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A simplified computational model for solving the static problems of
linear-elastic macro-heterogeneous composites is proposed. The appro-
ach is based on that discussed by Konieczny et al. (1994). The final
result is presented in the form of algebraic linear equation system of the
finite element method.
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1. Introduction

It is known that composites are aggregates comprising two or more distinc-
tly different materials which, on the macroscopic scale, form together a new
medium with epparent properties different from those of the individual consti-
tuents, cf Thompson (1987). Hence, every composite represents, by definition,
a certain micro-heterogeneous continuous medium. If the apparent properties
of this medium do not change throughout a whole structural element then the
composite is said to be macro-homogeneous. Such situations take place, e.g.,
for periodic composite materials having apparent macro properties determi-
ned by one representative volume element (cf Jones, 1980; Bensoussan et al.,
1980). However, some engineering structures involve composite elements with
apparent properties depending on their position in the body. These structural
composite elements are not made of one standardized composite material but
reveal different macro-properties in different parts of the body and will be
referred to as the macro-heterogeneous composites.

So far, theoretical studies of the micro-modelling of composites have been
restricted mainly to the macro-homogeneous structures (esp. micro-periodic
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bodies) leading to various homogenization theories; an extensive list of the
related papers can be found in Jones (1980), Bensoussan et al. (1980). The
approach to modelling of the macro-heterogeneus composite materials pro-
posed by Jikov (1994) and based on the concept of G-convergence is to be
applied to when solving the engineering problems. That is why the main
aim of this contribution is to propose a simplified computational approach
to mechanics of the macro-heterogeneous composites. The theoretical back-
ground of this approach is strictly related to that explored by Konieczny et
al. (1994) but the main attention is focused here on formulation of the FEM
approach which can be applied to calculations of stresses and displacements
in the macro-heterogeneous composites. The considerations are confined to
the linear-elastic composite materials on the assumption of perfect bonding
between material constituents and for the deterministic description of these
constituents distribution.

Notations. Subscripts +¢,7,k,/ run over 1,2,3 and are related to the
Cartesian orthogonal coordinate system in the physical space. Indices a,b
run over 1,2,...,n. Summation convention holds for both +¢,j,k,! and a,b.
For the spatial derivatives we use the notation f; = 0f/0x;, where f = f(z)
is a differentiable function and z = (2,22, 23) is a point in the physical space.

2. Basic notions

Let {2 be a region in the physical space occupied by the undeformed and
unstressed composite body made of the perfectly bonded homogeneous con-
stituents. Material properties of this hody are assumed to be known being
determined by the components of elasticity tensor field a;;;i(+), which are
piecewise constant functions, suffering jump discontinuities only across the
interfaces between material constituents. We restrict ourselves to the com-
posites for which there exist a decomposition of {2 into a very large number
of small mutually disjointed cells (volume elements) V4, A = 1,2,...,5 such
that:

(i) Every volume element V4 is a small piece of the body but large enough to
detect all material heterogeneities responsible for the macro-properties
(apparent properties) of the composite in the vicinity of V4

(ii) Every two adjacent volume elements have similar distributions of mate-
rial constituents (and hence similar apparent properties) but the remote
volume elements can be distinctly diflerent.
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The above conditions will be detailed at the end of this Section.

Volume elements VA, A =1,2,..,5, are referred to as the macro-volume
elements. In a special case of a micro-periodic body material the structures
of all macro-volume elements coincide and hence can be determined by one
representative volume element (c[ Thompson, 1987). For every V4 we shall
introduce the averaging operator

(f) = W / f(z) dv A=1,2,..5 dv=deidzydes
VA

where f(:) is an arbitrary integrable function defined (almost everywhere)
on {2.

In order to formulate a computational model of the composite under con-
sideration we shall introduce, following Konieczny et al. (1994), two funda-
mental concepts. The first of them is a concept of a macro-function by means
of which we shall describe, roughly speaking, the macroscopic behaviour of
the composite. To this end we deline the microstructure parameter 6, set-
ting 6 = maxéby, A =1,2,..,5, where &4 is the maximum characteristic
length dimension of VA. Let G(-) be an arbitrary real-valued function de-
fined on 2. By Mg we denote a numerical tolerance parameter, defined as
the maximum admissible tolerance related to the computations of the values
of function G(-). In the sequel both parameters 6, Ag are assumed to be
known. The triple (G(-), /\(_7,5) is said to be the macro-function if for every
z,y € 2 and ||z — y|| < § the condition |G(z)— G(y)| < Ag holds. Hence for
any intergrable function f(-) defined almost everywhere on {2 we obtain

S

/f(a:G(x) v = S (f)aGlza)vol(VA) + 0(Ag) =
D A=1
(2.1)

= /F(mG(m) dv+ 0(Ag) + 0(AF)
2

provided that (G(-),)\G,é) is the macro-function, z4 is the center of V4

and (F(-),)\p,é) is a macro-function satisfying conditions F(z4) = (f)a,
A=1,..5.

Returning to the conditions (i), (ii) given at the begining of this Section,
we shall assume that there exist the continuous macro-functions A;jx(-),
Aaijk(+), Aabi;(+), defined on 2, satisfying conditions
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ul\l( ) ((L1]H>
Anije(2%) = (aijrha)a (2.2)
Aaij(2) = (@irjiha sl i) a

for some z4 € VAand A=1,2,...,5.
The above conditions, at the proper choice of micro-shape functions hq(-),
determine the class of macro-heterogeneous composites under consideration.

3. Macro-modelling assumptions

The modelling procedure leading from equations of the linear elasticity
theory for a composite material structure with the highly-oscillating properties
to a certain macro-model of this composite will be based on two assumptions.
The first of them is called the micro-macro kinematic hypothesis and states
that the displacement field u;(-) can be assumed in the form (cf Konieczny et
al., 1994)

w(2) = Ui(z) + ha(2)Q(2) zeQ (3.1)
where h,(-), a = 1,...,n, is a known system of the so called micro-shape
functions (postulated a priori in every problem under consideration) which
satisfy the conditions (hg)a = 0 and |hy(z)| < 8, éh,(z) € 0(8), for every
A=1,..,5and every 2 € £2. Moreover, U;(-), Q%(-) are arbitrary indepen-
dent regular macro-functions (together with their first and second derivatives)
constituting basic kinematic unknowns. Fields U.(-) will be called the macro-
displacements and satisfy conditions U;(z) = (u;)4 + O(8) for every z € VA
and A =1,...,5. Functions Q%(-) will be referred to as the correctors. It will
be shown in Section 4 that the correctors describe, from the quantitative wie-
vpoint, the disturbances of displacements caused by the micro-heterogeneous
structure of the composite.

Let A stand for the numerical tolerance parameter related to the functions
Ui(-), Q%(-) and their derivatives. The second macro-modelling assumption
will be called the asymplotic approzimation hypothesis and states that terms
O(d)and O(A)in all equations obtained in the course the modelling procedure
can be neglected (cf Konieczny et al., 1994). Hence, the linearized strain
components ¢;;, obtained from Eq (3.1) will be assumed in the form

¢ij(2) = Ui j)(2) + ho,i(2)Q5)(2) (3.2)
Similarly, terms O(Afr), O(Ag) in Eq (2.1) will be neglected.
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4. Analysis

For the sake of simplicity Jet us restrict the considerations to the plane
static problems. Setting

&1
Ul a Q?
U = = £ = £
] - &) o
(4.1)
her O 2 0
Ca = 0 ha,2 0 = 0 %;
ha,2 h'a,l 3872 811_"
we shall rewrite Eq (3.2) to the form
e =0U +C,Q"° (4.2)

Representing the elasticity tensor field a;;1i(:) for the plane strain problem
under consideration by the 3 x 3 matrix a and denoting by o the column of
the stress components, we obtain the matrix form of the stress-strain relations

o = ag (4.3)

Let us denote by p and f the columns of surface tractions and volume body
forces, respectively. The priciple of virtual work will be postulated in the well
known form

/{68}Ta a0 = j{{ﬁU}Tp ds + /{w}Tf e, (4.4)
n an 7

Macro-functions A;xi(-), Aaije(+), Aasi;(-) satisfying Eq (2.2) can be determi-
ned by means of the interpolation formulas (cf Konieczny et al., 1994)

A;J‘k[(x) = Z(“ijkl)l\’nl\,(x)
N

Agijie(z) =D (aijrhat)cn™ (2) (4.5)
-

Aaij(z) =D {aijrthashs ) kn™ (z)
N

where n”(z) are suitable interpolation functions and index K runs over a
certain subsequence of the sequence 1,2,...,5.
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Combining Eqs (4.2) + (4.4), using (2.1) and asymplolic approzimalion
hypothesis, alter representing the macro-functions (4.5) in the form of 3 x 3
matrix functions A(:), Ay(+), Ags(-), respectively, we obtain

/{6U}T6TA(z)8U 40 + /{6Q“}Aa(z)6U o +

ip; Ir}

+/{5U}TaT[Agz)]TQa a0 + /{6Q“}Aab(a:)Qa d2 = (4.6)
02 02

_ f{&U}Tp ds + /{w}Tf 490
§12 2

On condition that U, Q@® are arbitrary linecar-independent basic unknowns, the
variational conditions (4.6) lead to the system of partial differential equations
in U coupled with the linear algebraic equations in Q®. Discretizing the
region (2, we assume that

U = Ng (4.7)

where ¢ is the generalized nodal displacement vector. Moreover, we assume
that in every finite element the vectors Q¢ are constant

Q" = M¢" (4.8)
where ¢* is the vector of constant values of Q¢ in all finite elements. In this
case

{6U} = N{éq} {6Q°} = M{6¢"}
(4.9)
0U = 0Ng = Bg

where B = dN. Substituting Eqs (4.7) = (4.9) into Eq (4.6) and denoting

K = /BTA(z)B 40
2

K, = /BTA“(I)M e,
g (4.10)

Kap = /MTAUD(I)M dn

02
F= —]{NTpds—/NTfm
an P4
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we arrive finally at the following system of equations in ¢ and ¢*,a=1,...,n

Kq+Kuqu+F:0
(4.11)

Klg+ Kug® =0

After obtaining solutions ¢, ¢*, @ = 1,...,n, to Eqs (4.11), we calculate the
macro-displacements U and correctors Q® using Eqs (4.7), (4.8), respectively.

Let us observe that for homogeneous bodies A,(z) = 0 and hence K, = 0.
Since K, represents the invertible linear transformation then Eqs (4.11) yield
¢® = 0. Thus from Eq (4.8) it follows that also Q* = 0. Hence the correctors
Q¢ in Eq (3.1) describe the effect of micro-lheterogeneity of a composite on its
behaviour.

Examples of applications of Eqs (4.11) will be presented in the subsequent

paper.
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O obliczaniu makro-niejednorodnych kompozytéw

Streszczenie

W pracy zaproponowano uproszczony model obliczeniowy dla statyki makro-
niejednorodnych liniowo-sprezystych kompozytow. Wykorzystano podejscie przed-
stawione w pracy Konieczny i inni (1994). Zagadnienie doprowadzono do ukladu
algebraicznych réwnan liniowych.
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