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The rate-independent formulation of crystal plasticity based on yield
surfaces with rounded-off corners is applied to the elastic-plastic FEM
analysis of polycrystals. For an assumed finite element mesh of a ma-
croscopic member, a number of crystalline grains are considered in a
neighbourhood of each of the integration points. The approach enables
analysis of an elastic-plastic behaviour of the material — on the ma-
croscopic level, and a collateral texture development, and slip systems
hardening — on the microscopic one. [lowever, a large number of the con-
sidered grains require time-consuming computations. To speed up the
calculations, the model of a textured continuum is introduced instead of
that for the aggregate of grains. In this model, all local fields are conti-
nuous functions of six variables describing the position of a macroscopic
point and the orientation of a microscopic crystalline frame. The FEM
procedure is the same as that for the discrete model, but the number
of numerical operations decreases about 50 times. The model is fully
constrained, i.e. it works under the Taylor assumption, when the local
deformation fields are the same as the global one.
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1. Introduction

Investigation of the plastic anisotropy induced during real metal forming
processes requires an analysis of the crystallographic texture development in
plastically deformed materials (Bacroix et al. (1992)). The basis of the ana-
lysis is the single crystal plasticity applied to description of a polycrystal be-
haviour. In the classical rate-independent crystal plasticity (Hill and Rice
(1972)), the problem of ambiguity in the choice of active slip systems appears.
For that reason, in practical calculations, the numerical analysis of polycry-
stals is based on the rate-dependent crystal plasticity (cf Asaro and Needle-
man (1985)). Such an approach to the modeling of crystallographic texture
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development was proposed by Mathur and Dawson (1989). Recently, a rate-
independent description of elastic-plastic crystal behaviour, convenient for nu-
merical analysis, was proposed by Gambin (1992a). Instead of the Schmid law,
a class of smooth nonlinear yield conditions has been investigated. The corre-
sponding yield surfaces have rounded-off corners. The curvature of corners is
determined by a dimensionless material parameter m > 1.0. In engineering
practice the most popular are f.c.c. (face cubic crystalline) and b.c.c. (body
center crystalline) materials. For f.c.c. materials, m is suggested to be equal
(0.5v/Gb) - 1073, where = is the stacking fault energy, G is the Kirchhoff
modulus and b is the Burger vector modulus (cf Gambin and Barlat (1993)).
The proposed model is described by the complete system of equations, and its
constitutive relations have the same form as those in the continuum plasticity
(McMeeking and Rice (1975)), which makes it possible to adapt the standard
finite element procedures to the three-dimensional elastic-plastic analysis of
polycrystals (Teodosiu and Gambin (1993)). The analysis includes the colla-
teral observation of global plastic yield, texture evolution and hardening the
on the slip systems. The appropriate algorithm is discussed in the present
paper. The discussed approach requires repetition of the same calculations for
a large number of grains (the standard experimental data contain over 2000
grain orientations). To save the time of computations, Gambin (1992D) and
(1993a,b) proposed the use of continuum approach to a description of poly-
crystal behaviour. In this approach, instead of the analysis of local fields for
a large number of grains, the investigation of these fields in the continuous
space of the Euler angles (w1,®,2) is carried out. The space of the Euler
angles is denoted by F3, and the corresponding global fields are calculated
as mean values of the local ones. Numerical integration over the space F3
is executed with the help of Gaussian quadrature formulas. The number of
integration points in 2 is much smaller than the relative number of grain
orientations in the discrete approach. The procedure of elastic-plastic analysis
of polycrystals for the continuum approach, and under the Taylor assumption,
is the same as that for the discrete approach, but the number of numerical
operations decreases about 50 times.

2. Formulation of single crystal plasticity

Recall main results of the formulation of single crystal plasticity proposed

by Gambin (1992a). Consider a crystal with A slip systems in the frame
(@)
S.

of reference. Each of the slip systems is described by the slip direction §;
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and normal to the slip plane ﬁz,(a), for a =1,2,...,M. Elastic properties
of the crystal are defined by the matrix of elastic moduli EA,']'M, while the
plastic ones by the matrix of hardening moduli hug (o, = 1,2, ..., M), the
critical resolved shear stresses 7{*) (for each slip systems) and the discussed
previously material parameter m. As it was mentioned, one can assume
m = (0.5y/Gb) - 1073 for f.c.c. materials. For materials with high stacking
fault energy (e.g. aluminium), when m > 30, crystal behaviour is very close
to that described by the classical rate-independent formulation.

In the current configuration, the slip systems of rotated crystal are descri-
bed by the unit vectors sfa) and mfa) corresponding to 350) and ﬁal(a),
respectively. The tensor Eijkl rotated to the current configuration is denoted

by Lijki. Introduce the following auxiliary quantities

D 1 o ~ (o o
B = LEm) 1 )

(2.1)
W) = LR — al)se)

m 3 3

5 and 1/V,-(]9) in the current configuration.
Stress state on the slip systems is determined by the resolved shear stress

in the reference frame, denoted by P(*)

rle) = agjﬂ(g), where o;; is the Cauchy stress tensor. For the constitutive
analysis, it is convenient to use the Kirchhoff stress tensor 7;; = (p/po)oij,
where p and pg are the mass densities in the current and reference configura-
tions, respectively. A stress increment is assumed to be the Zaremba-Jaumann

derivative of the Kirchhoff stress

V .
o = Tij = Wik Thj + TikWk; (2.2)
where
7;; — material derivative of T;;
wj; — total material spin.

As the conjugate strain rate measure, the strain rate tensor d;; is taken.

Constitutive behaviour of the discussed model of crystals is described by
the following complete system of equations:

— Smooth, nonlinear yield criterion

MM
T P.(_ﬁ)P.(.")l (2.3)

ter s
a=1 Tc(a) M a=108=1 T

— Flow rule
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— Constitutive relation for the plastic spin
P

Fridy
w. .

5= (F )1 29

— Hardening rule

Frady M 1 7@ mo1
de) = Tmde 1@
e FonGmn + ho azz:l haﬂ Tc(ﬂ) |Tc(ﬁ) ‘ (26)

with the initial values 7% = k{*) and the hardening moduli matrix

hag = hlglap + (1 — q)bag] (2.7)
where
I, — matrix with all elements equal to one
da3 — Kronecker symbol
h — constant self-hardening rate (the same for all slip systems)
q — latent hardening ratio.

In Eq (2.4), & = 1 {or the plastic loading, and « = 0 for the other cases.
Moreover

M ,\(a) () m—1 M P r(" .
fij = Z 7_(0,) (O,) (a) (a) (2_8)
a=1 'c
o 7(B) ym— 1
ho—ZZ(a (ﬂ)| ’ '
(2.9)
M M M (8) 5
hﬂb‘ h.o,g ~Tc A( ) B(a ) m 7'( m—1
SRRl )
MWl (@) met
_ g T
M= @) 'T(a) (2.10)
a=1 c c
with
’\Ej) = Cijklpé;) + "Vi(f)Tkj - n-klfV,ﬁ;’) (2.11)

Egs (2.2) + (2.11) are sufficient to analyze large plastic strains of elastic-plastic
single crystals. The incremental procedure being used requires updating of all
vector and tensor quantities to the current crystal configuration according
to the lattice reorientation. An appropriate rotation matrix f2;; may be
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calculated on the base of lattice spin w; = Rik]ljk. The spin  wj; is a
difference between the total spin w;; and the plastic one wf’j. The current
rotation matrix R;; is determined by three Euler angles (1,9, 2). Their

initial values (¢?,®°,¢3) define the initial rotation matrix RY;.

3. Finite element analysis of crystal aggregate

Teodosiu and Gambin (1993) applied the above formulation of single cry-
stal plasticity to the finite element analysis of elastic-plastic polycrystals. The
analyzed macroscopic system is divided into Ng finite elements with Ny in-
tegration points within each element. The material in a small vicinity of each
integration point is considered as an aggregate of Ng groups of crystalline
grains. All the grains belonging to one of the groups are supposed to have
the same initial lattice orientation and the initial critical shear stresses. The
alternative approach, proposed by Teodosiu et al. (1993), in which dislocation
densities on slip systems, instead of the critical shear stresses are chosen as
internal variables, is also included into the discussed work. The analysis is ba-
sed on the Taylor assumption, when tlie local deformation ficlds on each Ng
grain are the same. Because constitutive description of the material is given
on the microscopic level, the calculations are made within three main loops:
over the elements, the integration points and the grains. General strategy
of computation is the same as in the standard FEM analysis (cf McMeeking
and Rice (1975)). To obtain the explicit scheme of computations, the classical
power principle (cf Cao and Teodosiu (1992)) formulated in terms of the glo-
bal fields is used. The principle referred to the current configuration has the
following form

/[((Tg) - 2<Tik)dk]‘)(5(l,']’ + (Tjk)’u,',k(f’v,‘_j] dV = /15,‘5’0,’ ds (3.1)
|4 S
Assume that
ENT
A= —— 3.2
(4) e (3.2)

is the mean value of a local field A9 prescribed on the gth group of grains

and 9 is a volume amount of the gth group in the representative volume of

polycrystalline material. Using this notation, (rY) is the mean value of the

Zaremba-Jaumann derivative of the Kirchloff stress, and wv;, v; ;, d;;, as well



718 W.GAMBIN

as, p; represent the global fields of velocity, gradient of velocity and load rate,
respectively. By év;, év;; and 4d;; the corresponding virtual increments are
denoted. §;; is the Kronnecker symbol. Introducing Eq (2.4) into (3.1), the
virtual power principle takes the form

/Dijklvk,15v;,j dv = /1’),-61),- ds (3.3)
v s

where

. 1 1 1 1
Dijet =€) = 5{mi)dit ~ 5(Tix)bit = 5(ri)bje + F(riddir (3.4)
FijFul
FrnGmn + ho

For the considered macroscopic system with the polycrystalline structure,
a finite element mesh and approximation of the global velocity field by shape
functions Np are assumed

(ChR) = (Lijw — K (3.5)

v, = ZNBka (3.6)
B

where wv,, are the values of v, at the finite clement nodes. Analogicaly, for
the virtual velocities

bv, =Y N, bv, (3.7)
A

Introducing Eqs (3.6) and (3.7) into Eq (3.3), one obtains the FEM system of

equations
Z ]\’A-'Bklsvsk = Pa (3.8)

B
where
I(AIB‘G = /AIA,JDUI:INB,I dV (3‘9)
1%
Pai = /N,,zi. ds (3.10)
s

are local or global stiffness matrix and global or local load rate vector, respecti-
vely, depending the way of integration, i.e. over one element or over the whole
system. Because the analysis is incremental, an increment of a displacement
AU and an increment of applied forces Ap will be used instead of v; and p;,
respectively.
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The algorithm consists of three stages:

— Formation of the matrix [A’] (local and global)

— Formation of the vector {Ap} (local and global)

— Solving of the system [N]{AU} = {Ap}.

The two last stages and formation of the global stiffness matrix are the
same as in the standard FEM analysis. Complementation of the matrix D;;x,
when the matrix (C;7;) is given, is well known (cf McMeeking and Rice
(1975)). Our attention will be focused on formation of the mean elastic-plastic
matrix (C, P1). To calculate this matrix, the following procedure is employed
(for notation — see the previous section).

e Initialization

introduce the input data:

* common for all grains (in the reference, isoclinic configuration):
Lijut, 3, ™, (for a=1,2,.., M); ke, h, ¢;m
x for each grain: 9, 0, ©9; I

calculate input functions:

* common for all grains (in the reference configuration): (o’)

wie)

+ for each grain: RY(¢?,#°,¢9)

e Computation (ith step of the incremental procedure (i > 1))

form the vector of state variables composed of: T;;, ‘rc(o'), R;;, for
all grains in the current configuration

calculate the state vector functions:
* in the reference configuration: T, Xg?), r(e); ]?,-J-, é,’j, Hij;
hag, ho, K; Cffk,, for each grain
* in the current configuration: Cff RipRjq Rir R1sCoE
calculate the matrix {(C;f))
solve the system [K]{AU} = {Ap}, and next calculate d;; and

update the state vector variables: 7, 7*) and R;;, for each grain.
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Fig. 1. Initial distribution of 106 grains and the assumed reference frame

4. Uniform strain tests for f.c.c and b.c.c. polycrystals

The presented algorythm should be tested both on the macroscopic level
and the microscopic one. For testing on the macroscopic level one can use
the standard FEM tests. On the microscopic level, lattice grain reorientations
during a plastic yield appear. They are responsible for evolution of plastic
anisotropy in polycrystalline materials. The lattice reorientation — strain rate
relation should be tested too. Below the results of such tests for an aggregate
of 106 grains are shown. At the beggining of deformation the aggregate is
assumed to be an isotropic one, i.e. the initial lattice orientations are uniformly
distributed in the orientation space. The results are presented with the help
of (100) and (111) pole figures. The assumed reference frame and the initial
distribution of lattice grain orientations are shown in Fig.1l. The next figures
show lattice reorientations for m = 30 and 100% final strain. A virtual strain
rate increment is assumed as 2.5%.

The following situations are considered both for f.c.c. and b.c.c. crystal
aggregates (non written components of d;; are equal to zero):

— compression with dy; = dyy = —0.5, d33 = —1.0

— drawing with dy; = dyg = —0.5, d33 = 1.0
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Fig. 2. The (100) and (111) pole figures after 100% strain of 106 f.c.c. grain
aggregate: (a) — compressed, (b) — drawn
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(@)

Fig. 3. The (100) and (111) pole figures after 100% strain of 106 f.c.c. grain
aggregate: (a) — rolled, {b) - sheared
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@

(®)

Fig. 4. The (100) and (111) pole figures after 100% strain of 106 b.c.c. grain
aggregate: (a) — compressed, (b) - drawn
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(®)

Fig. 5. The (100) and (111) pole figures after 100% strain of 106 b.c.c. grain
aggregate: (a) — rolled, (b) — sheared
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— rolling with dge = 1.0, d33 = —1.0

— shearing with d, = 1.0.

5. Textured material as continuous model of polycrystal

Notice, that in our analysis of a microscopic polycrystal behaviour, the
grain interactions, their shape, size and spatial distribution around the inte-
gration points were neglected. It means that each grain surrounding an inte-
gration point was represented by its lattice frame and the associated system of
slip systems. Then, on the macroscopic level, one can consider a continuum of
lattice frames attached to the considered integration point instead of a finite
number of grains (cf Gambin (1992b)). Fach of these frames may be labelled
by its initial orientation ¢° belonging to the thiree-dimensional continuous
space of the Euler angles F3.

Consider such a continuum of lattice frames attached to the macroscopic
point X}, which corresponds to a polycrystalline element with the repre-
sentative volume V{, centred at Xj;. To describe a distribution of initial
orientations for the considered continuum, one can take the volume fraction of
grains dVJ/VJ that have the initial orientation ¢° within a certain infinitesi-
mal orientation element dg®. This fraction corresponds to the ratio V§/V{J in
the case of discrete grain distribution. For a given dV{ /V{, one can introduce
a density of lattice frames Fp(Xk, %), in the space F3

vy

7 = Fo( Xk, g%)dg° (5.1)
such that
/Fo(Xk,go) dg® = 1 (5.2)
F3

The infinitesimal element d¢° in terms of increments of the Euler angles has
the following form

0<¢f <2n
dg® = 8_12 sin 80d0dd°dY 0< e <r (5.3)
g 0< ¢y <2m

For a fixed point Xy, the function Fp(go) is called the initial Orientation
Distribution Function (ODF) and it plays a fundamental role in the standard
texture analysis (¢f Cao and Teodosiu (1992)).
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Consider a macroscopic material element of the volume Vg and the external
surface Sp in the reference configuration. Now, the local fields Tigj(Xk,gO),
v} ;(Xk, ¢%) and P ( Xk, 9°), vI( Xy, ¢°) are prescribed on Vox F3 and Sox F3,
respectively. Because their evolution depends on the texture development only,
one can say about the model of a teztured material introduced in the place
of the crystalline aggregate. To extend the virtual power principle (Eq (3.1))
to the case of textured materials, redefine the averaging procedure (Eq (3.2))
applying the rule

() = [ Fo(Xi,g?)A(Xi6°) dy” (54)
£3

which is valid for an arbitrary local field A(Xj,¢°) prescribed on Vo x F3.

6. Finite element analysis of textured materials

Following the Taylor model of polycrystals, one can use principle (3.1) with
the averaging procedure (Eq (5.4)) to formulate the explicit scheme of the
FEM analysis for elastic-plastic textured materials. Recall that principle (3.1)
is written in the form referred to the current configuration of a macroscopic
element of textured material.

Let =z, be the current position of macroscopic point initially located at
Xk, and fo(zk, ¢®) the initial ODF at this point, respectively. If we neglect an
influence of elastic strains on the ODF, the representative volume V{, at the
point Xy, does not change during the deformation process. Then, it follows
from Eq (5.3)

fo(zk, 9°) = Fo( Xk, ¢°) (6.1)

and Eq (5.4) may be written in the equivalent form

(A) = [ folwr 8°) Aok, %) do? (6.2)
F3

In the above, the local field A(x,4°) is prescribed on V x F3, where V is
the volume of textured material in the current configuration. Eq (5.3) enable
us to express the integral over F2 in terms of the Euler angles. If we restrict
the considerations to the crystals with cubic symmetry, the integration may
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be limited to the following intervals (cf Hutchinson (1970))
0< @) <m/2
0< 0 < r/2 (6.3)
0<pf<m/2

Finally, the averaging procedure for cubic crystals takes the form

wl
wl

22

4 :

—2/// o(zk; ¢, 8%, 99) A(zk; 07, 8%, 93) sin 8° dYdd°dpf  (6.4)
0

For simplicity, the considerations below will be related to a fixed point zy,i.e.
the analyzed fields will be assumed to be functions of tlieir initial orientations
only. The integral on the right hand side of Iq (6.4) may be calculated nume-
rically, as the product of Gaussian quadrature formulas for a one-dimensional
function h(z) (cf Stroud and Secrest (1966))

b

N
/w(:c)h(rc) do = S ILh(z:) (6.5)
a i=1
where w(z) is an arbitrary weighting function, and the points z;, as well as,
the weights H; are taken such that the rule (6.5) be exact for

2N -1

w(z) = Z apz* (6.6)

To use the above technique for integration over the space F3, it is necessary
to determine a complete system of functions, in three Euler angles, for which
rule (6.5) is fulfilled exactly.

Notice, that an arbitrary analytical field F prescribed on F3 can be
developed in a series of generalized spherical harmonics 77" (cf Bunge (1982))

oo+l

F(‘P(1)7¢0,992 Z Z Z crrntt 991,450,992) (6.7)

=0 m=—{n=-I|

The real part of T/*" is a trigonometric polynomial of the degree [. De-
note by F{y) the approximation of the field F by the harmonics 7", for
[ =0,1,2,...,L. We are looking for quadrature formulas which are exact for
the function F{z). Take into account, that F{z) is a linear combination of
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monomials of the (cos )™ x (cos ¢)? type, where o + 3 = L. Then, after the
substitutions
cos ), = Y12 cosd’ =y (6.8)

one can write the following conversion rules

%
/cos 9912(19912—/\/ yl2y12dy12
0

(6.9)
7 1
/cosL @V sin 0 dp° = /yL dy
0 0

The above relations enable one to express the integral of Fiz) as the inte-
gral of certain algebraic polynomials h(y;2) and h(y). To integrate them
numerically, one can use the following rules (cf Stroud and Secrest (1966))
r 2i-1
i—
/\/1—y1,2h(y1,2) dyi12 = Sy T
0

COos

=]~
Mot

=1

1

(6.10)
/h(y) dy = i H;nh(y;)

where N iseven,and H;and y; define the N-point Gauss-Legendre formula.
Concluding, the integral of F(1y can be calculated exactly by the formula

N N N
4 TG & 2i — 1 2k - 1
0 _ . B
/F(L) dg’ = — E E E H]F(L)<7T S AICeOs Y, T ) (6.11)

Return to averaging procedure (6.10);. Consider next the most complex
case of calculations: a material is composed of crystals with triclinic symme-
try and it has a very strong initial texture. According to Bunge (1982), for
crystals with an arbitrary symmetry, the Orientation Distribution Function
can be approximated with a sufficient accuracy by a trigonometric polyno-
mial of the degree [ = 22. It seems reasonable to assume the same degree
of approximation for the local field A(zy,¢%). For exact integration of the
product of two approximating polynomials, it is enough to take N = 22 in
the above rules. This number may be reduced considerably, if the material
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is composed of cubic crystals. Then, one can take N = 6 (cf Arminjon and
Imbault (1993)).

The numerical integration procedure (6.11) enables one to interpret our
treatment in terms of the discrete approach (see Eq (3.2)). Around each
integration point, one can consider a finite number of grains with the initial
orientations

21— 1 2k—l)

g° = (99‘1)(1.), sﬁ?j), (pg(k)) = (WW—, arceos yj, T ——— (6.12)

for 4,7,k = 1,2,..,N/2, where N is even. Introducing the index:

g = ¢ + (J1N/2 + (k1)(N/2)?, the grains may be numbered by:
g=1,2,...,Ng, where Ng = (N/2)3. Denote by
@0 = H; fo(#Y i), B3y Po()) (6.13)

the weight of gth grain. From Eqs (5.2), (6.1) and (6.11), it follows that
N2
g

Therefore, instead of the local fields A(g°) on the continuous space F3,
one can take the local fields A9 on the finite set of grains with the initial
orientations given by Eq (6.12). Then, averaging procedure (6.4) takes the
form (see Eq (3.2))

5 99 A9
g

T (6.15)

(4) =

As we see, the algorithm for explicit scheme of the elastic-plastic FEM
analysis for textured materials, under the Taylor assumption, is the same as
in the case of crystalline aggregate described previously. However, the number
of considered grains has been reduced diminished considerably.

7. Concluding remarks

The standard finite element procedures for classical elastic-plastic analysis
at large strain can be easily extended to the collateral texture development
investigation. The corresponding formulation is based on the refined elastic-
plastic analysis of single crystals (cf Gambin (1992a)). A complete system of

4 — Mechanika teoretyczna
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equations and the classical form of constitutive relations enable one to adapt
the available numerical codes of FEM analysis to the case of crystalline aggre-
gate (cf McMeeking and Rice (1975)). The computations can be improved, if
the model of textured continuum instead of the crystalline aggregate is used.
In this model, it is assumed that all local fields attached to a macroscopic
point, are continuous functions of the position of the considered point and
orientation of the local lattice frame. Under the Taylor assumption the model
of textured continuum enables us to reduce the number of numerical opera-
tions about 50 times. Moreover, generalization of the virtual power principle
proposed in paper gives a possibility of analyzing the local deformation fields
putting a side the Taylor assumption. Such an analysis is based on appro-
ximations of the above fields, in the orientation space, by finite series of the
generalized spherical harmonics. The algorithm of FEM analysis in this case
is the same as that working under the Taylor assumption, but the number of
degrees of freedom increases a few times.
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Metoda elementéw skoriczonych dla osrodkéw z tekstura

Streszczenie

Sformulowanie teorii plastycznosci krysztalow niezaleznej od predkosci deforma-
cji, ktére korzysta z koncepcji powierzchni plastycznosci o zaokraglonych narozach,
zostalo zastosowane do analizy metoda elementdw skonczonych. Dla zadanej sieci ele-
mentow skoriczonych osrodka makroskopowego 1 w malym otoczeniu kazdego punktu
calkowania rozpatrywana jest pewna liczba ziaren o budowie krystalicznej. Podejscie
takie umozliwia zaréwno analize sprezysto-plastycznego zachowania sie materialu, na
poziomie makroskopowym, jak 1 zwiazanego z nim rozwoju tekstury oraz wzmocnie-
nia systeméw poslizgu, na poziomie mikroskopowym. Jednakze wymaga ono dlugiego
czasu obliczen spowodowanego duza liczbg rozpatrywanych ziaren. Aby przyspie-
szy¢ obliczenia zamiast agregatu ziaren wprowadzono model kontinuum z tekstura,.



732 W.GAMBIN

W modelu tym wszystkie lokalne pola sa ciaglymi funcjami szesciu zmiennych, ktdre
opisuja polozenie makroskopowego punktu oraz orientacje mikroskopowej sieci krysta-
licznej. Algorytm MES jest taki sam jak dla modelu dyskretnego, ale liczba operacji
numerycznych zmniejsza sie¢ okolo 50-krotnie. Model jest typu "fully constrained”
tzn. ze pracuje przy zalozeniu Taylora, kiedy lokalne pola odksztalcen sa takie same
i pokrywaja sie z odksztalceniem globalnym.
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