the latter curve exhibits a
peak at the critical temperature. The second drawback concerns the variable
relaxation time, meeting the requirements of the second law. while at the
same time giving the right wave speed in a certain range of temperatures.
The modelling of the pulse amplitudes, improvement of the approximation of
the wave speed as well as the consideration of coupling with elastic waves is
still under way.
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Hiperboliczne przewodnictwo ciepla ze zmiennym czasem relaksacji

Streszczente

Jest wiele wspolzawodniczacych modeli rozprzestrzeniania si¢ impulsow
ciepla. Model przewodnictwa ciepla, wykorzystujacy koncepcje temperatury semi-
empirycznej, jest zbudowany w ramach podejscia z wewngtrznymi zmiennymi stanu.
Celem niniejszego artykulu jest dobdr funkej materialowych w taki sposdb, aby uzy-
skac ilosciowa zgodnosé z danymi doswiadczalnymi z pelnej dziedziny dopuszczalnych
temperatnr. Przedstawiono nowe przyblizenia analityvczne danych doswiadezalnych
1 przedyskutowano nieréwnosci Clausiusa-Duhema  Nowy model weryfikuje sie nu-
merycznie.
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