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The effect of the convective heat exchange in the separated region during
the sliding contact with frictional heat generation of two elastic bodies is
studied. It is assumed that only one of the bodies is a heat conductor and
the shear stresses at the interface do not affect the normal tractions. The
role of heat exchange is dual. Distribution of the contact pressure and
size of the contact region are the same as in the corresponding contact
problem with perfect insulation of the conducting body surface. On the
other hand, the contact temperature distribution depends mainly on the
surface thermal conditions.
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1. Introduction

The contact problems of stationary thermoelasticity involving frictional
heating are usually solved on the assumption that the heat flux occurs on one
part of the boundary (on the contact area), while the other part is thermoin-
sulated (see, e.g., Barber (1976); Barber and Comninou (1989); Yevtushenko
and Kultchytsky-Zhyhailo (1995)). This assumption is made to simplify the
calculations. However, these boundary conditions are idealisations of the phy-
sical problem, since there will always be some amount of heat lost from the
unloaded surfaces of contacting bodies. More realistic it therefore the radia-
tion condition, defined by Gladwell and Barber (1983) for the axi-symmetric
stationary thermoelastic contact of heated or cooled bodies, on to which the
heat flux outside the contact area is proportional to difference between the
local surface temperature and that of surrounding medium.
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This paper formulates the axi-symmetric and plane static thermoelasticity
problems in which the heat is generated due to {riction at the interface between
two semi-infinite solids. It is assumed that:

e The contact area is remains at rest relative to the solid, in which a
steady flow of heat is assumed. Outside the heating region the convective
cooling from the surface of the body is considered

e The other solid is a non-conductor

e The coupling between tangential and normal tractions at the interface
can be neglected

e Both bodies are elastic.

The third assumption reflects the fact that the shear stress has a negligi-
ble effect on the contact pressure distribution, and hence that the mechanical
boundary-value problem is the same as that in which the contact is {riction-
less, except for the inclusion of the appropriate heat input to the thermally
conducting solid.

2. Formulation of the axi-symmetric contact problem

On these assumptions the boundary conditions can be stated as follows
(see Fig.1)

— mechanical

oD = o® = —p(r) r<a z2=10 (2.1)
ol =6 =0 r>a z=10 (2.2)
o) =ol) =g r>0  z=0 (2.3)
ulD) — w® = d— g(r) r<a  z=0 (2.4)
— thermal
oT
— K — = b < = .
Ko fop(r) r<a z=0 (2.5)
na—T——hTZO r>a z2=10 (2.6)
dz

where
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(4)

O — stresses

uff) — normal displacements on the surface

T - temperature

g(r) — known function representing the surface of the contacting
solids

d — parameter of mutual penetration

p(r) — contact pressure

f - coeflicient of friction

v — sliding speed

K — conductivity

h — coefficient of surface heat transfer

a — unknown contact circle radius

r,z — cylindrical coordinates (the conducting solid occupies the
space z > 0).

The superscripts ¢ = 1,2 denote the values which correspond to conducting
and insulated bodies, respectively.

Fig. 1. The scheme of the contacting bodies in the axi-symmetrical case

The load P, applied to the solids will also be given and hence

a

27r/rp(r) dr = P (2.7)
0
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3. Reduction to a dual integral equations

Normal displacements and the state of stress in an elastic half-space with
a steady-state temperature distribution by Generalov et al. (1976) can be
expressed in terms of the Hankel transform

[oo]

uM(r,z) = - /[—Al(a) + Bi(a)(3 — 4v; + az)le”** Jo(ar) da +
° (3.1)
~ay(1+ ul)/ &C(a)e“‘”Jo(ar) da
0
w®(r, z) = /[—Ag(a) + Ba(a)(3 = dvy — az)]e?* Jo(ar) da (3.2)
0
aﬁ?(r,z) = 2u; /[—Ag(a) + Bi(a)(2 - 2v; — pyaz)]e™** Jo(ar)a da (3.3)
0
cO(r,z) = 2 /[A,-(a) = Bi(a)(1 = 2v; — piaz)]e™* Jo(ar)a da (3.4)
0
T(r,z) = /C(a)e_"zJo(ar) do (3.5)
0

where 7; = (-1)}, i = 1,2 and
f:,vi — shear modulus and the Poisson ratio for the materials of
the two contacting bodies, respectively
ay - coefficient of thermal expansion of the conducting solid
Im(+) Bessel functions of the first kind.
Egs (2.1) and (2.3) imply

Ai(e) = (1 = 2v) Bi( o)
(3.6)
2u1 By(a) = 2u2By(a) = B(a)
Substituting Eqs (3.1)+(3.3) and (3.5) into the boundary conditions (2.2) and

(2.4) = (2.6) and taking into account Eq (3.6) we obtain the two pairs of dual
integral equations
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70/ B(a)Jo(ar) da + a(1 + 1 )0/ éC’(a)Jo(ar) da = g(r) —

127

r<a (3.7)
o0
/aB(a)Jo(ar) da =0 r>a
0
/aC(a)Jo(ar) da = Tp(r) r<a
A
° (3.8)
/ C(a Jolar) da =0 r>a
0
Here
1— _
S R L (3.9)
1 1t
p(r) = —/aB(a)JO(m*) da r<a (3.10)
0
The solution of Eqgs (3.7) may be written as
_ 2 r zf(z ) dz
B(a) = - /cos(at) m dt (3.11)
0
where -
1
F(z) = d - g(2) + au(1 + 1/1)/ —C(a)ofer) da (3.12)
Now substitute Eq (3.12) for F(x) in Eq (3.11). We have
2sin(ac (z) dz
B(a) = _—w'y(—z_)[d_ H L(1+u1)/ (n) cos(na) dn] +
(3.13)

a t
[zg'(z)]' dx  2fvé [ . zp(z) dz
- /sm at) dt/ N - 0/5111(ai) dlo NS



128 A.YEVTUSHENKO, R.KULTCHYTSKY-ZHYHAILO

where § = a,(14 1)/ K is the distortion coefficient and (-)’ denotes differen-
tiation with respect to z.
Using representation (3.13) we may rewrite Eq (3.10) as
a
g'(z) da

2 2 71
p(r) = —r—r'y_-\/a—f—tx?[d - ao —\/ﬁ + a1+ Ul)O/;C(TI)COS(T)a) dTl] +
(3.14)

/ \/——_fr?/ [mgtz V12 — 22 afim e / \/t2 — 7‘2 Q\Z(f—) ia;

In the case of the continuously curved solids, applying the condition that
the contact pressure is limited at r < @ from Eq (3.14) it {ollows

g [ Y(e)de
h J Va2 — z?

Finally, by virtue of Eqs (3.14) and (3.15) the pressure distribution is given
by the following integral equation

— (1 +11) / %C’(n) cos(na) dn (3.15)
0

i

/a / [zg'(2)
- 7r'y NIy ViZ — ﬂL2

0

(3.16)

zp(z) dx

va /\/_-——72/\/[2———1—

An unknown value of the contact radius a can be found from Eq (2.7).

Note, that integral equation (3.16) coincide with the integral equation of
the corresponding contact problem in the case of insulated surfaces outside the
contact area (see, e.q., Yevtushenko and Kultchytsky-Zhyhailo (1995)). Thus,
the pressure distribution and the contact radius in the considered problem are
independent of the convective heat excliange between the conducting solid and
surrounding medium.

The case in which the surface of conducting solid is slightly curved in the
contact zone and perfectly insulated in the separated region was studied by
Barber (1976), Yevtushenko and Kultchytsky-Zliyhailo (1995). It was shown
that at a constant sliding speed there existed the limiting value of the contact
circle radius for the increasing of the total force P. This limit value is
Qer = '3 p* = m

B* oy

r<a

(3.17)
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In the paper of Yevtushenko and Kultchytsky-Zhvhailo (1996) was shown that
if the input parameter b = ay/a.., where aj was the contact circle radius
in the corresponding Hertz problem, satislying the inequality b > 2.5, then
a & a. and the pressure distribution was nearly parabolic

p(r) = po 1—(L) Po = 3P (3.18)

Ger 2ma?,

Using the representation

o« ;i fo h,. i
Clo)= — : O/zJo(az)[7\7p(1) + 2T(2)] da (3.19)

for C{a) and substituting Eq (3.19) into Eq (3.8), we find

h 70]0(07') da |

T(r) I ot b xJo(az)T(z) dz =
b 0
(3.20)
o0 l a
= f_?/alo(ar? e /nrJo(az)p(z) dz r>a
{ o + I\_l
0 0
Substituting Eq (3.18) into Iq (3.20), we obtain
1
) d
— Bi /alz ipB(a/rJo(ax)T"(z) dz =
(3.21)
Jo(ap)J.
_QW/OOP 3/2(a) da V> a
Vala + Bi)
where

o 7o P

To 8K a.,
(3.22)

. hay T
Bi= = P= o

Figure 2 shows distributions of the temperature 7™ at several values of
Biot’s number Bi. Note that approximately T*(p) ~ 1 — p?/2 — 15, where 1
is the constant, depending on Biot’s number Bi (1p = 0 at Bi = 0).

9 — Mechanika teoretyczna
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Fig. 2. Distributions of the contact themperature in the axi-symmetric case

4. The two-dimensional problem

The two-dimensional (plane strain) problem corresponding to the above
considered one is that in which a conducting body sliding with speed » in the
positive z-direction over the insulated surface of the half-plane (see Fig.3).
Two bodies contact over the strip —a <z < a.

Fig. 3. The scheme of the contacting bodies in the plane case

A convective cooling between the surface conducting body and surrounding
medium is assumed.

The solution of the two-dimensional problem can be obtained using the
similar approach as in the previous axi-symmetric case. The integral represen-
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tation can be obtained from Eqs (3.1) + (3.5) by the Fourier transform replace
a — |a|, Jo(ar) — exp(iaz)/v2m and Jy(ar) — isign(a)exp(iaz)/\/7.
Finally, we obtain the two systems of the dual integral equations

7/0 (a)sin(az) da + a,(1 + 1n /C a)sin{az) da = —\/gg'(z)
0 0
0<z<a (4.1)

/aB(a)cos(az) da =0 T>a

0
/aC(a)cos(az) da = \/;r:%p(z) 0<z<a
° (4.2)
/(a + ~l};>C(a) cos(az) dao =0 T>a
J K

where -
p(z) = —\/g/aB(a)cos(az) dex —a<z<a (4.3)
0

The general solution of a first pair of dual integral equations (4.1) can be
written in the form

/Jo ;1[ lF) ) dh dt + poJo(aa) (4.4)
[«

where

vF(z) = @g'(z) + oy (1 + ul)/C((r) sin(az) da (4.5)

@ is a constant, which in the case of slightly curved surface of the conducting
body is equal to zero. From Egs (4.4) and (4.5) after some transformatijons
we have
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a

aB(a) = _%/ ol at) dt{ (0) +1 F’(l‘—)-fiz} —

:——[/U (at) dt \/';(fz_d;
(4.6)

a i 0
_%a,(l +u1)/tJo(at) dl/\/—ﬁd—i—?/nC(n)cosmz)d

:__f/zjo(az)dt/ )dx \[ﬁ tJo at) dt \/u)_—d;

The contact pressure can be now obtained {from Eqs (4.3) and (4.6)

O

\/12—x2 ) \/tz_yz

plz) = —
(4.7)
a 4
+25*/ tdt p(y) dy .
T \/t2 ) J \/tz _ yz

The Fredholm integral equation (4.7) can be reduced by defining ¢ = z/a.
We obtain

IN
8
IN
S

2a tdt t g"(y) dy

(4.8)

2 tdi (y) dy
to 'B \/t2 62/\/t2

By virtue of the geometric series theorem by Atkinson (1976) Eq (4.8) has 2
unique solution p(&) for any ¢(&) € C[—1,1], provided that

1 1
- 2pa [ de [1R(E ) ay <1 (4.9)
0

0
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where K(&,y) is the kernel of Eq (37). The integrals in Eq (4.9) are

/ldEO/lII\"(é,y)ldy—O/]dfo/E’ZUZ V12 éldtiz_y i

0

on

1 1

' dge/dyy/\/ ézdtﬁ_yz) O/ / tdt€2/\/12—y2 (4.10)
1 t 1

go/tdto/\/ﬁ_ 420/tdt:%2

Taking into account Eq (4.10), from Eq (4.9) we have
. 4
f%a < — = 1.27 (4.11)
ks
hence we obtain the critical value a of hall-width of the contact strip, at which

the considered problem has the unique solution

127 _ 1273K
IH* (l+l/1 fU

As in the axi-symmetrical case, the contact pressure distribution can be
written in the following approximately form

(4.12)

Qer =

woy~ 22 (5)2 (4.13)

T ey a

where

P = /p(m) dz

is the total load, a., is given by Eq (4.12).
The function C(a)in Eq (4.2) can be represented in the form

Cla) = \/7a+ / + T( )} cos(ay) dy (4.14)

Substituting Eq (4.14) into Eq (4.2), we obtain

T(z) = %/ M/[fv y)+ —T y)] cos(ay) dy (4.15)
0

a-}-h
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Finally, substituting Eq (4.13) into Eq (4.15), we have

. cos(ax) do .
T*(¢) - ZBi / = / T*(y) cos(ay) dy =

(4.16)
_ 7J1(a)cos(a§) da
B ala + Bi)
where T 2 foP
T = T—o To = e (4.17)

Distributions of the non-dimensional temperature 7(£) at different values
of Biot’s number is shown in Fig.4. As in the axi-symmetric case the surface
temperature can be represented in the form T™(£) = 1.02 — 0.736% + 1, where
the constant depends on Bi (fp = 0 at Bi=5 and ty — oo at Bi — 0).

0 0.5 P 1.0

Fig. 4. Distributions of the contact themperature in the two-dimensional case
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Efekt konwekcyjnego chlodzenia na rozwiazania termosprezystych
zagadnienn kontaktowych z generacja ciepla podczas tarcia

Streszczenie

W pracy zbadano efekt konwekcyjne] wymiany ciepla w wydzielonym obsza-
rze podczas slizgowego kontaktu dwéch sprezystych cial z uwzglednieniem generacji
ciepla pochodzacego od tarcia. Przyjeto, ze tylko jedno z cial jest przewodnikiem
ciepla 1 naprezenia styczne na powierzchni kontaktu nie oddzialywuja na sily pro-
stopadle. Rozklad cisnienia kontaktowego i wymiar obszaru kontaktu sa takie same
Jak w odpowiednim zagadnieniu kontaktowym z idealnie izolowana powierzchnia ciala
przewodzacego. Z drugiej strony, rozklad temperatury kontaktowej zalezy gléwnie od
powierzchniowych warunkéw termicznych.
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