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Linear compressible stability of non-parallel boundary layer is studied
using the parabolized stability theory. Evolution of disturbances in a
hypersonic flow around a sharp cone of zero angle of attack is studied
for freestream Mach number 8.0. The parabolized stability equations
are solved using the backward second order finite difference scheme in a
streamwise direction, and fourth order two point scheme in a wall-normal
direction. The influence of nonparallelizm on the first and second mode
disturbances, respectively, is analysed.
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1. Introduction

The increasing cost of petrolium products and their reduced availability in
future impose new requirements of the design process of airplanes and rockets.
The phenomenon of transition from laminar to turbulent flow becomes of
primary importance when the design of airplanes or rockets is considered. A
laminar flow is desired over the surface for two reasons: low skin friction drag
and low surface heating at a hypersonic speed. To predict the heat transfer
and skin friction along the surface of a body exposed to the flow field, the
region where the transition from laminar to turbulent flow takes place has to
be determined. Till now the transition prediction methods have been based
on a semi-empirical method using the linear parallel stability theory (local
theory), or on direct numerical methods. In the linear parallel approach the
Navier-Stokes equations are reduced to ordinary differential equations which
along with the homogeneous boundary conditions constitute an eigenvalue
problem. This method is strongly simplified nevertheless numerically very
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efficient. On the other hand, the direct numerical simulation, which yields
full description of the flow in the transition region, is computationally very
expensive and is still used only for simple model flows. Govering the need
for more accurate calculations than those caused on the local theory and less
expensive than using the direct methods (cf Bertolotti (1991), Bertolotti et
al. (1992)) introduced the parabolized stability theory. In the parabolized
stability theory the local growth of disturbance is influenced by local flow
conditions and upstream spatial amplification whereas in the local stability
theory the local growth is influenced only by local flow conditions. In globally
unstable flows the entire flow field influences the local disturbances. In the
parabolized stability theory the effect of boundary layer growth and other
history effects associated with initial conditions can be properly accounted
for. It is computationally a very effective model for analysis of instability of
two and three dimensional flows.

The parabolized stability equations are obtained by parabolization of equ-
ations of disturbances. The parabolic nature of resulting system of equations
limits, however, the applicability of the approach to convectivelly unstable
flows, in which the upstream propagation of disturbances is negligible.

The parabolized stability method can be used for linear and nonlinear
parts of laminar-turbulent transition region. The nonlinear results of Berto-
lotti (1991), Bertolotti et al. (1992) showed close agreement with the results
obtained using direct methods.

The effect of boundary layer growth on the stability characteristics of com-
pressible flow was studied by El-Hady (1991), (1981), Gapanov (1981) who
used multiple scales method and by Bertolotti (1991), Chang et al. (1991),
(1993), Dallmann (1993), Simen et al. (1994) who used the parabolized stabi-
lity theory. From these results we know that in supersonic flow the influence
of nonparallelizm is stronger on the three dimensional first mode than on the
two dimensional second one.

In the present paper a parabolized stability method is described and used
to study the transition region in hypersonic flow around a sharp cone of zero
angle of attack. The solutions are compared to the experimental data of
Stetson (1983) and numerical results of Dallman (1993). The effect of nonpa-
rallelizm and the influence of viscous-inviscid interaction between shock wave
and boundary layer are tested. Calculations are made to explain discrepancies
between the experimental results of Stetson and calculated amplification rates
of disturbances.

In sections 2, 3 and 4 a general description of the parabolized theory for-
mulation and numerical procedure used to solve the governing equations are
shown. The results are presented and discussed in sections 5 and 6.
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2. Formulation of the problem

The parabolized stability equations are derived from the Navier-Stokes
equations, energy equation and continuity equation of a viscous compressible
gas

dp
—+ V- (pV)=0
5 TV (PY)
ov
p(W +(V-V)V) = =Vp = V x [V x V)] + V(A + 21)V - V] (2.1)
pc (Q-F(V'V)T) =V (kV7)+ —8£+(V-V)p+d5
PAot ot
where
|4 - velocity vector
P - density
T — temperature
i, A — first and second viscosity, respectively
Cp — specific heat at a constant pressure
t -~ time
P - pressure
k - coefficient of thermal conductivity.

The dissipation function & is
$ = \V-V)? 4+ ’Qi(vv LUV (2.2)

The gas is assumed to be perfect so the equation of state is
p=TRp (2.3)

In this research we formulate the compressible stability problem in the
body oriented coordinate system (&,¢,n) shown in Fig.1 (¢,(,n are coordi-
nates in the streamwise, wall-normal and spanwise directions, respectively).
All lengths are scaled by the viscous scale m, velocity by U., den-
sity by pe, pressure by pcUZ, time by /v.£/U./U. and all other variables
by the corresponding boundary layer edge values. Perturbation equations are
obtained by decomposing all parameters into there of the steady basic flow
(U, V,W,T, po, k, 1o, Ao) and the unsteady disturbance flow component para-
meters (u', v, w’, 7/, p', k', p’, N'), respectively.

u=U+ v=V 4+ w=W+w r=T+7

p=potp  kh=K+kK  p=mt A=dotx Y
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Fig. 1. Schematic picture of the body-oriented coordinate system

where u,v,w are the velocity components in &, (,n directions, respectively.
The ratio of second viscosity to first viscosity is set to

A2

—==(d-1 2.5

== 2(d-1) (25)
where d = Orepresents the Stokes hypothesis which is true for the monoatomic
gases. ['or the polyatomic gases like air d = 1.2. In the described algorithm
it 1s assumed that the ratio of specific heat is constant

X = E—P =14 (2.6)

The Prandtl number is also constant

A
Pr= 2" = 0.72 (2.7)
i
The first viscosity is calculated using the Sutherland law. The fluctuations of
thermal conductance and first and second viscosity are written as a first order
expansion in temperature
a,uo 8/\0 oK
I:__I A/:_/ k/:__»/ .

FeorT or’ ar’ (2:8)
Substituting Eqs (2.3) + (2.8) into Eqs (2.1) and subtracting the equations
corresponding to the steady basic state, we obtain the governing equations for
the disturbances

ov ov ov ov o*w o*w

(2.9)
92w 02w 02w 02w

+Hc¢54‘2 + Hném + Hmw + Hnnw
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where ¥ is an unknown vector ¥ = [/, v/,w’,p’,7']T and F, A, B, C,D, H
(¢,7 = 1,3) are 5 x 5 matrices. In the present paper calculations are made
for a hypersonic flow around axisymmetric object geometry. The function
describing the development of disturbance in a non-parallel flow around the
cone of zero angle of attack is given by

¢
#(6,Cm) = F(&,Oexp[i( [ al©) de + By - ) (2.10)
o
where_ —
¥(¢,() - complex amplitude (unction, ¥ = [%,7,,p,7]"
a, B — components of the wave number vector in the stream-
wise and spanwise directions, respectively
w — frequency.

In the parabolized stability theory we assume that the wave number and
flow profiles change slowly in the streamwise direction so there exist the va-
lues of « and W for which the second derivatives 32/9¢? and products of
the first derivatives of these quantities are negligible. In the region of linear
development of disturbances the amplitudes are assumed to be small enough
to neglect the nonlinear interaction of the waves with different frequency and
spanwise wave number. A great advantage of the parabolized stability theory
is the possibility of nonlinear effects to be incorporated. For the nonlinear
region of laminar turbulent transition, we assume that the total disturbance
can be expressed by the Fourier series

o) 00 ¢
V= Z Z Vo nl&,0) exp[i(/ am (&) d€ + nfn — mwi)] (2.11)

where Em,n and «, , are the Fourier components of amplitude function and
streamwise wave number, respectively.

In this paper we restrict ourselves to the linear part of transition region.
Substituting Eqs (2.10) into Eq (2.9) and neglecting the nonlinear terms, we
obtain the following system of equations

00 O 02w 02w 02w

A— +B—+D¥ =Hy— +Hy—— + Hee—
5¢ " e TPV T e T Neeag T NG
To solve above elliptic system of equation we must know the outflow boundary
condition which is very difficult to predict. However, with appropriate simpli-
fication the equations can be parabolized. There are some ways of parabolizing

(2.12)
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the governing equations (2.12). For example, Dallmann (1993) introduced the
ratio of characteristic lengths of the boundary layer flow in the wall-normal
and wall-tangential directions, respectively

vevelUe _ 1 (2.13)

£ Re

Dallmann scaled the basic and disturbance flow quantities as well as coordi-
nates in the following powers of the Reynolds number to suppress upstream
influence which introduces an elliptic character in governing equations

U="Ur V = Vr/Re W =Wr T="Tr
u = ufp w = wh v = v (2.14)
p=pp/Re* £ =¢rRe (=(r n=nr

where (), denotes transformation.
Following Dallmann in the present paper the flow parameters and coordi-
nates are scaled as in Eqs (2.14). We introduce Eqs (2.14) to the governing
equations (2.12) and neglect all terms of order O(1/Re?). After back trans-
formation we obtain the equations of parabolized stability theory
-
b7 + A2 + 82Y LY

8§ ag = CC;??Q— (215)

With the scaling of pressure introduced in Eqs (2.14) the system of equations
(2.15) is of the eighth order in wall-normal direction. However, this system is
not completely parabolic. Some terms remain which still allow the upstream
propagation of disturbances. As a consequence, there is not only the upper
limit for a step size in the streamwise direction but also the lower limit. If
the step size is too small the solution procedure will be unstable. Fig.2 shows
the instability characteristics —a; versus the Reynolds number obtained for
the flow around a sharp cone for different step sizes A =1, 3,4,9, =0,
F = w/Re = 126 - 107%, Ma = 8.0). We see that for A = 1 and 3 the
procedure is unstable.

For the wave approximation (2.10) the amplitude function ¥ and wave
number « depend on the streamwise coordinate £. This results in a kind of
ambiguity which can be removed by using the so-called normalization condi-
tion (cf Bertolotti (1991)). The normalization condition requires the selected
amplitude function in the defined position to be constant. In the present pa-
per we have chosen the amplitude of the velocity component perpendicular to
the wall

((,) = const (2.16)



INSTABILITY OF NON-PARALLEL COMPRESSIBLE BOUNDARY LAYER 453

-3
4-10
o L) AE=3
3'10’—
2.10°F
1-10'3}
0 1 —— A L
1000 1200 1400 1600 1800  _

- | — p— | —| LA —|
1090 1100 1110 1120 1130 1140 Re

3~10'3r (© Ag=41 4% @ AE=9
.a’ _a‘.
2-10°} 2107,
1-10°F 1-10°F
L L
0 1 1 S 1 1] S| 1 L 1
1000 1200 1400 1600 1800, 1000 1200 1400 1600 1800 g,

Fig. 2. Instability characteristics of second mode obtained from the parabolized
stability theory for different step sizes A€ =1 (a), 3 (b), 4 (¢}, 9 (d)

The choice of amplitude and position (, exerts a negligible influence on the
instability characteristics. The normalization condition must be satisfied ite-
ratively in every section of the domain (we itcrate on « to satisfy Eq (2.16)).
The non-local wave number at a given location £ is given by

ay = ay — i(aw_/o»g) (2.17)
/] 1

where @; 1s the local wave number at the considered location obtained as a
result of the iteration procedure. The real part of the non-local wave number
apn represents the phase change while the imaginary part is the amplification
rate of disturbances. To calculate apny we must select one dependent variable.
Following Chang et al. (1991), in order to calculate the non-local wave number
we use the amplitude of velocity component in the streamwise direction at the
point where u reaches its local maximum.

We have the following homogeneous boundary conditions at the wall and
at infinity for the velocity components and temperature amplitude functions

7(0) = 5(0) = w(0) = 7(0) = 0
(2.18)

u(()=v(¢) =w(¢() =7(¢) =0
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Fig. 3. Schematic picture of sharp cone and oblique shock wave

The above boundary condlitions can be replaced by the linearized Rankine-
Hugoniot conditions at the shock in a supersonic flow. These linearized condi-
tions represent unsteady motion of the shock due to small disturbances. Chang
et al. (1990) showed that introduction of the shock boundary conditions exerts
a strong influence on stability of results only when the shock is located near
the boundary layer (not far from the tip of cone — Fig.3). As the distance
from the tip increases, the shock is located futher from the boundary layer
edge and there is no effect of shock boundary conditions on the instability
characteristics. In the present paper the calculations are made far from the
tip so Eqs (18) are used as the boundary conditions.
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Fig. 4. Transient nonlocal amplification rates of first mode obtained by Dallmann
(1993) for £ =29.5-107% v =55

Solving the governing equations (2.15) requires an initial condition. The
initial condition should take into account the freestream disturbances which
initiate the instability waves in the boundary layer. The initial condition
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formulated in this way (which involves the receptivity problem) is not the
matter consideration in this paper. We use the solution obtained using the
local linear stability theory in the section below the lower branch of the neutral
curve (cf Chang et al. (1991)). Solution at this location is precise enough to
be used as the initial condition. Sensitivity of the stability characteristics to
accuracy of the initial condition was tested, e.g., by Bertolotti (1991) and
Dallmann (1993). It was found that the parabolized stability method yields a
proper solution provided the initial conditions do not depart too much from the
correct solution of linear local theory. However, any imperfection in the initial
conditions results in "transients” in the marching solution (Fig.4, Dallmann
(1991)).

3. Basic state

For stability analysis we have used a highly accurate solution of the thin
layer Navier-Stokes equations as a basic state. Solution of the thin layer
Navier-Stokes equations (cf Miiller (1991)) was made us accessible by Deutsche
Forschungsanstalt fiir Luft-und Raumfahrt (DLR) in Gottingen. This basic
state was used to test the influence of viscous-inviscid interaction between
the viscous boundary layer flow and the inviscid shock flow on instability
characteristics. If the basic state results from the boundary layer equations
using Mangler’s transformation (cf Hlingworth (1953), Balacumar and Reed
(1989), Tuliszka-Sznitko (1993)) the effect of viscous-inviscid interaction is
neglected. Fig.5a shows the comparison between the experimental results of
Stetson (1983) and the numcrical results obtained from the local stability
theory for two basic states based on the boundary layer (Tuliszka-Sznitko
(1996)) and thin layer Navier-Stokes equations, respectively. We analysed the
growth rates «; versus the disturbance frequencies I = w/Re at a the fixed
Reynolds number. Calculations were made for: sharp cone of zero angle of
attack, Re = 1733, freestream Mach number 8.0, half-angle 7 degrees cone.
We see that more precise modeling of the basic state (including viscous-inviscid
interaction) exerts a strong uniformly stabilizing influence on amplified 2D
second mode disturbances (wave angle 7 = tan™! chRe = 0.0). With a properly
modeled basic state the calculated amplification rates of second mode are in far
better agreement with Stetson’s experimental data. In the first mode region
calculations were made for the most unstable wave angle 7 = 30 + 70 (for the
basic state from the boundary equations) and for the wave angle v = 55 for
the basic state obtained from the thin layer Navier-Stokes equations. The same
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Fig. 5. Effect of viscous-inviscid interaction on the local amplification rate;

(a) — results obtained in the present paper for similarity basic state and for basic
state from thin layer Navier-Stokes equations, (b) — results obtained for similarity
basic state of Dallmann (1993), (¢) — results obtained by Dallman for the basic state

resulting from the thin layer Navier-Stokes equations

comparison made by Dallmann (1993) is shown in Fig.5b and Fig.5¢ where the
results obtained for the basic state resulting from the boundary equations and

thin layer Navier-Stokes equations are shown, respectively.

The instability

characteristics in Fig.5b and Fig.5¢ in the first mode region are obtained for
the most unstable waves. From Fig.5 we sce that relatively good agreement
between theory and experiment is reached in the second mode region if the
viscous-inviscid interaction is taken into account. Discrepancies in the first
mode region are still large.
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4. Numerical formulation

Numerical solution of the parabolized stability equations (2.15) requires
discretization in £ and ( directions. In streamwise direction the second order
backward difference scheme is used

@ _ 30k —d¥; 14 + Vi
o€ 2AE

For the first step the first order backward scheme is employed

(4.1)

A

o€ 2AE
where 7 and k denote the grid indexes along ¢ and (, respectively. After
discretization in £ direction we obtain

< 3 =0 0?

D+ —B_— —H;( ==

[ T oAt ac T N
To discretize the above equations in  { direction, the fourth order accurate
two point scheme is used

(4.2)

~ W,y — U oy

Ji,kii’k =A 2AE (4.3)

he 7d k d? k-1 h2 d? k d? k-1
ko k-1 _ Dk (ae ¢ L A 5
ot -t = it ) - 15 iz T de ) +OM)  (44)
where (pk = (p(Ck) and /’Lk = Ck - Ck—l-
To apply the scheme (4.4) to Eqs (4.3) we formulate them as the following

set of first order differential equations

8
d:ipn = Z Qpan P + H oy n=1,..8 (4.5)
C m=1
where
_ du _ _
Y1 =1 <P2=d—c P3=7 Pa=P
(4.6)
o B dT o _ dw
Y5 =T 996—d€. wr=w <,o8-dc

From Eq (4.5) we have

4% 8. da . 8 8 dH,
dC?n = Z < dz + E(Lnlalm)ﬂpm + ;anmjlm + T (47)

m=1
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Finally, for n = 1,...,8 we can write

hy & 2 B d
Ph= o D At Th D ((an + Za’nlalm)SDm +
h

¢
i(d“"'" +Za§ﬂafml) S = @)

Y- . hird dHk E dHk-1
= R[Hk B IJ——k[ZaﬁmH,ﬁ &~ (X aaa S

m=1

Following Cebeci and Bradshaw (1984), the above system of equations with
the boundary conditions can be written in the tridiagonal form

-~

Acp* !+ Brot + Crtt = B (4.9)

where ;\, @, C are 8x8 complex matrices and H is 8x 1 matrix. The above
system of equations is solved iteratively at every section; Newton’s method is
used to iterate on « so that the normalization condition (2.16) is satisfied. The
algebraic system of equations is solved using the block elimination method.

5. Results

Calculations were made to test the non-parallel effect on the growth rate of
disturbances. We analysed instability of flow around the 7 degree half-angle
sharp cone of zero angle of attack at the free stream Mach number Mag, = 8.0
and T, = 53 K. We compared the obtained results with experimental data
of Stetson (1983), (1984) and numerical results of Dallmann (1993). These
test cases were chosen because the only detailed stability experiment data
available for a hypersonic flow (which is of primary interest here) were given
by Stetson (1983), (1984) and Stetson and Kimmel (1992). The boundary
layer edge Mach number and edge temperature of the experiment were equal
to 6.8 and 70 K, respectively. Most of Stetson’s data are growth rates —a;
versus disturbance frequencies F at a fixed Reynolds number. Comparison
between the results obtained for Re = 1733 using the local stability theory
(for two different basic states) and the experimental data of Stetson is shown
in Fig.5 and discussed in Section 2.

In Fig.6a, for the same test case, the amplification rates of second and first
mode disturbances obtained from the local theory and parabolized stability
theory are compared with the experimental data of Stetson. The instability
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Fig. 6. Effect of nonparallelizm on the first and second mode characteristics;
(a) — results obtained in present paper for the basic state from the thin layer
Navier-Stokes equations, (b) - results obtained by Dallmann (1993) for similarity
basic state

characteristics of first mode were obtained for v = 55 degrees. All author’s
results analysed in this section were obtained for the basic state from the
thin layer Navier-Stokes equations. The same comparision made by Dallmann
(1993) is presented in Fig.6b. The instability characteristics showed in Fig.6b
(Dallmann’s results) were obtained for the basic state from the boundary layer
equations. We see that nonparallelizm slightly stabilizes the second mode
disturbances.

Fig.7 show the amplification rates of second mode disturbances obtained
for the same geometry and {reestream parameters as in Fig.6 but for different
Reynolds numbers and for the frequencies F = 126.0-10"%, F = 131.0-107
using the local and parabolized theories. The same comparison made by Dall-
mann for F = 73.4-107% is shown in Fig.8. We can conclude that nonpa-
rallelizm slightly stabilizes the second mode disturbances for all the Reynolds
numbers considered.

The nonparallel flow effect accounted for by the parabolized stability the-
ory destabilizes the oblique first mode disturbances at lower Reynolds number
and lower frequency and stabilizes at higher Reynolds numbers and higher
frequencies. The influence of nonparallelizm on the first oblique disturbances
is shown in Fig.9. In Fig.9 calculations were made for the wave angle v = 55
and the frequencies: F =25.0-107%,35.0-1076,45.0-107%, 55.0- 1076, The
results obtained by Dallmann (1993) for v = 55 and F = 29.5-107° are
shown in Fig.10. I'rom Fig.6 we see that a more complete stability analysis in-
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Fig. 7. Amplification rates of the second mode disturbances versus Re obtained
from the local theory and parabolized theory for (a) F = 131.0-10-¢ and
(b) F=126.0-10"°
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Fig. 8. Amplification rates of the second mode disturbances versus Re obtained from
the local theory and parabolized theory for F = 73.4- 1075 by Dallmann (1993)

cluding non-local effects did not resolve the discrepancies between theory and
experiment in the first mode region. According to Dallmann (1993) this can
be explained by the fact that the conventional wind tunnel used by Stetson
was "noisy” in the first mode region and in consequence the amplification rates
obtained experimentally could be perturbed by the free stream disturbances.



INSTABILITY OF NON-PARALLEL COMPRESSIBLE BOUNDARY LAYER 461

1.6
N C) AN () -7 T~
-a;+10 . ~.. 1.6 . ~ee
" 12b ) 10° b s
s + local theory L2k local theory o=
0.8 ! e
Or 7 _—— =
[ ) PTs 0.8 PTS
! 4
0 - . . ol , L
1000 1200 1400 1600 1800 2000 1000 1200 1400 1600 _ 1800
Re Re
2.0 p 2.5
(C 7 SN 3 (d)
-a,--1031,5- ),, S~ -a;-10° 2.0k /,,-.\\ local theory
IOF l/ local theory \\ 1-5# ; ‘.. PTS
. —_——_ , ~
! PTs 1.0F, *
0.5 v 14
I \ 0.5+ \
0 — 1
\ 0 y
-0.51 4 -0.5F !
'1.0 1 H 1 A ’1.0 — | —| 1 1
850 1050 1250 1450 1650R 1850 800 1000 1200 1400 1600R1800
c €

Fig. 9. Effect of nonparallelizm on the first mode characteristics for 4+ = 55 and for
F=250-10"°%(a), FF=35.0-107% (b), F =45.0-107% (¢), F =55.0-107% (d)

2.0
—a;-IOSL local theory e
’_———'\'/
1.5r P
e T T -
L e -
/-" I/
I'OF L/ nonlocal theory
4
S
I,
0.5F ~
/
'3
| L l 1

0 1 S
1000 1500 2000 2500 3000 3500
Re

Fig. 10. Effect of nonparallelizm on the first mode characteristics for 4 = 55 and
for F =29.5-107° Dallmann (1993)



462 . TULISZKA-SZNITKO
6. Conclusions

In the present paper we analysed the influence of nonparallelizm on the
instability characteristics of compressible flow around a sharp cone of zero
angle of attack. A parabolized stability theory was introduced which de-
scribes the effects of nonparallel basic and disturbance flows on convectively
unstable flows. We have found that nonparallelizm destabilizes the first mode
disturbances at low Reynolds numbers and low frequencies and slightly sta-
bilizes the second mode disturbances. For the second mode disturbances the
agreement between experimental data of Stetson and theory is far better if
viscous-inviscid interaction is taken into account.

The next issue to analyse is the influence of the bluntness of a body on
instability of the boundary layer. The author plans to devote another paper
to this problem.
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Stabilno$éé nieréwnoleglych $cisliwych warstw przys$ciennych

Streszczenie

W pracy badana jest stabilnosé nierdwnoleglej, scisliwe) warstwy przyscienne).
Analize przeprowadzono dla przeplywu wokdl stozka cylindrycznego o zerowym kacie
natarcia i liczbie Macha przeplywu niezakléconego 8.0. Rozwd) zaburzen analizo-
wany Jest za pomoca paraboliczne) teorii niestabilnosci oraz za pomoca teorii lo-
kalnej. W pracy wyprowadzono réwnania parabolicznej teorii niestabilnosci dla
przeplywu wokdl geometrn osiowosymetrycznej. Do dyskretyzac)t réwnaid w kie-
runku przeplywu gléwnego zastosowano schemat wsteczny o dokladnosci drugiego
rzedu natomiast w kierunku prostopadlym do powierzchni zastosowano schemat dwu-
punktowy o dokladnosci czwartego rzedu. W pracy badano wplyw uwzglednienia
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nieréwnoleglosci przeplywu na uzyskiwane charakterystyki pierwszych i drugich mo-
déw. Stwierdzono, ze uwzglednienie nieréwnoleglosci przeplywu nieznacznie stabi-
lizuje drugi mod natomiast destabilizuje pierwszy mod dla malych liczb Reynoldsa
i stabilizuje dla duzych liczb Reynoldsa. Stwierdzono, ze bardziej precyzyjne zamode-
lowanie przeplywu zaburzonego przez uwzglednienie nieréwnoleglosci przeplywu nie
wyjasnilo rozbieznosci pomiedzy wynikami badan teoretycznych 1 eksperymentalnych
w obszarze plerwszego modu.
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