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The construction and performance of a parallel algorithm for solving
the Tuler equations on unstructured grids with dynamically distributed
data is presented. The algorithm uses a linear, implicit version of the
well known Taylor-Galerkin time marching scheme for time discretiza-
tion. Finite elements are employed for space discretization of one-step
problems and an overlapping domain decomposition algorithm combined
with the preconditioned GMRIS method is used to solve iteratively in
parallel the resulting svstem of linear cquations. A new mesh partition
algorithm based on the idea of advancing ront is described and tested
in practice.

The domain decomposition and the mesh partition methods are combi-
ned to form a simple and effective algorithnt ensuring the optimal load
balance for a multiprocessor system.

A general MIND multiprocessor (multicomputer) system with distribu-
ted memory is assumed as the hardware setting for simulations and Pa-
rallel Virtual Machine package is used for message passing. The perfor-
mance of the method is monitored for a well known transient benchmark
problem of 21D inviscid flow simulations = the ramp problem.
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1. Introduction

The successful application of Computational I'luid Dynamics in solving
real life problems depends strongly on the computational power available, so
the progress in computer technology in recent years have always stimulated
the development of new computational techniques for making the best use
of new hardware environments. Parallel computers form currently the most
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promising new architecture and many algorithms have been already developed
or adapted for concurrent computing. In Computational Fluid Dynamics the
simplest to parallefize are explicit methods [or integration of the fluid flow
equations, where computations are performed locally and parallelization con-
sist mainly in a suitable domain decomposition which should guarantee the
smallest intersubdomain boundary and therefore the minimal time spent on
interprocessor communication. More difficult are implicit methods where pa-
rallelization concerns the solution of the system of linear equations, with the
exchange of information across the whole computational domain.

In this paper we present a complete set of procedures for efficient parallel
simulation of compressible fluid flows using the implicit adaptive finite element
methods. A general multiprocessor system with distributed memory equipped
with any software [or message passing is assumed as the computational envi-
ronment for developed programs. Such a setting cau be realized on various
hardware platforms, ranging from clusters ol PC’s or workstations to parallel
supercomputers.

2. Algorithm for approximation of the Euler equations of inviscid
compressible flows

The lollowing variational lormulation constitutes the basis for a finite ele-
ment algorithm to solve inviscid compressible fluid flow problems (see Dem-
kowicz and Banag (1994) for details):

Find U™ € [I11(2¢)]" satislying the suitable Dirichlet boundary con-
ditions and such that for every test lunction W the following holds

/WTU'”“ dV + Al /WI(K‘!")HUZ“ dv =
R¢ -O(f'

(2.1)
= [ WU av + / Wh(f)mdv — At / WT(f)'n; dS
ij ¢ J.QC
where
Q¢ - computational domain., 2¢ C IR'.{=2or 3

n - outward unit vector. normal to the boundary 9£2¢
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U - vector of conservation variables [p, puj.pe]lT, j = 1,..,1
(p, uj and ¢ are the density, the jth component of
velocity and the specific total energy respectively)

fi - Dulerian fluxes, f' = [pui puin; + pbij,(pe + plu]T,
(1,3 =1....1)

2 —  pressure, p=(y—1)(pe— %/)u,- u;) (7 - the ratio of specific
heats, 4 = 1.4 in all examples)

At - time step length, A7 = i+l —y»

K~ nonlincar matrix functions representing regularization

terms and artificial viscosity.

In the notation it is assumed that indices I, 7 have always their range
from 1 to [, that the outer superscripts ol functions of U refer to their actual
argument (e.g.: (KVyn = K9(U")yor (f)" = fi(U”)), that the summation
convention holds and differentiation is denoted by (-),.

A sequence of solutions to the one-step problem (2.1) constitutes a time
discrete approximate solution to the Luler equations. Since as regularization
matrices we use the products

Y
Tf,(:'f'.ll-’

the described method belongs to the family of Taylor-Galerkin time marching
schemes {cf Donca and Quartapelle (1992)).

The problem {2.1) is discretized in space using triangular finite elements
with linear shape lunctions. Since cach one-step computations create a sepa-
rate problem they may be performed on a different mesh, taking the interpo-
lated result of the previous time step as an initial condition. The strategy of
refinements and nurefinements is used to adapt the mesh. As an element refi-
nement or unrclinement indicator the term (cf Eriksson and Johnson (1993))

ey = W fiH oo f

based on the residual of the steady state Euler equations ffz- is employed
(h is a characteristic linear dimension of the element). One-irregular meshes
are allowed (vertices of refined elements may lie in the middle of a side of
bigger elements) and the methodology of constrained approximation (cf Dem-
kowicz et al. (1989)) is applied. The meshes produced by the above procedure
are highly nonuniforni and unstructered. The existence of constrained nodes
complicates even further the data structure used. All that creates important
technical difficulties when designing an algorithm f{ov partitioning the mesh
into submeshes.
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3. The preconditioned GMRES algorithm for solving systems
of linear equations

The well known and widely used Generalized Minimal Residual (GMRES)
method for solving nonsyvmmetric systems of linear equations is used to so-
lve the system resulting from the [inite element discretization of the problem
(2.1). We focus only on several implementation issues connected with precon-
ditioning and parallelization ol the algorithin. We consider the original system
of equations Az = b (here A stands for the global stiffness matrix and b is
the global load vector) and the preconditioned system M™*Az = M~1b, where
the matrix M™' will be specified later. The matrix M™! should be designed
in such a way that the preconditioned system has better convergence proper-
ties than the original one. The GMRES algorithm, shortly characterized as
a method for minimizing the residual for a given problem over the related
Krylov space of dimension k. applied to the preconditioned system looks now
as follows

set an inilial qucss xg
repeat until attained
compule the vesidual of precondilioned system, ro = M~ (Azg — b) (*)
normalize the residual. 7y = rof||roll (*¥)
Jor i=1,2,....k
compule malriv-vcclor product: ;= MTTAF,_y (%)
orthonormalize v; wilh respect to all previous 75, 7 =1,.,t—1 by the
modified Gram-Schmidt proccdurc oblaining 7; (*¥)
solve the GMRES minimizalion problem
check convergence, if allained update he solution and leave GMRES

Preconditioning of the GMRIZS algorithm can be efficiently achieved by
using any of so called basic iterative methods such as the standard Jacobi,
Gauss-Seidel or block Jacobi. block Gauss-Seidel methods (cf Golub and
Ortega (1993)). To show this we first decompose the vectors z and b (having
dimension V) into nonoverlapping parts z; and b;, 7 = 1,.., Ny (Np — the
total number of blocks) which induces the decomposition of the matrix A into
nonoverlapping blocks Ay, 7,j = 1.... Ny (in the case of standard methods
the size of blocksis | x I).

We denote by R; the restriction matrix (of dimension N; x N, where N;
is the dimension ol ith block) which selects z; [rom all the components of

the vector z, z; = Riz. Then R! is the matrix extending z; to the full
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dimension. Since at the Ath step ol any basic iterative method we solve for
each x; the problem
ki ~k ;
A,-,-a:,- ‘= b,‘ — ZA,'J':):J- (3.1)
i#i

(the choice of z* depends on the method and is explained below) and addi-
tionally
Sk ~k
R,Az" = A,',':):t- + ZA,‘J':L‘J-
JFti

then the operation carried ont with the #th block A can be written as
= 28 ~ RTAZ'R;(AZ" - b)

(z%' above denotes z* after performing operations with the ith block).
In the block Jacobi algorithm we update 2x* after all block operations so
¥ = k=1 while in (he block Gauss-Seidel method we update it aflter each
block operation and ¥ = 2*=1. For both cases the full iteration of the
method can be expressed as (cf LeTallee (1991))

gt =" - M7 (A - p) (3.2)

where lor the block Jacobi method

Nt

M- = Mjl = ZRLTA;]RL
=1

and for the block Gauss-Seidel method

N
M~ =M; = [| - [T0- RTAZ'RA) AT

=1

Thus the two marked with (*) most time consuming steps of the GMRES
iteration involviug matrix vector products can be performed by means of one
of basic iterative methods: the computation of initial residual of the precondi-
tioned system by performing one iteration (3.2) and then subtracting 2! — 20
and the multiplication M™'A7;,_, by iteration (3.2) with no right-hand side
vector b and the vector 7,_, as an initial guess (2% = 7,_1), followed by the

subsequent subtraction 7, = 2Y — zl.
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4. Overlapping domain decomposition

Overlapping domain decomposition methods for solving partial differential
equations can be roughly outlined as the methods where the original problem
posed for some domain is solved iteratively: we divide the domain into a
number of overlapping subdomains, for cach subdomain we solve the original
problem setting the Dirichlet boundary conditions on the intersubdomain bo-
undaries and then repeal the procedure until convergence is achieved. Not
going into details of these methods (sec e.g. Quarteroni and Valli (1994) and
citations there) we mention only that in the context of the finite element me-
thod basic ilerative algorithms can be themselves interpreted as special cases
of the overlapping domain decomposition methods with one-element overlap
between subdomains. Solving IEq (3.1) corresponds in this interpretation to
the solution to the original problem for a small subdomain, composed of all
elements sharing the nodes, degrees of freedom of which constitute z; (the,
so called, patch ol elements).

5. Parallel implementation of GMRES

In the actual implementation of GAIRIES into the IFIM code we introduce
a two level domain decomposition. At the first level subdomains consist of all
elements sharing a given common vertex and correspond to the blocks A;; of
the matrix A with the size of only four entries. This allows one for a quick
and efficient solution to problems (3.1) by a direct linear equations solver.
The second level decomposition results from the partition of the whole finite
clement mesh with the number ol created subdomains equal to the number
of processors (workstations) used. Fach big subdomain {from now on called
simply subdomain) contains many small subdomains (patches of elements) and
has one-clement overlap with other subdomains (see a sample mesh in Fig.1).
Such construction implies that cach node belongs to the interior of only one
subdomain and the data structure for a problem is naturally distributed among
subdomains [processors).

The sequence of procedures for solving cach one step looks as lollows. First,
a finite element mesh is decomposed into a specified number of subdomains
equal to the number of processors. Then the clement stiffness matrices and
patch matrices are generated in parallel and the system of linear equations is
solved by the GMRES without forming explicitly the global stiffness matrix.
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Steps marked with (*) in the GNRES diagram are performed using the block
Gauss-Seidel algorithm in each subdomain followed by the exchange of data
between subdomains. Since the exchange of data takes place after conside-
ring all patches of a given subdomain the method becomes a mixed method,
subdomain level - Jacobi, block level — Gauss-Seidel. Thus the convergence
properties of the parallel method hecome worse than those of the serial algo-
rithm with the GMRES preconditioned by the block Gauss-Seidel method.
The steps marked with (**) require synchronized interprocessor communi-
calion due to such operations as computing scalar products of global vectors
(for nodes from all subdomains) or their norms. This fact can influence the
efficiency of the algorithim for networks with low data transfer speed.

6. Mesh partition algorithm

At subsequent time steps partitioning of the mesh is performed only after
mesh adaptation. Tor transient problems this means frequent partitions, after
each few steps, while for steadyv state problems only several partitions are requ-
ired in the whole solution procedure. ‘I'hese changes may imply that different
mesh partition algorithms should be used for these two types of problems. The
optimal partition of the mesh should lead to the minimal execution time of the
whole problem solved by the finite clement method. The partition determines
two important factors: the convergence properties of an iterative method used
to solve the system of linear equations (c¢f Rachowicz (1995)) and the amo-
unt of data exchanged between processors during the solution procedure. The
influence of the partition on the execution time depends also upon the mul-
ticomputer architecture which determines the speed of transferring the data
and the type of the problem solved (as the abovementioned difference between
transient and stationary problems).

We have developed an algorithm where the principle of adding the nearest
neighbor to the created subdomain is combined with an intermediate step of
creating a front (a group) of nodes being the candidates for adding to the sub-
domain (cf Bana$ and Plazek (1996)). Subdomains are created sequentially,
each one by starting with some chosen node, by adding to the subdomain all
elements to which this node belongs together with all their nodes and then,
if certain conditions are satisfied. adding the latter nodes to the front. Next
step in the procedure begins with adding to the subdomain a node from the
front according to some assigned weight. Then the mechanism of adding ele-
ments and nodes to the subdomain as well as adding nodes to the [ront and
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chosing consecutive nodes according to the weights continues until the number
of nodes in the subdommain does not reach some explicitly specified limit.

The introduction of the front allows one for eflficient formation of sub-
domains with one-clement overlap required by the parallel solver described
previously. The explicit specification of the limiting number of nodes for a
given subdomain is used in a load balancing strategy to create subdomains of
different sizes, i.e. with the different number of nodes.

The scheme is fast and due to the presence of weights at nodal points
allows one for using different mesh partition strategies. These strategies usu-
ally aim at creating the subdomains with desired geometrical features (shape,
alignment of intersubdomain boundaries) so the question of optimality of the
mesh partition is posed only indirectly,

7. Dynamic load balancing

The domain decomposition and the mesh partition methods are combined
into a simple and effective algorithm to ensure the optimal load balance for
a multiprocessor svstem. The idea consist in increasing the efficiency of the
whole simulation procedure by minimizing the idle time of processors. Since in
the presented GMRIS implementation the work load for a given processor is
proportional to the number of nodes in the corresponding subdomain the load
balance can be achieved by ascribing to cach processor a subdomain with the
number of nodes proportional to the processor computational power. As an
estimate for the processor speed the inverse of the average time for computing
patch vectors A;'®; and matrices AZ'A; is taken. The information on
computer speeds is sent as the input to the procedure which specifies the
numbers of nodes for particular subdomains, ['hese numbers form the input
for the mesh partition algorithn.

8. Numerical examples

As a test case for showing the performance of the developed parallel algo-
rithim we have chosen a well known transient benchmark problem of inviscid
fluid flow — the ramp problet (¢l Woodward and Colella (1984)). A Mach
10 shock traveling along a channel and perpendicular to its walls meets at
time ¢ = 0s a ramp, making an angle of 60 degrees with the channel walls.



PARALLEL Nh-ADAPTIVE SIMULATIONS... 257

A complicated flow pattern develops with double Mach reflection and a jet of
denser fluid along the ramp behind the shock (see Fig.1).
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Fig. 1. The ramp problem; (a) — mesh at tine ¢ = 2s, (b) - solution (density
contours with Ap = 0.A1). (¢) = division of the mesh into 4 subdomains

The results of test runs are presented for four different hardware confi-
gurations — 1, 2, 3 or 4 IBM RISC workstations connected by the standard
Ethernet network. All figures and tables refer to a samiple one-step problem at
time 1 = 2s chosen as a representative of the whole simulation. Fig.la shows
the mesh (12470 nodes). which initially was generated as structured and then
refined after each time step. Fig.Lb shows the density contours (Ap = 0.4)

4 — Mechanika Teoretyczna
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and Fig.1lc shows the division of the mesh into 4 submeshes. The weights in
the mesh partition algorithm were so chosen as to align the intersubdomain
boundaries along vertical lines.

Table 1. Performance of the preconditioned GMRES algorithm for the
ramp problem — test run for the one-step problem at time t = 2s, the mesh
with 12470 nodes

T Part. { Send. [Comput.
Configuration | time | time time |Speedup |Efficiency | Residual
RGNS
1 x RISC IBM - - 16.96 1 100% 1.87
2 x RISC IBM | 5.34 2.02 25.15 1.87 94% 2.05
3 x RISC IBM | 4.44 | 223 | 17.82 2.64 88% 2.12

4 x RISC IBM | 4.16 | 2.50 L 1449 | 324 | 81% 2.83

The results of test runs are presented in Table 1 which shows times for
sequential (performed on the master processor) partition of the mesh, for sen-
ding data to processors and for sequential or parallel execution of the example
one-step problem. The latter figures include times for the calculation of ele-
ment stiffness matrices and patch matrices as well as times for the solution of
the system of linear equations.

Since, as it was already mentioned, the parallel version of the algorithm re-
veals the mathewmatical properties differing from those of the sequential version
(resulting in slower convergence rates) we separated two issues — the conver-
gence of the GMRES and the numerical efficiency of parallelization. The times
reported in tables always refer to two restarts of the GMRES each with ten
base vectors in the Krylov space. Additionally, the L, norm of residual after
these iterations (divided hv 1077) is quoted [or each test run to compare the
speed of convergence for different nuibers of subdomains (processors).

As a measure of the quality of parallelization two standard quantities are
used: the speed-up being the ratio of the sequential execution time to the
parallel execution time and the efficiency (percentage) being the ratio of speed-
up to the number of processors.

We also present an example of applving the load balancing strategy. For
the same test case we divide the computational domain into four submeshes of
equal size (i.e. with the same number of nodes). We solve several consecutive
one-step problems and use only three computers (so the computations for two
subdomains are performed on one computer), thus imitating the case of two
fast and two slow computers. Table 2 shows how the load balancing strategy
changes the sizes of subdomains in order to equate the times for formation
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of patch matrices (characteristic times) and how that increases the overall
efficiency of the solution procedure. Due to the nonlinearity of the process the
acceptable load balance is achieved only alter two (in practice this number
ranges {rom one to three) time steps. when Lhe proportion of subdomain sizes
stabilizes.

Table 2. Achicving the load balance at three consecutive time steps

Time | Number of nodes | Characteristic | Computation
step in subdomains times time
1 1667 16.05 29.49
1667 15.84
1667 8.15
1569 19
2 1261 L1.55 20.83
1273 11.65
2013 9.3%
2021 9.11
3 1151 10.39 19.92
1157 10.57
2126 1015
2129 10.11

9. Conclusions

We have shown a complete set of procedures for parallel finite element
simulations of compressible fluid flow. Starting with the Taylor-Galerkin me-
thod for space and time discretization, through the parallel version of the
GMRES preconditioned by basic ileralive methods, till the mesh partition
algorithm based on the idea of creating an advancing front {from which the
nodes are added to subdomains according to specifically designed weights.

The presented GMRIIS algorithm allows for efficient parallel solution of
nonsymmetric systeins of lincar equations resulting from implicit finite ele-
ment space discretizations of problems appearing in Computational Fluid Dy-
namics. It can be combined with many existing time discretization schemes
for fluid flow equations. In described examples it displayed good speed-up and
efficiency.

The mesh partition algorithm, thanks to the use of the {ront of nodes, reve-
als great flexibility, potentially allowing ol creating subdomains with different
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overlap sizes and optimal shapes. We will report on the further development
of the described algorithms in forthcoming papers.
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Wspélbiezne symulacje przeplywow niescisliwych za pomoca
h-adaptacyjncj metody elementéw skoitczonych

Streszezenie

Przedstawiono algorytm do wspdlibiezne] symulacji nielepkich przeplywéw gazéw
$cisliwych na niestrukturalnych siatkach i z wykorzystaniem rozproszonej struktury
danych. Algorytm wykorzystuje metode Taylora-Galerkina do aproksymacji cza-
sowej 1 adaptacyjna metode elementdéw skoiiczonych do dyskretyzacji przestrzennej
uzyskanych problemdw jednokrokowych. Powstajacy uklad réwnar liniowych jest
rozwiazywany metoda GMRES z wykorzystaniem podstawowych metod iteracyjnych
do poprawy uwarunkowania macierzy sztywnoscl. hmplementacja wspdlbiezna oparta
jest o podzial obszaru obliczeniowego na podobszary. Zaprezentowano nowy algorytm
podzialu obszaru (siatki elementdw skoczonyel) wykeorzystujacy idee postepujacego
frontu wezlow.

Algorytm przetestowano na praykladowym problemie interakeji fali uderzeniowej
z klinem, uzyskujac dobre wyniki przyspieszenia obliczen dla uzytej konfiguracji kilku
stacji roboczych polaczonych standardowa siecia.
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