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In the wave flume of the Institute of Hydroengineering vibrations of an elastically
supported cylinder placed in the vicinity of a plane rigid bottom due to random
water waves were investigated. The random waves were generated by feeding a
time series generated on a computer into the control system of the wavemaker.
The elevation of free surface above the cylinder and accelerations of the end
points of the cylinder have been measured. Analysis of the measured surface
elevations shows that the description by generalised Stokes’ wave theory to the
random case is justified. The starting point for the description of motion of
the cylinder was the theory of ideal fluids supplied with the potential theory
solutions. The addition of experimental terms to the differential equations of
motion is discussed. The analysis in the frequency domain leads to the spectral
densities based on simplified relations but without any empirical coefficients.
The analysis in the time domain leads to a numerical solution that describes
well the characteristic features of real behaviour. The experiments prove that the
theoretical solution based on the theory of perfect fluids reproduces qualitatively
the basic features of phenomenon and is a good starting point for formulations
that may be used are reliable in engineering practice.
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1. Introduction

The two-dimensional motion of a cylinder in an incompressible and invi-
scid fluid was studied by von Mueller (1929), Carpenter (1957), Yamamoto
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(1974) and Wilde (1995). Within the theory of perfect fluids viscous effects
are neglected. The separation of the boundary layer and shedding of vortices
are considered for example by Sarpkaya (1976) and Sumer and Fredsoe (1988).
Such effects are excluded from the present analysis. The experimental inve-
stigations of free vibrations by Wilde et al. (1995) showed that the influence
of bottom proximity effect results in components with double eigenfrequencies
that do not appear in solutions of a linear theory. The problem studied within
the potential theory of perfect fluids shows that the interaction with the bot-
tom is due to the nonlinear behaviour. This behaviour is pronounced when
the gap is of the order of the cylinder radius and the velocities in the gap are
large compared with velocities above the cylinder.

The problem of motion of pipelines in the proximity of sea bottom is im-
portant in offshore and coastal engineering. In a coastal region the bottom
is soft and the waves are random. To have an insight into the behaviour, it
is necessary to simplify the real problem. In the present study the bottom
is plane and rigid. The influence of random water waves on vibrations of a
cylinder are investigated.

The experiments were performed in the flume of the Institute of Hydro-
engineering. The experimental set-up is described. Free vibrations in air and
water of the set-up were investigated to identily the mechanical system.

Narrow band random waves, with well delined stochastic properties, were
generated in the {lume by the feeding time series calculated by a computer
program into the control system of the wavemaker. Transformation of the
random wavemaker displacements into the random water waves is nonlinear.
The extended Stokes’ second order perturbation theory of water waves is used
for analysis of the random water surface elevations. Approximate description
of the transformation of of wavemaker motion into the water surface eleva-
tion fits the measured values. The properties of the fluid velocity fields are
discussed.

The basic features of experimental results are presented. As an example,
in Fig.1 the following, measured time series are plotted: of water surface eleva-
tion; horizontal and vertical components of acceleration as functions of number
of steps for dominant periods T = 1s (a,b,c) and T = 1.321s (d,c,I) at gap
width e = 10 mm and randomness parameter K = 2.5. All the functions are
random, caused by a sample function of the wavemaker random displacements
with prescribed stochastic properties. For a given time period and randomness
parameter the sample functions of water surface elevations, horizontal and ver-
tical components of accelerations are somehow similar, but not the same. For
example the shapes of wave groups are different. In the vertical accelerations
the dominant frequency is twice the dominant frequency of the water wave.
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Fig. 1. Measured time series of surface elevation, horizontal and vertical
components of acceleration versus the number of time steps for dominant periods

T =1s (a,b,c)and T =1.321s (d,e,f), at ¢ = 10mm, K = 2.5
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The properties of measured time series of accelerations are presented and a
simplified mathematical model of transformation of the random water surface
elevation into the accelerations of the cylinder is proposed.

The Lagrangian function and the nonlinear differential equations of two-
dimensional motion of a cylinder in a deterministic variable in time velocity
field are presented by P.Wilde (1997). The influence of nonlinear terms is
discussed that leads to the introduction of simplifications. The final result is
a set of two differential equations that has only quadratic terms in velocities
and is suitable for the discussion of the random case.

A linear transformation of stochastic functions is standard and common
in engineering applications to ocean engineering. In the case of nonlinear
transformations, there is no simple theory ready for use, thus it is necessary
to introduce simplifications into the analysis to explain the observed beha-
viour. The analysis in the frequency domain is presented. The formulae for
spectral densities of coordinates of displacements are derived in the simplified
description when the vertical coordinates of displacements of the cylinder are
small compared with the horizontal ones. The agreement for basic qualitative
features is good.

For a simple motion of cylinder, in a uniaxial flow, in engineering practice
empirical terms are introduced. Our experiments showed that in view of the
viscosity a term called the drag force should be added, to obtain a better
agreement with the measured values. This term was introduced in a formal
way by an extension of the Morison formula to the two-dimensional case.

A numerical method was used to obtain solutions in the time domain
and to compare tliem with the measured values. In this analysis the sample
functions of components of cylinder accelerations are constructed on the basis
of the given sample function of wavemaker displacements. The measured and
calculated time series are similar, but there are differences due the lack of a
proper description of energy dissipation.

Sobierajski was responsible for the experiments. It was necessary to have
a well tuned experimental set-up. The damping in air had to be very small so
that the dissipation of energy in water was dominant. It was important that
experiments with sample functions of a well defined random process could be
repeated. The sampling frequency was 80Hz and time series up to 25000
cases were recorded.

M.Wilde was the author of the applied data processing methods within the
control and acquisition system of the wavemaker. In Kalman filter analysis
he used his original computer program to obtain decomposition into random
components with dominant peak {requencies of the measured time series.
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2. Experimental set-up

The experiments were carried out in a wave flume which had the test
section 1.5m high, 0.5m broad, and, 30m long. In the experiments the
water depth was 0.60m. The circular cylinder was a steel pipe with the radius
@ = 0.0336 m and the length [ = 0.480m. The cylinder surface was smooth.
The cylinder was suspended on vertical and horizontal springs at a distance e,
above the bottom, called the gap width. The vertical springs carried the
deadweight of the cylinder, while the horizontal ones were prestressed in such
a way that there was always temnsion during vibrations. The springs were
attached to the cylinder at end points 1 and 2. The distance [, between
these points, was equal to 0.368 m.

The spring constants; kgl), ki«z), ky), ky), were determined experi-
mentally by application of horizontal and vertical forces at end points 1
and 2, and measurements of the corresponding displacements. The resul-
tant spring constants for uniform displacements were k, = 344.76 Nm~! and
ky = 585.90Nm=!. The measurements showed that the springs were linear
within the range of the displacements tested.

Four miniature low-impedance accelerometers (ENDEVCO Model 775
with the sensitivity of 500 + 5% mV/g and the range +10g) were used to
measure accelerations of both ends of the cylinder in the z- and y-directions,
respectively. The gauges were built into the cyvlinder. They were specially
designed for very low frequencies, where very low residual noise is required.
The amplitude linearity was < 1% of reading, and the frequency response was
+5% in the range 0.2 = 1500z, according to technical specifications. The
resonant frequency was 11kIlz.

The mechanical system had four degrees of [reedom and could be described
by four generalized coordinates: the displacements of the midpoints of the
cylinder axis 2o(t) and wo(¢), and the rotations o(?) and (), in the
zz-plane and the yz-plane, respectively.

The 1dentification of the system in air was performed. Free vibrations were
induced by small initial displacements corresponding to horizontal, vertical
and two rotational modes. Then the modes of vibrations were uncoupled and
linear damping was assumed to fit the experimental data for the modes. The
values of frequency and damping coefficients are shown in the first row of
Table 1. The corresponding masses were obtained as m., = 4.455kg and
mey = 4.432kg. For a perfect cylinder and massless springs and strings, the
corresponding values in the horizontal and vertical planes should be equal. In
the theoretical analysis the measured values were taken.
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Table 1. FEigenfrequencies and coefficients of damping in air and still
water

horizontal free vibrations vertical free vibrations 1
gap | experiment | theory | damping | experiment | theory | damping
[mm] [ILZJ (/] | [Hz] T [1/s]

[in air 1.40 1.400 0.02 L 1.83 1.830 0.05
70 1.17 1182 | 013 | 154 1544 | 0.16
20 1.16 1.156 0.20 1.51 1.509 0.17
10 1.13 1.134 0.18 1.48 1.480 0.17
5 1.11 1.111 0.17 1.45 1.450 0.17

The measurements of free vibrations of the cylinder in water were carried
out for various values of the gap width e = 70, 20, 10, 5mm. The vibrations
were initiated either by horizontal or vertical displacements or rotations. Some
mixed cases were considered. Data were decomposed into the components
with dominant frequencies with the method of Kalman filters described by
Wilde and Kozakiewicz (1993). The eigenfrequencies of the modes and the
coefficients of linear damping are shown in the rows in Table 1. It should be
stressed that linear damping is a crude approximation of the real behaviour
in free vibrations. These values are used in the following analysis at the first
step. Following the formulae given by Wilde (1995) and Wilde et al. (1995)
the added masses of water were calculated for the cylinder initial positions.
The calculated eigenfrequencies in water are shown in Table 1. They fit well
the experimental values. '

Random waves were generated in the wave flume with three values of
the randomness parameter K = 2.5, 1.0, 0.5 and four dominant frequencies
fr = 1.0, 1.321, 1.55. 1.9Hz. The details of the wave generation procedure
are given in the next section.

The vibrations of the cylinder due to waves should be two-dimensional
without rotations. In most cases this condition was satisfied. Significant
rotations were introduced in resonant cases. The midpoint accelerations were
calculated as the average values of corresponding accelerations at both ends
of the cylinder.

3. Generation of random waves

There is no general theory of random water waves with finite amplitudes
that leads to exact solutions. In experiments the case of waves with slowly
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changing amplitudes and phase shifts is considered, thus the waves correspond
to narrow-band processes. To study the transformation of water surface eleva-
tions into the vibrations of the cylinder it is necessary to produce waves with
known probabilistic properties. It was assumed that the displacements of the
generator piston correspond to a stationary Gaussian process described by the
equation

X,(t) = Ay(t) cos(wt) + Dy(t)sin{wt) (3.1)

where the processes Ay(1) and Dgy(1) are three times differentiable and cor-
respond to solutions of the following Ito stochastic differential equations

dB(1)
di

(% +17) Ao(t) = a

(-d- + 1) Ay (1) = nAo(t)

dt
(3.2)
) Anll) = nAaa()
dt
wlhere n = 3 and
w - dominant angular {requency
n —  parameter with dimension s—1
B(1) — Brownian motion process
ot — parameter
Ay(t),Dy(t) - independent processes governed by the same diffe-

rential equations (3.2).

The process described by Eqs (3.1) and (3.2) was studied by Wilde and
Kozakiewicz (1993). The stochastic process is Gaussian, ergodic and asymp-
totically stationary. The mean value is zero and the formulae for correlation
function and spectral density are given. The process is well defined in the
mathematical way in continuum. To obtain a time series the differential equ-
ations were transformed into stochastic difference equations for points in time
kAt, where k is an integer and At is the time step. Details are given in the
above mentioned book. The resulting random time series is well defined too.
This time series was fed into the control system of the wavemaker.

In the case n approaches zero the sample functions correspond to trigo-
nometric functions with a random amplitude and phase shift. In the case 7
goes to infinity the sample [unctions become a Gaussian white noise. Let us



490 P .WILDE ET AL.

relate the value of this parameter to the dominant period of the process T by

_ b
KT

where K is a dimensionless randomness parameter. In our case we used the
values NI = 2.5, 1.0, 0.5 corresponding to narrow-band processes (K — 0
corresponds to a white noise and K — oo corresponds to a harmonic function).
The experiments showed that the calculated time series and the measured
displacements of the piston were very close.

The water surface elevations due to wave motion were measured over the
position of the cylinder at rest represented by the coordinates z, = 0 and y,.
The problem of transformation of the process of piston into the surface eleva-
tion was discussed by Androsiuk (1994), Androsiuk and Szmidt (1994). In the
present analysis the measured surface elevation will be the starting point. The
measurements showed that there were some peaks in the wave spectral den-
sity, one corresponded to the dominant frequency of the piston motion control
process and the other frequencies to its multiple values. This phenomenon
indicates that the transformation of the piston motion process to the measu-
red water elevation process is nonlinear. In the Kalman filter decomposition
for the components mathematical models corresponding to twice differentiable
functions (n = 2in Eqs (3.2)) were used. The parameters of the mathematical
models were chosen in such a way that the remainder (the difference between
the measured time series and the sum of estimated components) had no peaks
and corresponded almost to a white noise.

The second order Stokes wave theory was used in the analysis. Stokes
applied the perturbation technique to the equations of finite amplitude wave
theory. The considered method is valid for

7 (3.3)

£<<1 £<<(kh)2 for kh <1
L h
where
H - wave height
L - wavelength
h - depth of water
k- — wave number, k = 27/L.

The waves generated in the experiments fulfilled these conditions.
For the second order Stokes wave theory the water surface elevation profile
is given by the relation
27y

(1) = gcos(kx —wl +B)+ (]7{) Feosf2(ka ~wi+B)] (3.4)
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where h 3
= — coth(kh)|1 + ——F——
T3 ( )[ 2sin]12(kh)]
and [ is a constant phase shift and the wave number and angular frequency
are related by the dispersion equation

wih

= keh tanh(kh) (3.5)

where ¢ is the acceleration of the gravitational field.
The potential function @ is

=0+ &
_wH cosh(ky) . _
&y = 2% sinh(Fh) sin(kz — wt + ) (3.6)
X 2 2k
b, = SwH cosh(2ky) sin[2(kz — wt + G)]

32 sinhd(kh)

where the first function corresponds to the first component and the second -
to the second one with the double frequency of the first component. It is seen
that the second order Stokes wave theory is nonlinear, the surface elevation
(3.4) and the potential function (3.6) are expressed as sums of two terms with
distinct frequencies and H and H?, respectively. When the wave height H is
small the second term may be omitted and the solution corresponds to a linear
sine wave, In such a case the wave frequency corresponds to the frequency
of piston motion. For large wave heights one has to take more terms in the
Stokes perturbation approximation.

The velocity vector field is equal to the potential gradient. It should be
mentioned that the velocities are given in Euler description. The Stokes theory
is obtained by a perturbation method and is an approximate formulation. In
standard text books, for example by Chakrabarti (1987), the partial derivative
with respect to time is taken for the accelerations of the fluid particles. Such
an approach is consistent with the assumptions accepted.

The theory of the regular wave was extended for a narrow band random
case by Wilde and Romarczyk (1989). It was assumed

H o H(1)

LAIC] 8~ B(1)

22 (3.7)
A = Weop) b = TWsingar)
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and

A(t) < wA(t) D(1) < wD(t) (3.8)

Substituting IXgs (3.7) into the expression for the water surface elevation (3.4)
yields

n(z,t) = A(t)cos(kx —wt) — D(t)sin(kz — wt) +

(3.9)
+ %{A*(f) cos[2(kz — wt)] 4+ D*(1) sin[2(kz — wt)]
where
A*(t) = A%(1) — D*(1) D*(t) = 2A(1)D(t)
The potential function (3.6) goes over to
w cosh{k .
¢y = Z:);T((k%) [A(l)sm(kl' —wt) + D(1) cos(kz — wi)]
(3.10)
¢, = 3—wS%Qky‘){A“(t)sin[?(l;.l' —wt)] + D*(1) cos[2(ka — wt)]}

8 sinh*(kh)

This potential function satisfies the Laplace equation for all values of the
time parameter f. The kinematic and dynamic boundary conditions on the
frce water surface are satisfied when the time derivatives of A(?) and D(t)
are neglected according to the assumption expressed by Iiqs (3.8), thus the
relations are true only for 2z = 0 and its small neighbourhood. When the
functions  A(?) and D(t) are known the functions A*(¢) and D*(t) may
be calculated from the relations given in q (3.9). For a sample function of
piston motion the corresponding functions A(¢) and D(1) may be calculated
for any fixed distance from the wavemaker using the linear theory of waves.
It should be stressed that this is an approximate description and its validity
has to be checked by experiments.

The values of the functions A(t), D(t), A*(t) and D*(¢) were calculated
from comparison of the theoretical formulation (3.9) for z =0

n(t) = A(t) cos(wt)+ D(t) sin(wt) + % [/—1*(1’.)cos(?wi)+D*(t)sin(2wt)] (3.11)

with the measured data. Eq (3.11) has two components with dominant angular
frequencies w and 2w. The measured time series were decomposed into two
processes with two dominant frequencies. The Stokes wave theory leads to
a relation given in Eqs (3.9) between the functions A(¢), D(?) and A*(1),
D*(t). The comparison of the estimated values of A*(¢), D*(t) with those
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calculated according to the formulae in Eqs (3.9), based on estimates of A(t),
D(t), showed good agreement. In some experiments more components were
detected, but the first two were dominant and thus the application of second
order Stokes’ approximation was justified. For the experiments the second
term gives a contribution that is of the order of 10%.

The velocities at a point (0,y) are

wcosh(ky)

sinh(&h)
3wk cosh(2ky)
4 sinh(kh)

uz(0,9,1) [A(t) cos(wt) + D(1) sin(wi)] +
[A*(t) cos(2wt) + D*(1) sin(2wt)]
(3.12)

u, (0,y,1) = wM[—A(t)sin(wi) + D(2) cos(wt)] +

it sinh(kh)
3wk sinh(2ky)

4 sinh*(kh)
It should be noted that we measured the elevations at the point z = 0
and thus we have no information about the velocities in the other profiles.
As an approximation we have to take the partial time derivative to get the
acceleration. It is not possible to calculate the material time derivative without
additional assumptions or analysis. It should be mentioned, that the Stokes
approximate solution is a good one for surface elevations and the experimental
verification of velocities is not perfectly reliable.

. [ A*(1) sin(2wt) + D*(t) cos(2wt)]

4. Results of experiments

Large parts of the measured time series for the dominant wave periods
T = 1s and T = 1.321s, randomness parameter K = 2.5 and gap width
e = 10mm are depicted in Fig.1. The horizontal axis corresponds to the
number of time steps. The vertical axes correspond to the surface elevation,
horizontal and vertical components of acceleration, respectively. The values
are plotted in different scales.

These plots show an overall relationship between the values of these phy-
sical random functions. In this paragraph the statistical properties in the
frequency domain are discussed as a basis for the construction of a simplified
mathematical description.

The input to the mechanical system are velocities of the fluid which are
described by the narrow band stationary processes with two peaks at w and



494 P.WILDE ET AL.

2w in the spectral densities. Therefore it is reasonable that in the output
— the measured accelerations — one may expect peaks in the spectral densi-
ties at multiples of w and eigenfrequencies of the system. In filtering the
twice differentiable mathematical model was used and such values of the ran-
domness parameter K were fixed that the rest had no significant peaks and
corresponded almost to a white noise.

In experiments it was important that the cylinder did not hit the bot-
tom. Thus, for smaller gaps random waves with smaller standard deviations
were generated and consequently the number of components in water sur-
face elevations decreased with the gap width. All the measured time series
where decomposed into random processes with dominant peaks corresponding
to peak frequencies. The standard deviations of components were calculated.
The results for periods T = 1sand T = 1.321s, random parameters K = 2.5
and K = 0.5 and gap widths e = 70mm and e = 10mm are shown in Ta-
ble 2. In general, when the randomness parameter I decreased the standard
deviations had to be diminished to avoid hitting.

Table 2. Standard deviations for the filtered components of surface ele-
vations

(T [s] | ]ﬂgap [mm] | o [em] | oo [em] | o3/ [cm] |

1 1.000 | 2 70 2.2746 | 0.3509 | 0.1189
| 1.000 0.5 70 1.8523 | 0.3180 0.0
1.321 [ 2.5 70 2.3721 | 0.1791 | 0.0344
1.321 [ 0.5 70 1.8978 | 0.2198 0.0
1 1.000 | 2.5 10 [ 1.2625 | 0.1947 0.0
1.000 [ 0.5 10 1.0337 | 0.1015 0.0
1.321 | 2.5 10 1.2164 | 0.0476 0.0
1.321 [ 0.5 10 1.0504 [ 0.0 0.0

The frequency of free vibrations in the horizontal plane mode is equal to
some 1.15Hz and thus it is close to the frequency corresponding to the wave
period of 1s. In such a case the decomposition is crude. The frequency
of free vibrations in the vertical plane mode equals some f;, = 1.5Hz. For
T = 1.321s the frequency f = 0.757Hz and thus 2f = 1.51 Hz is very close to
the eigenfrequency. It is not possible to distinguish between these two modes.
The system is close to resonance for the first wave period and in resonance for
the double frequency corresponding to the second wave period.

Some results of analysis of the mecasured time series of accelerations are
presented in Table 3. From the analysis of all results several conclusions were
drawn. For the large gap (e = 70mm) the influence of the bottom is not
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big and thus in engineering applications a model of motion of a cylinder in an
infinite space of fluid may be used. The standard deviations of free vibrations
are small in general, and in many cases can not be detected in measured data.
They are large when the frequency of free vibrations is close to the dominant
frequency of forced vibrations. They increase when randomness increases, as
measured by the parameter K. The vertical components are in general small
when compared with the corresponding horizontal ones.

Table 3. Standard deviations for the filtered components of accelerations

T K gap Ofyx Tfy gy 025

[s] [m/s?] | [m/s?] | [m/s?] | [m/s’]
1.000 [ 2.5 [ 70 | horizontal [ 0.1595 0.1951 [ 0.0098
1.000 | 0.5 [ 70 | horizontal | 0.3171 0.0959 [ 0.0

1.321 | 2.5 | 70 | horizontal | 0.0020 0.0849 | 0.0125 |
1.321 | 0.5 | 70 | horizontal | 0.0662 0.0848 [ 0.0

1.000 [ 2.5 [ 70 | vertical 0.0125 [ 0.0214 [ 0.0130 |
1.000 [ 0.5 | 70 | vertical 0.0275 | 0.0210 | 0.0076
1.321 [ 2.5 ] 70 | vertical | 0.0 | 0.0020 | 0.0990
1.321 [ 0.5 | 70 | wvertical [ 0.0 [0.0014 | 0.0469 |
1.000 | 2.5 | 10 | horizontal | 0.0566 1 0.1614 | 0.0027 |
1.000 [ 0.5 | 10 | horizontal | 0.2212 0.0793 | 0.0 |
1.321 | 2.5 | 10 | horizontal 0.0 0.0516 | 0.0034
1.321 | 0.5 | 10 | horizontal | 0.0430 0.0335| 0.0

1.000 | 2.5 | 10 | vertical 0.0 [0.0066 | 0.0166
1.000 [ 0.5 10 | vertical 0.0008 | 0.0065 | 0.0164
1.321 [ 2.5 | 10 | wvertical 0.0 | 0.0020 | 0.0990
1.321 [ 0.5 ] 10 | vertical | 0.0 ] 0.0014 | 0.0469

When the wave frequency or its double enters a resonance zone the stan-
dard deviations grow. For T = 1.321s there is resonance in vertical vibrations,
and thus there is only one significant peak with the double of the dominant
wave frequency.

5. Lagrangian, the differential equations

In the discussed case, let us modify the Lagrangian proposed by Wilde
(1997) to include the masses of cylinder m., and m,, obtained from the
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experimental results. First, let us consider an approximation in which we
assume a velocity field homogeneous in space with the value at the point (0,0)
as a function of time. Thus according to Eqs (3.12), in the neighbourhood
of the origin of the fixed coordinate system (where the cylinder moves) the
velocity field is approximated by

uz(z,y,t) = uz(0,0,1) uy(z,y,t) =0 (5.1)

In the considered case we take the Lagrangian in the form

L = SpVell + Culo)l[(us - #0)? + 58] +
(5.2)

1 ) 1 . 1 1
+ §(mcx - PVC)I'(Q) + E(mcy - PVC)yg - §erg - §ky(?/0 - Yp)

where Vo = ma? is the volume of the cylinder unit length. The corresponding
Lagrange’s differential equations are

. : Ve : .
[Mer + PVeCrm(V)]Eg — pVell + Cr(v)]ie, + p—aCfC;n(v)(:vo ~uz)Yo + kzzo = 0
(5.3)

. Ve . .
[mey + Ve Con(0)io + oo Cin(v) | = (0 = wa)? + 48] + iy (vo = ) = 0

The obtained differential equations are nonlinear and coupled due to the inte-
raction with the bottom. When the distance from the bottom to the cylinder
centre is great then Cp(v) — 1, C!.(v) — 0 and Eqgs (5.3) reduce to

[mcr + /)VC]:'L-'O + kpro = 2pVeu,
(5.4)

[mcy + PVC]% + ky(yO - yp) =0

Such a case almost occurs in the experiments for the gaps of e = 70mm in
width. It should be however stressed that in this case we should disregard the
interaction of the cylinder with the bottom and express the external velocity
field as the first term in a Taylor series around the cylinder position at rest
¢ =0,y = yp. This would lead us to Eqs (5.4) supplemented in the second
equation on the right-hand side by a term due to the vertical component of
acceleration.

From the discussion of statistical analysis results of the measured time
series it follows that the nonlinear term in the first equation of (5.3) has only
a very slight influence and that the important term that affects the horizontal
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displacements is the term due to the horizontal component of acceleration. In
the last term in the second expression the value of y2(1)is very small compared
with the other terms and may be neglected. In the case the displacements of
cylinder are infinitesimal, the dimensionless parameter v is very close to
v = yp/a. When the terms corresponding to linear damping are added the
following simplified differential equations result

Fo(1) + 2k:20(1) + A2 fPa0(t) = Fiig(t)

Go(1) + 2ry90(1) + 472 flyo(t) — y,] = Faiy (1) + F3 [(io - ug)? + uy]

(5.5)
F = pVell + Cr(vy)] F, = pVel(l + Cn(vp)]
Mg + ,DVCCm(Up) Mey + pVCCm(Up)
Fo = pVeCr (vy)
3=

2a[mey + pVeCom(vyp)]

where the damping coefficients are estimated from the tests for free vibrations.
In the equations the vertical components of acceleration and velocity are zero.
The cylinder is close to the bottom but at a finite distance. We may look
at an expansion around the centre of the cylinder at rest and generalise the
problem as was proposed by Wilde (1997). For the random case we limit our
discussion to the simplified case described by Eqs (5.5).

The differential equations have constant coefficients. The first equation is
linear and there is no problem to find a solution for any function of time on
the right side and any initial conditions. When the horizontal component of
the displacement of the cylinder centre is known the right-hand side of the
second equation is a known function of time. There is no problem to find a
solution.

6. Simplified spectral densities of cylinder displacements

Let us calculate the spectral densities based on the simplified differential
equations of the problem (5.5) and take the first terms into account only in

water surface elevations and velocity fields.
Wilde and Kozakiewicz (1993) defined two processes X(¢) and Y(¢)

X (1) = A(t) cos(wt) + D(t) sin(wt)
(6.1)

Y (t) = —A(t) sin(wt) + D(2) cos(wt)
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and a process in complex variables
Z(t) = X(1)+iY (1) (6.2)
It is easy to verify that

7% = X(t)+iY (1)
X (1) = [A%(t) — D?(t)] cos(2wt) + 2A(1)D(1) sin(wt) (6.3)
Y(t) = —[A%(1) — D*(1)] sin(2wt) 4+ 2A(1)D(1) cos(wt)

The envelope W() of the processes (6.1) is

W(t) = JX2(1) + Y2(1) = \/A2(1) + D*(1) (6.4)
From Eqs (6.3) and (6.4) it follows

X*(1) = S[WH0) + X(0)] Y = WA -T(0] (65)

In these notation the measured surface elevations given by Eq (3.11) may be
written as

5(t) = X(1) (6.6)
and the velocities are
(0, 9y, 1) = wcoth(hy,) X(2)
(6.7)
1, (0, yp, 1) = w tanh(ky)Y (1)

For the narrow-band processes derivatives of the slowly varying functions A(?)
and D(t) may be neglected compared with the derivatives of trigonometric
functions (assumption expressed by Lqs (3.8)). Thus it follows

iz(0, Ypo ) = w? coth(ky,)Y ()
(6.8)

(0, Yy, 1) = ~w tanh(ky).X(2)

Now we express the stochastic processes of velocities and their derivatives in
terms of random functions X(¢) and Y(¢) with known stochastic properties.
The spectral densities of both functions are equal to the spectral density of
measured time series of elevations of the free water surface. Thus the spectral
density of wp, as given by the first differential equation in (5.5) is

Syn(A)
(W2 = A2)2 } 4RZ\?

Sroze = w? coth?(ky,) (6.9)
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One peak is due to the peak in spectral densities and a second one may be
expected when A is equal to the corresponding eigenfrequency.

To obtain the spectral density of vertical displacements one has to calcu-
late the spectral density of the right-hand side of the second equation (5.5).
In the right-hand side a random function has to be squared. Eqs (6.5) are
used to express the squares of random functions. It should be noted that the
correlation and spectral properties of all random functions that appear on the
right-hand side are known. A computer program was written to calculate the
spectral density Sg,r,(A) of the right-hand side of the second differential equ-
ation in (5.5). The left-hand side is a linear differential equation with constant
coefficients and the stationary solution may be calculated in a standard way.
Finally, the spectral density Sy, (A) of vertical displacements is

. Sayn,(A)
Swovo = e /\12); e (6.10)

In the spectral density of the right-hand side one may expect a peak at the
wave frequency, a peak for its double value due to the square and a peak at the
eigenfrequency of horizontal vibrations. The fourth peak may appear when A
equals the angular eigenflrequency that corresponds to the case of resonance
in vertical vibrations.

To obtain the spectral densities of second derivatives it is sufficient to mul-
tiply the spectral densities (6.9) and (6.10) by A1. The spectral densities (for
the gap width e = 10mm and parameters of the dynamic system given in
Table 1, and surface wave parameters: dominant period T = 1s, standard de-
viation 1.23cm, &' = 2.5) are depicted in Fig.2. To compare with the Fourier
coefficients the square roots of the spectral densities are plotted as functions of
frequencies. Two peaks are in the spectral densities of the horizontal accelera-
tions and four in the vertical ones. They correspond to the wave frequency and
its double value and to the eigenfrequencies of dynamic system. The solutions
are very sensitive to the values of damping parameters and the widths of the
spectral densities of the input. The corresponding spectral densities for the
dominant period 7T = 1.321s are shown in Fig.3. In this case, in the vertical
accelerations, the eigenfrequency is very close to the double of dominant fre-
quency of the wave and due to resonance the amplitude of this component is
large. Comparison with the amplitudes of Fourier series coefficients depicted
in Fig.5 and Fig.6 shows that the simplified theoretical solution gives a good
insight into the character of spectral densities. The calculated spectral densi-
ties are based on a simplified theoretical formulation only and no experimental
coefficients are included.
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Fig. 2. Square roots of spectral densities of horizontal and vertical accelerations of
the cylinder centre in cm/s for the dominant period T = 1s
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Fig. 3. Square roots of spectral densities of horizontal and vertical accelerations of
the cylinder centre in cm/s? for the dominant period T = 1.321s
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water waves
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Fig. 5. Comparison of horizontal accelerations measured (a), calculated (b) and

vertical accelerations measured (c), calculated (d) of the cylinder centre in m/s? for
T=1s,e=10mm, K = 2.5
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7. The influence of Morison’s type terms

The problem of hydrodynamic forces on piles is very important in offshore
engineering. A lot of experiments were performed on fixed cylinders in special
set-ups for homogeneous in space and harmonic in time velocity fields. The
resultant force in line with the velocity is expressed by the Morison et al.
(1950)

Vi
R, = CipVei, + Cd%mr)ur (7.1)

where the first term on the right-hand side is called the inertia force and the
second one, the drag force. The values of coefficients C; and Cjy depend upon
the Keulegan-Carpenter number KC and the Reynolds number Re defined
by
KC = Umaz L’ Re = Umaz20 (7.2)
2a v

where T is the period and v is the coefficient of kinematic viscosity. Sarpkaya
has published graphs that are used in engineering practice and reproduced in
many textbooks, e.g. Chakrabarti (1987). It should be noted that the values
of coefficients depend upon the period of harmonic velocity. For narrow band
stochastic process the coefficients corresponding to the dominant frequencies
may be used as first approximation. Experiments reveal that a lift force acts
perpendicularly to the fluid velocity direction.

In engineering applications, a one dimensional relative motion of a cylinder
in the z direction is represented by the differential equation

| % ) .
(mcz+pVCCm)d&0+‘2nm:t0+wﬁa:0 = Ci/)VCiLI-}-Cde—;luz—xol(uz—:1:0) (7.3)

In the simplified case the first differential equation (5.5) has a similar
form. Thus we may look at an extension. In the right-hand side we replace a
theoretical coefficient by an experimental one

14 Cr(v) = C; (7.4)

and:add a drag term. Such changes take care of the viscosity of the fluid neglec-
ted in our description. We left the coefficient of added mass (), unchanged
because it fits well the measured free vibrations in water.

In our experiments the cases of cylinder motion in regular waves were
also investigated. We limit our discussion to the cases of measurements for
deterministic harmonic waves. Therefore, the first component was filtered from
the measured surface elevation and the corresponding velocity was calculated.
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The component in the horizontal acceleration was found in a similar way. For
regular waves these components are linear combinations of sine and cosine
functions. Substitution led to two algebraic equations with unknown values of
C; and Cjy.

The values of Keulegan-Carpenter numbers are small and indicate that all
the experiments correspond to the cases where the inertia term is dominant.
The Reynolds numbers are small for the considered cases and the differen-
ces are insignificant for all experiments. The coefficients plotted versus the
Keulegan-Carpenter numbers are depicted in Fig.4. The scatter is large but
not surprising. It should be noted that in many cases for the harmonic wave
the measured accelerations were not regular. This is due to the detachment of
vortices that introduces a random behaviour. In this analysis we considered
the influence of bottom proximity only in the added mass coefficient. The
average value of C; is 2 and declines with the increase of the KC number.
The 4 values are small and increase. For these KC values, in standard
engineering practice, the values C; = 1.6 +2.1 and Cy = 0.6 + 0.8 are taken.

There is no, justified by experiments, generalisation of the drag term to
the two- dimensional case when the cylinder is in motion. It is reasonable to
take in Eq (7.1) relative velocity and to assume that the direction of the drag
force coincides with the relative velocity vector. Thus, to introduce the inertia
and drag terms it is enough to replace the inertia terms in Eqs (5.5) according
to the following formulae

pVell+ Cn(vy)] . pVeC; .
r = T Uz

Mez + PVCC'm(Up) ! Mey + /)VCCm(Up)u *

pVeCyWy (s — o)

Ta[me: + pVeCm(vp)] S (7.5)

pVell + Crulvp)] . pVel; .
e P, > — T, +
Mey + pVelm(vy) Y Mgy + pVCCm(UP) v

pVoCyWy

malimey  pVeC(op 1t ™ 90

where

Wy = \[(us — &9)2 + (uy — 90)?

It should be stressed that such approach is aimed at formulating a simplified
engineering description. To study the problem from the point of view of me-
chanics it is necessary to find an exact description of the behaviour especially
the terms that represent energy dissipation.
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8. Numerical solution, comparisou with experiments

In the numerical solution the starting point was the Lagrangian in the
general form

1 . .
L = SpVell+ Colv)]|(us — i) + (, — 30)?] +
(8.1)
+ E(mcr ~ pVe)ig + §(mcy ~pVe)yo — Eero - §ky(y0 - yp)
and Hamilton’s principle of least action
I = /L(a"Ov ?/0,1‘70,?,./071) di (8'2)

Analytic integration was replaced by the simplest numerical procedure, the
derivatives by finite differences and the values by the averages over the assumed
time step. Finally the action integral was reduced to an algebraic equation in
the unknown values zo(rAt) and yo(rAt). The necessary condition for the
extreme value, vanishing of the partial derivatives with respect to zo(sAt) and
Yo(8A2) was used, that led to two sets of algebraic equations. The equations
were changed to include the terms corresponding to the Morison formula. The
equations were solved by Newton’s method. In the comparisons the values of
linear damping coefficients in air for the mechanical system were taken. The
values of the coefficients corresponding to the Morison formula were assumed
equal to C; = 2.1 and Cy = 0.6. Thus the damping of the system is nonlinear
mainly due to the interaction with the fluid as given by the drag term.

Let us compare the measured accelerations with the calculated ones. In the
Fig.5 the amplitudes of the Fourier coefficients and graphs of corresponding
functions are shown for the case T' = 1s, K = 2.5, ¢ = 10mm. The first
graph corresponds to the measured horizontal accelerations and the second to
the calculated ones, while the third to measured vertical accelerations and the
fourth to calculated ones. There are differences but the character is reproduced
in the calculated accelerations. In Fig.6 the corresponding graphs are shown
for the case T = 1.32s with the same values other of parameters. It is possible
to look for the values of coefficients C; and Cj that give a better fit for the
considered interval but one can not expect to obtain a very good fit for the
whole measured time series.
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9. Results and conclusions

The measured surface elevations of the generated random waves were well
described by an extension of the Stokes wave theory to the case of waves with
slowly varying amplitudes and phase shifts.

In the considered cases, as the first approximation, an extension of the
classic wave theory to the case of waves with slowly varying amplitudes and
phase shifts may be used to calculate the velocities at the cylinder centre. It
must be emphasized that the velocities were not measured due to the lack
of precise gauges in our laboratory. More research, especially in the field
of measurements and analysis of the velocity fields, is needed. The authors
believe the discrepancies are also due to rough estimates of the velocity fields
in water waves in flumes.

The measured vertical accelerations revealed interaction of the cylinder
with the plane and rigid bottom in the form of a peak at the double of domi-
nant water wave {requency. The influence of the interaction on the horizontal
accelerations was so weak that it could not be detected in our tests.

The calculated spectral densities of accelerations based on simplified theo-
retical solutions with no empirical coefficients give good insight into the ana-
lysis of behaviour in the frequency domain.

In the time domain analysis, the theoretical description was supplemented
by experimental terms corresponding to the Morison formula extended to the
two dimensional case in a formal way. The inertia coefficient modifies the
amplitudes and the drag coefficient describes the damping of the mechanical
system due to the interaction with the fluid. The value of the second coefficient
controls the behaviour in resonance. The comparison with measured values
shows that there are differences but the overall character is reproduced.

The comparison with theoretical simplified solutions shows that is very
important to have reliable estimates of velocities of the undisturbed fluid field
in the vicinity of the cylinder centre and a good description of dissipation of
energy.

The experimental analysis shows that the theoretical analysis based on the
theory of ideal fluids and potential theory solutions gives a good starting point
for the analysis of the proximity of the bottom on the cylinder vibrations.
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Badania do$wiadczalne drgan cylindra w wodzie w poblizu dna
wywolanych powierzchniowsa falag losowa

Streszczenie

W kanale falowym Instytutu Budownictwa Wodnego PAN zbadano, wywotane
losowymi falami wodnymi, drgania sprezyscie podpartego cylindra, umieszczonego
w poblizu plaskiego i sztywnego dna. Powierzchniowe fale losowe byty wywolane
przez ruch plyty generatora [al okreslony przez obliczony na komputerze ciag czasowy
realizacji i zadany do systemu sterowania falorobu. Mierzono wzniesienia powierzchni
swobodnej wody ponad cylindrem oraz przyspieszenia koricow cylindra. Analiza po-
mierzonych wzniesien pokazuje, ze uzasadniony jest opis w ramach teorii Stokes’a
uogdiniony na przypadek [al losowych o waskim widmie (wolnozmienne amplitudy
i przesunigcia fazowe). Punktem wyjscia dla opisu teoretycznego ruchu cylindra
byla teoria mesc1s]1weJ c1eczy doskonalej oraz ruchu potencjalnego. Podano propo-
zycje uzupelniedt réwnar zagadnienia o czlony uwzgledniajace w sposéb prayblizony
efekty lepkosci cieczy. Przy przyjqcm zalozen upraszczajacych, analiza w dziedzinie
czestotliwosel prowadzi do wyrazen na gestosci widmowe przemieszczen i przyspieszen
cylindra. Analiza w dziedzinie czasu prowadzi do obliczenia numerycznego reallzaql
ktore odzwierciedlaja podstawowe cechy pomierzonych ciggéw czasowych przyspieszen
cylindra. Badania doswiadczalne potwierdzajg, ze rozwiazania teoretyczne bazujace
na teoril potencjalnej cieczy doskonalej odzwierciedlaja podstawowe cechy zjawisk
obserwowanych w eksperymencie i sa dobrym punktem wyjscia dla formutowania dla
praktyki zawodowe] metod inzynierskich.
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