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1. Introduction

The paper is devoted to the study of small torsional vibrations of an elastic
shaft with variable stiffness carrying a number of rigid masses (the discrete-
continuous system) using the model represented by equations with distribu-
tional coefficients.

The well known classical approach to the analysis of compound mechanical
systems (cf e.g., Beer and Johnson (1977); Inman (1994)) consists either in
discretization of the system, i.e. replacing it by a number of concentrated mas-
ses connected by springs and dampers, or in dividing it into typical elements
with continuously distributed masses, each having constant mass density and
stiffness, which are next analyzed separately.

For more complicated systems the first approach may lead to significant
discrepancies between computed results based on a numerical model and the
observed behaviour of the system.

The second one gives nore accurate results but computations are more
complicated since each element has to be analyzed separately, which requires
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solving a number of initial boundary value problems, and next the obtained
solutions must be fitted together which involves additional computations.

The finite element techniques based on the Galerkin approach (cf White
(1985)), very powerful and popular in applications, give approximate numeri-
cal models, the accuracy of which depends on the number of elements used. In
the case when eigenfrequencies of the system are to be determined the method
may give solutions suffering from big numerical errors.

For the recent works using a classical approach to the treatment of discrete-
continuous systems see e.g., papers by Nadolski (1994), Pielorz (1992), (1995).
Pielorz (1992) gives an extensive bibliography of the subject.

In this paper we propose a different approach to the modelling of mechani-
cal systems, consisting in the use the discrete-continuous models, i.e. applying
representation by equations with distributional coeflicients. Solutions of such
equations will be called the generalized funclions, since they satisfy the equa-
tion in generalized (distributional) sense.

The use of distribution equations makes it dispensible dividing the analy-
zed structure into separate parts. Note that in the case of constant coefficients
it is possible to obtain the explicit formula for the solution and in consequence
the equation in natural frequencies, whiclt in comparison with the finite ele-
ment method, considerably simplifics the problem of finding eigenfrequencies
of the system.

Application of distribution equations to modelling the mechanical systems
has been used by various authors (cf e.g., Pan and Hohenstein (1981); Persson
(1990)) and references therein. KNasprzyk (1984) and (1994) this approach
have applied to investigation ol transverse or longitudinal vibrations of the
discrete-continuous systems.

In the present paper it is shown that the method of Kasprzyk (1984) and
(1994), can be also applied to the situation when in the equation the distri-
bution appears as a coefficient at the first derivative of the unknown function.
Such a situation appears when modelling torsional damped vibrations of ela-
stic shafts with concentrated loads under external moments.

2. Mathematical model

To be specific, we will carry out the analysis for the discrete-continuous
system as depicted in Fig.1.

The shaft 0A of length /[m] with the mass moment of inertia Jg [kgm] per
unit lenght is subjected to external torques [Nm] acting at points z;, varying
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Fig. 1. The elastic shaft with concentrated rigid masses and a dynamic damper

in time, described by the functions fi(¢) ¢ = 1,2,...,n and to a damper
located at the point 2,41. A rigid body with the mass m; [kg] and the axial
moment of inertia J; [kgm?] is attached to the shaft at a point z;. It is
assumed that a cross-section of the shaft at z; does not undergo torsion. The
shaft is connected with a damper at the point x,47. The (linear) dissipative
and elastic elements of the damper are attached at a distance R[m] from the
z-axis, the damper has the axial mass moment of inertia .J, [kgm?].

Denote by Jo; [m?] the polar moments of inertia, of the cross-sections of
the shaft perpendicular to 0a axis taken at point z;. We assume that at the
remaining points the shaft has the constant monent of inertia Jo.

We assume that the shaft has the coefficient of internal damping
B [Ns/m?], the shear modulus (/[N/m?] and the damper has a coefficient
of damping h > 0[Ns/m] and a coellicient of clasticity & > 0[N/m].

Using the assumptions made above the distribution J(a) of the mass
moment of inertia per unit length and the geometric moment of inertia J(z,e)
of the shaft cross section can be written in the form

n+1

J(x)=Jo+ Y Jib; (2.1)
i=1

J(z,) = ,70—+-ZA.T,-(”(.’I?;)—][(:E?')) Jo>0  (2.2)

i=1
wlere L N

AT = Joi— T = 8z — 1)

H(z7)=H(z—a]) ‘+) ]/(”L—”L

sf =wite :1:,-':1 >0

H(z) is the Heaviside function

6 — Mechanika Teoretyczna
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and ¢ is a Dirac function with a peak at 0, i.e. §; denotes the Dirac
distribution with a peak at a;.

Denoting by (z,t) the angle of torsion of the shaft at a point =z and
moment ¢ of time and by 6é(t) the angle of twist of the damper relative to
the shaft, torsional vibrations of the system presented in Fig.1 are described
by a system of one partial and one ordinary differential equations

J(z )(')t2 - i[j(lvf)a%(GS’)’Fﬁ%)] +

[((‘)99 0,) hR? + (¢ — 9)kR2]5n+1 + f(1)

o (2.3)
58" = [22E D) )2 4 [, £) - 0(0)] 2
) f)t n+1l,
- , d y  d?
f(4) = ;fi(t)5i ()= () =25
It will be convenient for further considerations to rewrite (2.3) in the form
% d dy hRR?
1) 58 = gy lTee) g (Got 050)] = 5[ (Go+ 07 +
~(GO+ 80)| 641 — Rkl — 0)busr + f(1)
(2.4)
"o__ hR ( n+1vt) ;) /
B = 5 (G¢(1n+1,i)+ﬂT) — [G6(t) + 56 (i)]] +

+R%k, [99($n+1,1) - 9(1)]

where k = ky + ke, h/ky = 8/G. The solution of system (2.3) will be searched
in the class of functions ¢, 8 satisfving conditions ¢(-,1) € C1([0,1])NC?*(2),
2=0,D\{z1,..,2ns1}, ©(2,),0(-) € C?*0,00).

Substituting Eq (2.2) into the expression F%[J (x E)di(Ggo + ﬁa“p)] and
computing the distributional derivative (cf Schwartz (1965), Ch.II) after let-
ting ¢ — 0 (: = 1,...,n) we obtain from Eqs (2.3)

8‘9 7, e)—(G + 8572 )}—JO(GD"’ ﬂ8z2al)f +

+%i[(€a¢ (2ig,1) ﬂc? o(2ig, )) (6099(% J)+ﬂ o2z ,i))]5i+
=1

Oz Jdaxot Oz 20t
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+ZAJ[( (2i4,0) | 500l ))+

(91' dx ot
01,9(:10, ,1) 2o(2i, N1, 5 (0% 3
(6= +0° gegr )6 == R (GTE + Bgg) +
[ (09(Tig, ) Op(xioy) Po(aip,t)  PPo(wies V] o
+ 3 h6(F - =) +A(Tam g )%
where
Op(zig,1) _lim dp(at,1) Op(zi,1)  im dp(a;,t
Ox e—0 Oz Jdx e—0 Oz

From Eqgs (2.1), (2.3) and the equation above it follows that for given ini-
tial conditions the torsional vibrations of the system presented in I'ig.1 are
described by the solution of the system of diflerential equations

= (0% P
1) GE = B(G5 +85) +
= [ 4(0p(ig 1) Op(xio,i) Oo(xiy, 1)  O*o(xi_, 1)\,
+;J°’[G( T L T T o | O
B (2.5)
Op(z,1 , k
—hRﬂ(% —0'(1)) + o2, ) = B(1)]| 6ugr + (1)
1z 0‘19('7771 1,1) ! [(,Q(l'n_*_], i‘) - 0(1)]1"
— 2 + _
Jp8" = hR?| 5 o + ; ]
subjected to the boundary and geometric conditions
(,)t,o(Ot) 089911)—0
(2.6)
e(zio, 1) — p(ziy, 1) = ajp(a;,t) (i=1,2,...,n) for t>0
and the initial conditions
d
w(z,0) = Pi(2) Eap(n:,O) = ¢o(z) for 2 € (0,!)
' (2.7)
0(0) = 01 01(0) = 02

where

(it 1) = lim (1) p(eio,1) = lim (27, 1)
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The second formula in Eqs (2.6) represents geometric conditions. Constants
a; will be defined later, after solving the eigenvalue problem associated with
Eqgs (2.5), and the first condition Eqs (2.6).

The initial-boundary problem Eqs (2.5), (2.6) and (2.7) will be solved by
the generalized Fourier method. To simplify its presentation, introduce a new
independent variable u(z,t) and operators C, L, L, defined by

99(1‘ t) _ | f@) _| J(=) 0
] F”)'[ 0 C=1"%" 4
~ Joi o+ — 9 ).6; — KR kR?
L=J.G { parlzall ,'; Jo( , )ibi JoG i JOC}:]::I
92 & - hR? hR?
a3t _,Q.L —07)ib; — =6, = 0n
L, = dz? igl Jo , ) JoB " JoB :]
b}%l/nﬂ —%ﬂ—'ﬂ
Jo Jo
Here
Oy, t) _ do(zi-,t)
Yoo 1) — ooln 1) =
(0 )ig(x,t) = dx (07 )ip(a, 1) Oz

Vn419(2,1) = @(Tn41,1)
It can be proved that that operator Cis positive definite and operators L, L,
are selfconjugate, negative delinite with a point spectra.
In notations Eqs (2.5) assumes the form
0%u ~ Ju
C— = Lu+ JyfLi— + F(¢ 2.8
o1z + JoBLy BT (1) (2.8)

From the definition of L and L; it follows immediately that

R2 /1 k R2E
= :T(fl—ﬁ>L3:— ~2L3
JoG Jo M\ G Gy
(see Eqs (2.4)), where
=6 ) h kl
L = n+1 n+1 LM Lo =k — J
3 [ gy -1 TG 2 ky
Setting Ly = —R2k2/(G’J~0)L3 one can write Las L = JoG(L, +L,), to obtain
O%u - ~ du
C07 = JoGLiu + Jy3L, 5 ko R*Lsu 4 F(1) (2.9)
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We will consider firstly the case when F(1) =0 and &y =0, 1.e. Eq (2.9)

reduces to
LTI . Lou
C()T = ']ULI((»’u+L35Z) (2.10)

3. Generalized Fourier method

Passing to the exposition of the method, we will consider firstly the homo-
geneous initial-boundary problem Eqs (2.10), (2.6) and (2.7).

Following the classical method ol separation ol variables, assume that the
solution u of the problem can be written in the form wu(2,?) = U(a)T'(t) with
T(t) being a scalar function and U(x) given by

U(z) = [ (@) } A = const (3.1)

A
Taking into consideration s (2.6), we obtain the bonndary conditions for X
X'(0)=0 X'()=0
(3.2)
X'(2is) — X'(wip) = a;X (27) i=1,2,...,n
Substituting Eq (3.1) into Eq (2.10) with the term JyBLyu neglected, we get
CUT” = Jo(GT + BTHLU (3.3)
Suppose U is chosen in the way that it satisfies Eqs (3.2) and
LU = ACU (3.4)
then from Eqs (3.3) and (3.4) it follows that
CUT" = Jo(GT + BT)A\CU
which, in turn, implies that
T + W+ wiT =0 (3.5)

where w? = ~Jo8A, wi = —JoGA (A< 0).
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Since the problem Eqs (3.4), (3.2) has, as it will be shown below, an infinite
set of eigenvalues {A,} with corresponding eigenfunctions {U,}, the general
solution of Eqs (2.10), (2.6) has the form

W, t) = S Un(@)eaTinlt) + duTaa(1)] (3.6)
n=1

where T1,(t), T2.(t) are linearly independent solutions of the differential
equation

T+ W7+ Wi T =0 (3.7)
w2 = —JoBAn, W, = —JoGA, and ¢y, dy, are arbitrary integration constants.
The initial conditions u(z,0) = u;(z), w/(z,0) = uz(z), where
) T
ul(z): ¢l(l') ug(l'): ¢2( )
6, 62

give the formulae

Un(l')[CnTln(O) + dnT2n(0)] = ul(a:)

i

™8

Uﬂ(n’.)[cﬂTl’n(O) + dnTQ’n(O)] = u2($)

.l_l.

n

from which and the Fourier expansions ol initial data
oo o0
ul(l') - Z a, U, (2) u'Z(-T) = Z ,HnUn(’L)
n=1 n=1

we obtain the system of equations in ¢, and d,

an = ¢, T1,(0) + &3, T2,(0) (3.8)

Bn = CnTlln(O) + dnTén(O)

The function (3.6) with «¢,, d, satisfying Eqs (3.8) is the solution of the
problem represented by Eqs (2.10), (2.6) and (2.7).

4. Generalized orthogonality of normal modes

Now we are going to prove that the eigenproblem represented by Egs
(3.4), (3.2) has an infinite set of solutions {A,}, {U,} such that ), <0
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and U, satisfy certain generalized orthogonality conditions (the so-called C-

orthogonality).
At first we will prove orthogonality of the eigenfunctions U,,.
To this end, define the product of vectors U = [X(2),4]" and

W = [Y(2),B]T by
l}
(UIW) = / X(2)Y(z) de + AD

Suppose U, = [Xn(x),A,]" is the eigenfunction corresponding to A,
satisfying Eq (3.4) and Eqs (3.2). Using the fact that Eq (2.10) is equivalent
to Eqs (2.4) with f(t) = 0, ky = 0, it can be proved by straightforward
calculations that

drs . d hR?
(@) Xa(@) = o= [J(z,6) = Xn(2)] = 5 Pa(@in) = Aulinis
/\JpAn = hTm["‘(n(wu+l) - An]

Multiplying the first of the equations above by an arbitrary function Y (z),
integrating the result on the interval [0,{] and then using the formula
for the integration by parts, the condition (3.2) and having in mind that
fo dnp1Y(2) do = Y(2n41) we get the relation

{

/\/J(z)Xn(l')Y(.r) da 0/ Y'(x) de +
hR?,
B

0

[(Xu(2at1) = AnlY (2n41)

which implies that for any two solutions Uy, U,, of Eqs (3.4) and (3.2)

A(CULU ) = /\k(/ (&) Xe(@)X () da + JpAgAn) =
0
(4.1)

- , hR?
—/J(l‘,f)‘xk(l') ( )dl - T[Yk zn-f-l) - AL][\ zn-{-l) - Am]

Setting k = n in Eq (4.1), we get

{
2
M(CUT,) = = [[Ta,e)(X2(@)” do = - (Nalznsn) = A < 0
0
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hence A, < 0. Interchanging in Eq (4.1) k& and wm and substracting the
obtained formulae yields

(/\k - /\7’1)(CU/~'|U’/)L) =0

which implies the C-orthogonality of Uy and U,, for Ax # A
{

(CUL|UR) = /J(l’).\'k(m)Xm(l') dae + J,ArAn =0
0

To show the existence of solution of Iq (3.4), observe first that Eq (3.4) is
equivalent to the system of differential-algebraic equations

" JOz -1 hR2
X"+ Z [X'(2i4) = X'(2:2)]6; = =—[X (2ng1) + Albny1 = A (2)X
i=1 Y0 JoB
2
hJi[X(an A] = A, A
0

From the last equation we obtain A = R2h/(R2h+ AJ,JoB)X (2n41). Substi-
tuting it into the first and taking into consideration Eq (2.1) we get a single
differential equation

XU MoX = = (X'(wi) = X(2in)) i +
=1 70 (42)
hR2
A Z J,,'_"\—(.'L'z')(s.i -+ ’\—ﬂﬁv_—\'(l'n+l)6n+l

/)rRlz + ’\J])']Oﬂ

With the help of Eq (4.2) we determine constants ¢«; appearing in the
geometric condition (3.2). To this end compute X'(2;4+) and X'(2;-) from
Eq (4.2) integrating both sides over the interval [0,z] for 2 < z; and 2 > z;
and then assuming 2 — a;

]i -
X'(x;4) = AJO/‘( /O (Y(2is) — X'(2i2)] +
0
JOJ'[\ X AST X () 4+ A X (25)
_ —:i ('l,]_l_)—‘ + Z /'_I" (IL]
*3 i-l 7 j-1
X'(z;_) = ,\JO/X(s)ds—Z DN (wiy) = X4 A3 X (o
=1 0 i=1

0
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to obtain
Jo,
X(j4) = X'(ay0) = =28 ) = X, ]+ M X ()
Jo
wliich gives
z\rl('l']_,_) — /\ (‘1] ) = /\L'\’(T])
Jo + ]o]
hence -
JoJ;
aj(N) = A0
Jo + Jo;

Replacing in Eq (4.2) X'(z;4) — X'(z;-) by ;X (z;) we get finally the
dilferential equation of the form
n+1
X"+ a*(A)X =D bi(A) X (2:)8 (4.3)

i=1

where

a2(/\): —-Ao bi(N) = ~JUJi~ (i=1,...,n)
Jo + Jo:

h I?,QJP

bup1(A) = A0
+1(}) WR? + N, Jof

From the formula of distributional derivatives of a piecewise regular func-
tion (cf Schwartz (1985), Ch.II (11.2.25)), it follows immediately that the func-
tion X(z) = (b/a)H (2 — xp)sina(x — @) 1s a solution of the second order
ordinary differential equation with the right hand side being a Dirac function

with a peak at xz = a9
X"+ X = bby

hence, applying the superposition principle, we get the formula for the general
solution of Eq (4.3)

n+1 1)( )
X(z)= Clcosal+Cgsmaz+Z o

X(a) I (z — zi)sinae(z —z;) (4.4)
To determine eigenvalues of the problem, note that Fq (4.4) involves n+3
constants: Cq, Cp and X{(2;),!=1,...,n+ 1 not all equal to zcro. Since

n+1
X'(z) = =Cyasinax + Cha cos az + Z b;(A) X (z;)H (2 — 2;) cosa(z — z;)

=1
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from two first conditions of Lqs (3.2) we conclude that C; = 0 and C)
satisfies

n+1
— Chasinal + > bi(A)X (2;) cos&; = 0 (4.5)
i=1
From Eq (4.4) it follows that
2 by
X(z;) =C)cosaz; + Z m_\'(w;)sin i i=12,...,n+1 (4.6)
=1

where & = a(A)(! — 2;), & = a(N)(z; — 2;) giving equations for unknowns
X(z;). Eqs (4.5) and (4.6) constitute the homogeneous system of linear equ-
ations

ANz =0 (4.7)
where
Ch
T X(21)
AN =| <P z=
w-lon 3
"Y(-Tn-i-l)
with
a = —asin al p' = [b; cos Einy ey bngr COSEp]
@ Cos ax
acosaxy
q =
@ COS QA pyy
—a 0 0 0
A = bysiné; —a 0 0
bysin€nyrq .. ... bpsin€i. —a

The system (4.7) has a nontrivial (nonzero) solution provided its coefficient
matrix A(A) is singular which gives the equation in eigenvalues A of the
eigenproblem reresented by Eqs (3.4) and (3.2)

det A(A) = 0 (4.8)

Eq (4.8) has infinitely many solutions, which lollows from the observation that
elements of A(A) are transcendental Tunctions with respect to A. Solutions



ANALYSIS OF TORSIONAL VIBRATIONS... 591

Ay of Eq (4.8) form an infinite sequence satisfying

0= > A > ... lim A\, = —00

n—o0
The proof of the last theorem follows from the results of Kasprzyk and Sedziwy

(1983).

Remark. Observe that for any A, we have hR2+/\an.]~oﬂ # 0. The equality

hR? + XsJpJof8 = 0 holding for a certain A, by condition

hR? . hR?

T Xy (¥ng1) = A = Ay A

Joﬂ Joﬂ
would imply that X;(2,41) = 0 from which, in turn, it would follow that
the cross-section of the shaft at x,,, remains in rest which is impossible
in view of the assumptions made.

Let A be the solution of Eq (4.8). To determine the cigenvector z corre-
sponding to A, observe that the (n+ 1) x (n + 1) matrix A; is nonsingular,
hence the rank of A equals to n 4+ 1 which, by the classical result of linear
algebra, implies that Eq (4.7) has a onc-parameter family of solutions which
can be written in the form z = yw with w™ = [1,d"], and d being the

solution of the equation
a p' 11 |0
q A] d N 0

It is clear that d = —A]'q satisfies the above equation. Since A, is
triangular, the components d; of a vector d are given by the recurrence
formulae

dy = acosaxy

i~1
d,-:l(acosaxi—Zdijsin&j) 1=2,...,n+1

a ‘
j=1

Remark. Using the formula det A(A) = o — pTA['q and expressions for d;

we get
det A(A) = asinal —bjacos§ cosazy +
- % ﬁ cos € -(acosm;- - Sd‘b-siné-)
q OB Gl *1 = 1Y i

which can be useful for computation of eigenvalues.
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5. Solution of the problem in the case of dumping

The approximate solution of Eqs (2.9), (2.6), (2.7) with ky # 0 and
F(t) = 0 will be searched in the formn

u,(2,1) = Z Unp(2)s,0(2) (5.1)

m=1

where {Un(z)} denotes the set of normalized eigenvectors of [Eq (3.4)
(CUR|U,) =1 m=1,2,...) and s,(1) is chosen in the way that u,(z,t)
satisfies the system of equations

(Uﬂc%%j:(UmM¢(Gm+ﬁ

and the initial conditions
(Um|u,.(1', O)) = (U'rnlul(l'))

(UmIW) = (U,,,llu-z(m_)) m=1,....,m

ou,

_01_)) . Ig2(Um|R?L3u,,) m=1,...,r

By virtue of Eq (3.4), (U,.,|LiU) = Mo (CU U)ok (6k 1s the Kronecker
delta). Using this and the linearity of the scalar product we conclude from
the equations above that s, is the solution of the following initial problem

7

S:;I = /\m"iO(,B'S:n + G'Sm) - I""2-R2 Z(UmILBUk)'Sk
k=1

Sm(O) = Qm S;”_(O) = ,Bm m = 1,. T

or in the matrix form

8" + As’ +Bs = koHs

(5.2)
S(O] = a SI(O) =7
where
3T:[31a---33r] aT:[a'l,...,a,]
7T = [717"'77‘!’] A= —jgf)’diag(/\l,...,/\,.)

B = —JoGdiag(A1,.... A)  H=[hu]
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H is a symmetric matrix with the entries i, = — R (U |LsUy).

To solve Eqs (5.2) one can replace it by the equivalent first order system of
2r equations and then solve it by standard methods (see e.g., Arnold (1984),
Ch.IIT). We will propose here an alternative approach, used less frequently
but probably more convenient for computations. Ior the sake of simplicity we
describe the method in the case of pairwise different eigenvalues.

Assuming that the solution of Eqs (5.2) has the form s(t) = ge* with

llgll = 1 (|| - || denotes the Euclidean norm), we get from Eqgs (5.2), as in a
scalar case, the condition imposed a g and g
(#*1 4+ pA 4+ D)g =0 llgll =1
(5.3)
D=B-#iH

The system (5.3) of linear algebraic equations has a nontrivial solution provi-
ded its coeflicient matrix is singular, i.e.

det(y21+ A+ D) =0 (5.4)

Suppose p;, 7 =1,2,...,2r are pairwisc distinct roots of 12q (5.4) and denote
by g; the solution of Lqs (5.3) corresponding to pu = ;.

Let Gy =[gy, "-,9,)s G2 = [g,41+--..99:] be 7 X 7 niatrices formed by
the columns g; and let M, = diag(;y,..., 1), M2 = diag(pyy1,..., p2r)-

It can be proved Dby a direct computation that the function
8(t) = Gyexp(Myt)e+ Gyexp(Myt)d. with e¢,d € IR” being arbitrary vectors,
is a general solution of Eqs (5.2).

The values of ¢, and d, corresponding to the solution of the initial problem
represented by Eqs (2.9) and (2.6) arc computed from conditions a = $(0),
v = 8'(0) leading to the system of equations

a=Gc+ Gyd ‘7:61M10+62M2d (55)
The approximate solution (5.1) ol the problem represented by I2qs (2.9), (2.6)
and (2.7) has then the form

u.(z,1) = Z Um(.r)[Gl exp{Mt)e, + G, exp(M-gl.)d,]Tem
m=1

where el =1[0,...,0,1,0,...,0] (1 being the mth term).
Discussion of thie convergence of I2q (5.1) to the exact solution of problem
represented by Eqs (2.9), (2.6), (2.7) will be postponed to the lurther paper.

Remark. Note that for H = 0 the system (5.2) reduces to r equations of the
form of Eq (3.7) with = = 1,...,7 and the system (5.5) to Eqs (3.8).
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6. Conclusions

e The method of separation ol variables applied to vibration analysis of

discrete continuous systems with internal duinping does not give sati-
sfactory results for an arbitrary choice ol parameters ki, 3, h, G.

For parameters satisfying the condition k18 = hG the explicit form of
solution and the equation in eigenfrequencies can be obtained (see Eqs
(3.6) and (4.8)).

For remaining values of parameters the problem of finding frequencies
becomes nonlinear (see Eq (5.4)). There is no general approach to solving
such a problem. The formula (5.1) for the general solution uses the
sequence {U,} determined for the case k3 = hG.

The mathematical model described by Eq (2.9), presented in the paper
is general becouse for particular choices of parameters appearing in Eq
(2.9) one gets models describing various mechanical phenomena, namely:

~ If one takes AJ: =0 (= 1,...,n), then Eq (2.9) represents
damping of torsional vibrations ol a shaft with constant torsional
stiffness.

~If AJ, # 0 for a certain ¢, then FEq (2.9) describes the torsional
vibrations of a shaft with constant stilfness between points 2;, 2,41
at which stiffness is infinitely large.

— The case k — oo corresponds to the lack of damping. In this
situation the damper is stifllly attached to a shalft.

The mechanical system depicted in IMig.1 represents a crankshaflt of an
internal combustion engine.

An analysis of vibrations of a system (e.g. determining its natural fre-
quencies) based on Eq (4.8) or Eqgs (5.2) in comparison with the one
using the standard approach (e.g. finite elements) is easier to carry out,
because explicit expressions [or solutions can be obtained.

For parameters h, 3, k, k1, ko, G satislying the conditions h/f8 =k, /G,
ko = k — k), one gets the analytic expression (I5q (3.6)) lor the solution
of the initial boundary problem represented by Lqs (2.10) and (2.6)
which permits a detailed analysis of the system under counsideration to
be carried out. It is worthy to notice that the series (3.6) is convergent
in a classical sense and that its convergence is strong, i.e. a few terms of
the series are required to attain good accuracy with the exact solution.
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e For an arbitrary choice of h, f#, k, G the approximate solution (5.1) is

even stronger convergent than the partial sums ol Iq (3.6), which is due
to the fact that the damping coellicient in this casc is greater.
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Analiza drgait skretnych ukladu dyskretno-ciaglego w klasie funkcji
nogoélnionych

Streszezenie

W pracy przedstawiono metodg rozwiazy wania zagadnienia micszanego dla ukladu
réwnan rézniczkowych o wspélezynnikach dystrybucyjnych opisujgcego male drgania
skretne walka sprezystego ze skupionymi masami sztywnymi. Rozwiazania poszuki-
wane sa w klasie funkcji uogdlnionych.
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