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The equations of motion for a bent beam of compact cross-section. are
presented in this work. They are derived by using of the general me-
thod, applicable to one-dimensional models of continuum. The warping
constraint of cross-sections, caused by shearing, has been taken into acco-
unt. An additional parameter characterizing the form of a cross-section
warping function is introduced. Two dimensionless shearing coefficients
appear 1n the given equations. One of them characterizes the constrained
shearing, and the other one the free shearing. [t has been shown that
these coefficients do not depend upon the form of the warping function.
In a particular case, if the constraint cross-sectional warping does not
appear, then the equation of motion and the constitutive relations are
the same as in Timoshenko’s theory.

A series of important examples 1llustrating the bending theory of beamns
is presented in the paper. The form of the warping function and the
warping constraint of an arbitrary, compact cross-section has been taken
into account in these examples. In a particular case, an equation defining
the parameter magnitudes of the thickness shear mode, for a simply
supported beam of an arbitrary cross-section, is given.

A critical analysis the works of Bickford (1982), Ewing (1990), Leung
(1990) and Levinson (1981) has been made.
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1. Introduction

In the assessment of dynamic behaviour of many structural elements, they
are substituted by mathematical, one-dimensional models of a continuous me-
dium. The classical theory of these models is based upon the hypotheses, cru-
cial aspects of which are the internal kinematic or kinetic constraints superim-
posed onto the motion and the state of stress of the material body. Depending
on the assumed hypotheses, one obtains different models and equations descri-
bing the motion of the body. Some of them lead to equations which are not
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useful when describing the wave phenomena; the others, hovever, allow {or the
description of these phenomena. The Euler-Bernoulli equations when applied
to beam theory. represent an example of the first of the above mentioned equ-
ations, whilst the Timoshenko equations are an example of the second type.
The Euler-Bernoulli model of the beam does not include the effects caused by
the cross-sections rotation and the effects due to the shear stresses. Rayle-
igh (1945) introduced a correction, considering the rotary inertia of the beamn
cross-sections. whilst Timoshenko (1921) made some corrections accounting
for the influence of the shearing forces ou the bending of the beam.

Many investigators have dealt with problems connected with the model
proposed by Timoshenko. The wave character of the motion equations were
investigated by Flugge (194), Kruszewski (1949), Prescott (1942). the natural
vibration of the beam by Anderson (1953), Boley and Chao (1955), Huang
(1961), Hurty and Rubinstein (1964), Kruszewski (1949), Wang (1970), and
the forced vibration by Hermann (1955). Volterra and Zachmanoglou (1957).
A series of works Barr (1959), Cowper (1966), Hutchinson (1981), Hutchin-
son and Zillmer (1986), Mindlin and Deresiewicz (1954), Spence and Seldin
(1970). Stephen (1978), (1980). Stephen and Levinson (1979), is devoted to
determination of the shear coefficients of different cross-sections of the beam,
appearing in the Timoshenko equations. Barr (1959), admitting the distortion
of cross-sections of the beam, caused by the influence of shear. introduced the
"distortion cocfficient”. being an equivalent to the coefficient of shear which
appears in the Timoshenko equations. There are many other works dealing
with an improvement of the beaimn model. Using the three-dimensional line-
arized theory of elasticity, as a starting point new formulations have been
obtained by Aalami and Atzori (1974), Cowper (1966), Gross (1969), Janecki
(1977), Levinson (1981). Krishna Murty (1970), Renton (1991), Stephen and
Levinson (1979). Volterra and Zachmanoglou (1957). In his pioneering work
Cowper (1966) derived equations of the beam vibration. Assuming that the
cross-sectional warping is the same as in the cantilever bean under a sin-
gle transverse load at the tip. or a uniformly loaded beam, Cowper defined
the relationships between the bending moment and the mean rotation of the
cross-section, as well as the relationship between the shearing force and the
mean angle of shear. Moreover, he established the formula determining the
coefficient of shear that appears in the equations of the Timoshenko’s the-
ory. Aalami and Atzori {1974) expressed the opinion, without any supporting
arguments, that the frequencies of the Timoshenko beam bending vibration
cannot be determined accurately enough with only one coefficient correcting
the nonuniform distribution of stresses in the cross-section of the beam. In-
tuitively, they derived two correcting coefficients in the physical relationships
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for the sectional internal forces, one of them [or the shear force and the se-
cond one for the bending moment. The values of these coefficients for different
shapes of cross-sections were determined, on the basis of the ad hoc assumed
additional hypotheses which are not included in the presented theory. In a
similar way, Stephen and Levinson (1979), proceeding analogicaly to Clowper
(1966), introduced two coefficients into the equation of the beam. One of
them is connected with Lhe longitudinal warping of beam cross-sections and
appears in the constitutive relationship for the transverse force and the angle
of shear. The second one depends upon the distribution of normal stresses in
the beam cross-section and is found in the relationship between the bending
moment and the curvature of the beam axis. The values of the derived coefti-
cients result directly from the theory; it is then internally coherent. Levinson
(1981) intuitively assumed the kinematic hypothesis determining the warping
of cross-sections. Subsequently, he derived the equation of motion with two
independent variables for a beam of narrow, rectangular cross-section.

These equations are of a Timoshenko-type with the coefficient of shear
equal to 5/6. A certain inconsistency appears in that theory, and the po-
int of it is that the coefficient used in the physical relationship between the
transverse force and the mean angle of shear. amounts to 2/3. The diffi-
culty mentioned above does not appear in Janecki (1977). Janecki (1977).
Volterra and Zachmanoglou (1957) considered the theory of the rectangular
cross-section beam, comprising the complex warping of cross-sections during
the bending and shearing of the beam. The equations derived there allow for
the possibility of obtaining an arbitrary, finite number of branches of the na-
tural vibration frequency. Huang (1961) introduced an additional coefficient
that determined the shape of the cross-sectional warping and proved that the
frequencies of natural vibration, of the two-point simply supported beam did
not depend upon the value of this additional coefficient. The above mentioned
derivations are qualitatively conformable to the conclusions resulting from the
Pochhamer-Chree theory (cf Abramson et al., 1958). In the papers discus-
sed above (except for Janecki, 1977) some cross-sectional internal forces are
intuitively introduced based upon experience resulting from the theories of
Euler-Bernoulli and Timoshenko. The bending moment is introduced as the
resultant first moment of the normal stresses, appearing in the longitudinal
fibres of the beam and the trasverse shearing force as the resultant of the tan-
gential stresses appearing in the beam cross-section. It is assumed implicitly
that the beam cross-sections warp freely while bending and shearing. Such
a situation, however, seems untrue, particularly for short beams of variable
cross-sections. Therefore, it is necessary to take into consideration and inve-
stigation, the effect of constrained warping of cross-sections in the theory of
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bent and sheared beams. A similar situation occurs when the beam is twisted.
In the Saint-Venant theory (cf Love. 1944) the cross-sections warp freely, while
in Vlasov’s theory {cf Vlassov. 1964) of thin-walled bars, the constrained war-
ping of cross-sections is taken into account. In the latter case, some additional
internal self-balanced forces appear in the form of a bimoment. It should be
expected then that in the case of the constrained warping of cross-sections,
occuring in bending and shearing, there should also appear the internal self-
balanced forces. In order to derive some additional forces, a rational method
must be worked out for defining the resultant cross-sectional internal forces.
The method will be independent of the assumed hypotheses.

Such a general method for one-dimensional models has been described by
Janecki (1981). The need for such a general method is mentioned by Bick-
ford (1982), taking advantage of the assumptions of Levinson (1981}, derived
in by variational method, the motion equations of the bent beam. To ar-
rive at an agreement of the equations obtained by means of variations, with
those obtained from equilibrium conditions, Bickford derived. in an artificial
way, the bending moment of a higher order. Applying this additional force,
he unexpectedly obtained unusual results (c¢f Levinson, 1985), in particular,
for the lower branch of the relationship between the phase velocity and the
wavelength. That result was due to an inconsistent procedure which will be
explained.

2. The beam model

The beam, subjected to loadings. can simultaneously be bent, twisted and
stretched. These deformations are responsible for the distributions of normal
and tangential stresses that appear in the cross-sections of the beam. These
distributions in turn, influence the magnitude of the displacements and the
modes and frequencies of vibration. Taking these physical facts into account
in mathematical models, depends to a great extent on the a’priori assumed
hypotheses concerning the motion and stresses.

In order to investigate the influence of the warping function shape, as well
as the effect of the constrained shearing on the transverse vibration, our atten-
tion will be concentrated on beams of bisymmetrical, uniform cross-sections.
Then, there is no link between bending, torsion and stretching. For this reason,
the equation of bending is decoupled as well.

Let us consider the bending of the beam in the plane (0z,z3), Fig.1. Then
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we have displacements
0 .
up = 0 Uy = Ugy U3z = W12 + Y12 (2.1)

where u is the displacement of the material points lying on the beam axis,
wi is the angle of bending. <; is yhe shear angle, and x, is the function of
the beam cross-section warping caused by shearing. We suppose that y; is
the bending function, and is the solution of the equation

GA

L.‘]ll

Axg = 2k3 z3 (21.22) € A (2.2)

with the boundary condition

Ne GA _ GA T / o .
o <—U/»2E‘—]“~11-1'2>771 + <1 - VIWJ?.E']“ T)'l'z (21,29) € 0A

where v, G, F, are the material constants, A and Jy; are the area and
the second moment of inertia, respectively, of the beam cross-section, n; and
ny are the components of the unit vector normal to the boundary @A of the
area A, and 4k is the number, which will be defined later. Taking x, as a
solution to the boundary problem of the elastostatics, we will restrict ourselves
to long waves. Ewing (1990) accepted some similar assumptions concerning
the warping of cross-sections in shearing.
The kinematic model, given above can be presented in the matrix form

v = Ug (2.4)
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where
¢ = [u3, w1, 7] (2.5)

is the vector of generalised displacements and

0 0 0
U=1|1 0 0 (2.6)
0 2

is the matrix defining the beam model.

The internal forces appear in the beam as a result of its deformation. In
one-dimensional models the kinetic hipothesis is also adopted assuming that
the state of tension in the beam cross-section is defined only by components
T13. Ta3, T3z Of the stress tensor. On the assumption of homogeneity, isotropy
and elasticity of the beam material in our case we have the constitutive equ-
ations

Ta3 = 26'50.3 Ta3 = E€33 (CY = 1,2) (27)

where ¢,3 and ¢33 are the components of deformation tensor.

As soon as the models have precisely been stated it is possible to start
definig the internal forces and loads, and to derive appropriate equations of
the beamn motion.

3. Equations of motion and internal forces

Equations of motion and definitions of internal forces and loads are esta-
blished with the use of general equations and relationships for slender bodies
described by one-dimensional models of a continuous body (cf Janecki, 1977,
1981). The equations of motion are of the form

oH .
—— Q" +h=0 (3.1)
dx

The vectors of internal forces, on the asumption of small deformations (the

deformation gradient F = 1) look like

H - /.(Teg)U dA Q = /(R;)(TVU) dA {3.2)
4 A

The vector of the body loads caused by the motion

h = fg/UTu dA (3.3)
A
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where T - stress tensor, e3 — unit vector tangential to the beam axis and o
— specific density of the beam material, tv - operalor of the matrix trace.

For the kinematic model (2.4) described by Eqs (2.5) and (2.6) on the basis
of (3.1). we obtain the scalar equations of the beam equilibrium

OL+¢=0 M] -Qx+m; =0 A =G5 +hy =0 (3.4)

The internal forces appearing in the above equations, according to the
definition (3.2) are

Q2 = / T3 dA My = /IL‘-ZT33 dA
A A
(3.5)
Hy = /X2T33 dA = /(,)XZT;@ dA
. , 0z,

where @, - transverse shear force, M; - bending moment, #, - slearing
moment and G7% - shearing force, which appear when the constrained warping
of a bent beam is taken into account. The internal force 7% in the case of
prismatic beam. can be written in the form

G5 =0, — Gy (3.6)
where
Gy = [ (625~ 2X2V 1 dA 3.7
xy = <2ﬁ*E)T3/3f (3.7)
A

is the transverse shearing force caused by constrained warping of the beam

cross-sections.
The body loads, according to Eq (3.3) are

g2 = —Q/ﬁz dA m) = —¢ / .7;-2113 dA

A A (3.8)
hy = —g/ \aiis dA

A

The derived equations of motion cover also constrained warping of the
beam cross-sections, appearing both in twisting and bending. H; = h; =0
when the constrained warping of the beamn cross-sections in bending is neglec-
ted. Then G% = 0 from Eq (3.4) for the shearing moment, whereas from Eq
(3.6) it follows that G5 = Q.
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When the components of the displacement vector (2.1) are determined, it
is also possible to define the components of the strain tensor

— Ea\/zm Can = w1 + ey
13 = 3 0z, 11 33 142 T T1X2
(3.9)
_ Loy Ly 0Oy
f23= 3 (u3) + (w1 + /1)} - 5(1— x)

In Timoshenko’s beam theory the geometric relation /" = (u) + wy + 41 =
0 is taken for granted. On the above assumption the relation for eg3 is
considerablv simplified. In general case of constrained bending one can assume
that (u§). w; and 77 are independent functions.

Now we introduce the noudimensional variables

T CE Uy :
== = = 3.1
£ 7 T 7 —t u= (3.10)
and the dimensionless parameters
A i Jos..
A= 1 £ = 222 p= 222 (3.11)
I i "
where [ is the length of the beam and. ('y = \/E/p. and
Ji = /Zf dA Ji, = /l'z\z dA o = / \é dA
i 4 A A
(3.12)
1 ()\2 L L [rrdx2\? 0\2 2 .
K2 = — / 1 - —=1]dA4 A‘Z'Z = :4/ [(ET) + (,I. + 01‘2) ] dA
A ;

are the geometrical characteristics of the beam cross-section.
Then relationships for the internal forces (3.5) can be rewritten in the form

Q2 = GA{ [@ + (w + 7)] — HQQ’)‘}

0¢
FJi; 0 . EJ; 0
Mr:L“%w+m) Hy = ;35 wHey) (3.13)

= GA{( m)[‘)

RACRRIRN RN
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and the body loads (3.8) in the form

C% 9% C2 0%
g2 = A my = —oJu 75 75w+ 1Y)
] or? L? o7 (3.14)
C% 0%
hi = —oJ1i =7 12 37 2/( nw + &)

In order to interpret Eqs (3.13) and (3.14) for the moments. the following
averaged quantities will be introduced

1 1
¢ = — [ wouszdA LD:—/,-A, dA 3.15
7 Lottty A i X2 U3 (3.15)

Making use of (2.1) we have
S =w+7ny ¥ =nw+ey (3.16)

The first quantity is identical to the mean angle of rotation derived by
Cowper (1966). In Timoshenko’s theory, the warping constraint of the beam
cross-sections 1s neglected, then H; = 0, hy = 0 and it is assumed that the
geometric relation I' = ' 4+ w 4+ v = 0 between the slope of the defiection
line and the angles of bending and shearing is fulfilled. Moreover, from the
condition G% = 0 it follows that, additionaly, there has to be kap = ra9.

Making use of Egs (3.4). (3.13) and (3.14). it 1s possible to derive the
equation describing the dimensionless, transverse displacement of the vibrating
beam

E P, E 9 ,0%u
olog - Gamm Mo +
(3.17)
0? E §? 0%u
_ 22 P A2 =
[052 - s Out NG| =0
where
9? 9?
Coge or?
The introduced dimensionless parameters
2 . 2
~_ E£—7 1 (1= ko2 — 1) :
E= Dot 318
kgg — K’%‘Z K /32-2 - I'ig.z ( )

characterize the constrained and free shearing, respectively. The first part Eq
(3.17) describes the influence of the constrained warping of cross-sections, and

9 — Mechanika Teorctyczna
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the second is the Timoshenko equation with the coefficient of shear equal to
k. It should be noted that the equation of the beam bending vibration, taking
into account the constraint of the distortions of cross-sections, is a differential
equation of the sixth order instead of the fourth, as it occurred in the case
of the Timoshenko equation. Here the situation is analoqous to the case of
torsion. The beam torsional vibration with free warping of cross-sections. is
described by a differential equation of the second order, while the vibration
with constrained warping is described by an equation of the fourth order (cf
Vlassov, 1964).

Using Eqs (3.4), (3.13) and (3.14) it is possible to establish the following

relations for the moments of internal forces

ol 2 a2 2,
92, a2 52,
H; = EZII{UK_(;—;?L + E%%> —I—z?g (% + :\%DD*’UJ>} +
S k2 : 92, 07
el g (G o))
We have also
or % Er/l 11— RTINS o
o€ 1-222—77(,[(_‘ mu >0 2 +‘DD “] (3.20)
where
. 07 E 9°
“ae G

If we apply n =0, =0 and ky; = Ky, the obtained relation for M; is
the same as the relation resulting from Timoshenko’s theory of a beam with
the shear coefficient equal to x*.

4. Warping function and shear parameters

Coefficients & and & and parameters kso and kg9 can be calculated
by first solving the boundary value problem (2.2) and (2.3) for the warping
function of y\ for an arbitrary, compact cross-section of the heam. Function
y depends upon the number £, which has yet to be defined, appearing in the
boundary condition {2.3). It can be determined from an additional condition
to be discussed later.
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For the sake of determining the warping function of a beam with a narrow.

rectangular cross section and height A, we have the equation

d*x 3 hk

de2 214 v

£ £e(-1,1)
with the boundary condition

d>x 1 3 vk
— = —h —_ = = 1
aez 2 <1 41—}—1/> f=+

where £ = 2z5/h. Then

h 1
= — k24 (2 -3k)+ =(4 - 3k
\ 4(1+V)[£+( )+2( i€
and
o 5 =
"6 T
]+5(1+:—:I/> 3/62 )
n=1l-——a7—k €= o 7
5(1+v) 175(1 + v)?
2
. 3
I€22:1+%V/€ . :1+b(1+3u> »
14+ v 2 5(1+ v)?
1.0
g
5/6
2/3N\ 1 32
k=1/2N\
05— || -W
h =1
| L. 1 | | | L1 |
05 0 05 7,

Fig. 2. Warping [unction x(k), Janecki (1977)

(4.1)

(4.2)

(4.4)
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It should be noticed that % and & do not depend upon the so far undeter-
mined parameter & and the Possion ratio v. On the other hand, the shape of
the cross-section warping function depends upon £ and v. This function for
v = 0 and various k£ (cf Janecki, 1977) is shown in Fig.2. The image of the
presented warpings approximately agrees with those for a bar of circular cross-
section, obtained on the basis of the Pochhammer-Chree theory, with various
ratios of the cross-sectional radius to the length of the wave (cf Abramson et
al., 1958). From a comparison of the warping functions, given in Fig.2 and
in Abramson et al. (1958), it can be concluded that the number &k = 2/3
used by Timoshenko, is limiting value separating the warpings corresponding
to long waves from the warpings relating to relatively short waves.

For v =0 and k = 2/3 we obtain \ = hé3/6, nyy = 2/3. kyy = 8/15.
n=1/5. A warping function of this forin was assumed by Levinson (1981) on
the siinultaneous assumption that constraint of this warping does not appear.
For the sake of performing this it is necessary, however, that the conditions
I'=v +w+v=0and rqy = kyy be fulfilled. From the last equality, for the
narrow rectangular cross-section, it follows that £ = 5/6. This means that
the condition of free warping in cross-sections under shearing is not satisfied
in the theory of Levinson. It should also be noticed that, for &k = 5/6, we
have kKyy = kop = 5/6 and 7 = 0. Then, the angle @ of the mean rotation of
the cross-section equals the angle of bending w.

Conditions 7 = 0 and kg3 = ks can be applied to determination the
undefined parameter & characterizing the shape of the warping function .
For v # 0 from the condition 7 =0 we have

5(1+ 1)

14+5(1+30) e

(4.5)k = ke =

Such a shear coefficient value was given by Olson (1958) and Donnell (1976).
Whereas, from the equality w33 = ky; we have

5(1 + V)(l + %1/)

k=ko= (4.6)

145(1+2)

For the function

e
L 6(1 + %I/)

tangential to the axis of co-ordinates at the origin of the coordinate svstem,

(4.7)
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we obtain the Timoshenko shear coefficient
201+ v)

h =kt = ————— (4.8)

14+2(1+ )

In the case of a beam with a circular cross-section
X = (ko 4 (2 — 3k) 4+ 2(1 — k)v]osin ¥ (1.9)

2004+ v)

in the polar coordinates (7.7), where o = r/a and a is the radius of the
circle. Then,

.6 -1
"7 T2
o l+6(L4v) k? 2
" 6(1+ 1) SR (4.10)
1+6(14+v)% ,
<00 = k kog = —r——k
2 2T 61+
From the condition 7 = 0 we have
14+ 6(1
e = L0 FY) (4.11)

“ T It6(l+v)

This is the coefficient of shear given by Cowper (1966). Instead, from the

equality kog = Ky9 it follows

o 6(1+ v)?
L4 6(L+v)?

Kaneko (1975) reviewd various theoretical shear coeflicients and compared

them with the experimental results. He recognized that the best coefficients
in Timoshenko’s theory, are

o 5(14v) - 6(1 + v)?

C145(14v) 14 6(1 4+ )2 - 202
with respect to a beam of a narrow rectangular and circular cross-section.
respectively. The above expression was formulated by Spenser and Seldin
(1942) by comparing the experimental data with the calculation results using
the Timoshenko’s theory. Stephen (1980), (1981) obtained identical equa-
tions comparing results of phase velocities of Timoshenko’s and Pochhammer-
Chree theories. Identical expressions by a theoretical approach were obtained
by Stephen and Levinson (1979}, also. It should be pointed out that Eqgs
(4.13) were determined without giving consideration to the constrained cross-

0 (4.12)

and (4.13)

sectional warping.
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5. Examples

With the aid of some specified shear characteristics a number of important
elementary examples will be solved describing the effect of the constrained
warping of the cross-sections.

5.1. The bending of a cantilever beam under a concetrated shear force

Firstly we shall present the solutions for beams with free cross-section
warping. This means that we shall consider the classic model of Timoshenko.
For this purpose we reject the equation for the shear moment in the set of
equations (3.4) and assume the relation ' 4+ w + v = 0. Then, for the
boundary conditions: %(1)=w(1l) =0 and Q(0) = (o, M(0) = My, we have

1 E QolL?

_QOL2 1 )
)\Z(K,QQG EJ

6L J

(2 -36+2)+ (E-1) (5.1)

ur = s
where Qg is the transverse shear force applied to the free end of the beam, L
is the length of the beam. For v = 0 we have k33 = kg2. The indetermined
value of & may be determined either from the equality kpy = K9, or by
making some other assumptions.

For example, in case of narrow, rectangular cross section for k& = 5/6 and
kB =2/3,1/5(1+ v)(QoL*/EJ)h/L)? and 1/4(1 4 v)(QoL?/EJ)(h/L)? the
displacement of a free end of the beam caused by shear, respectively. The latter
result coincides with the data obtained by Levinson (1981), which corresponds
to the solution relating to the linear theory of elasticity, on the assumption
that there is a two-dimensional state of stress.

Now we shall take the constrained warping of cross-sections into account.
For this purpose we shall make use of the equlibrium equations (3.4) and the
constitutive relations. For the boundary conditions (cf Bickford, 1982)

u(l) = w'(1)=w(l) =0 Q(0) = o M(0)=H(0)=0 (52)
we have, in the general case.

nK

W=t nA )sinh B-sinh 311 E QolL?

6=+ (1~ Beoshf AN EG EJ

1—,‘{22‘ J.—-figg

where w7r is the solution (5.1) resulting from Timoshenko’s theory with the
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coefficients of shear xg; = Kk and g% = GA?/EZ. We also obtain

du K — Koa — Nk Koy 1—-% cosh 3€71 Qg

r= = 1 37
a£+w+7 1 — Koy — 1 +1—/i-22( 1_f;22—7]) cOShﬁ]EGA
(5.4)

The influence of the warping constraint of the cross-sections on the magni-
tudes given above, depends upon the coefficients & and & which characterize
the beam cross-sections, its slenderness ratio A, and the number £ which
describes the warping function x (Ifig.2). For the boundary conditions (cf
Ewing, 1990)

u(l) = w(l)=~(1)=0 Q(0) = o M(0)=H(0)=0
(5.5)
there is, in general case

1 — Ksinh 3 — sinh 3£ Qg

w=urt R Scosh g GA (5.6)
and L b A1 O
o pool] — | — _
i a2 Koa( ' 7) b Ry Kap — ncosh 5 Qo (5.7)
kay — K3 koy — k3, coshB1GA

We shall now search the departure from the geometric relation I' = v’ +
w+v = 0. For a beam with a narrow rectangular cross-section, according to
Eqs (5.2) and (5.5), we have

1 cosh 3¢ Qo and - coshﬂ{&

F= 1k cosh 3 GA coshfg GA

(5.8)

Hence, it is evident that in the case of slender beams (for large () I is nearly
equal to zero, except in the closest vicinity of the beam fixing (£ = 1). Similar
results are obtained for beams for other conditions of fixing their ends, and
under different loads.

5.2. Waves In an elastic beam of circular cross-section

The right criterion for correctness of any approximate beam theory lies in
comparison of the computation results with those obtained from exact theory.
For this purpose we shall investigate the dispersion of the waves propagating in
an elastic beam of infinite length and of circular cross-section. The obtained
results will be compared with those resulting from the Pochhammer-Chree
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theory. For this reason we shall look for the solution of Eq (3.17) for transverse
displacement in the form of

u=Uexp [127”(1: — ct)] (5.9)

where ¢ is the phase velocity, and A is the wavelength. Then the equation of
dispersion may be written in the form

;;;74— (1+%+02)72+1J =0
(5.10)
where v = c¢/cg. o = 1/[r(a/A)], ¢}, = E/pand & =6/7,7 = 1/12 while «
is the radius of the circular cross-section. The last part of the Eq (5.10) in the
square bracket is the equation of dispersion according to Timoshenko’s theory
(cf Abramson, 1957). The first part of this equation, on the contrary. decides
upon the influence of the constraint of the cross-section warping caused by
the shear, and determines an additional third branch of the wave dispersion
curves. It is easy to be convinced about this, if k¥ = 1 is assumed. Then the
additional dispersion branch is approximately defined by the formula

55(72—1)%74— (1+g+02)72+1] ~o?|

~Ji+ Go?
G E?

(5.11)

The relationship between + and A for the free and constrained warping of
the beam circular cross-sections is shown in Table 1.

Table 1. Comparison of the phase velocity v = ¢/cg for various a/Afor a
circular cross-section of a beam with free and constrained warping (v = 0.25)

Free wa‘rping——‘ Constrained warping ‘
Bl 2 N 72 73

0 0 o) 0 o0 00

0.1 | 0.26882 | 2.1780 | 0.26889 | 2.1680 | 7.6589
0.2 | 0.40959 | 1.4295 | 0.41042 | 1.4243 | 3.9320
0.3 | 0.47802 | 1.2248 | 0.48061 | 1.2214 | 2.7310
0.4 | 0.51446 | 1.1381 | 0.51959 | 1.1357 | 2.1575
0.5 | 0.53563 | 1.0931 | 0.54377 | 1.0913 | 1.8316
0.6 | 0.54883 | 1.0668 | 0.56014 | 1.0654 | 1.6268
0.7 1 0.55752 | 1.0502 | 0.57200 | 1.0491 | 1.4892
0.8 | 0.56351 | 1.0390 | 0.58101 | 1.0381 | 1.3922
0.9 | 0.56780 | 1.0312 | 0.58810 | 1.0305 | 1.3213
1.0 | 0.57096 | 1.0254 | 0.59382 | 1.0249 | 1.2678

a/A
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The constraint of the cross-section warping causes an insignificant increase
in the phase velocity value ¢, in the first branch -+, and a decrease in the
second -y which is qualitatively consistent with the results of the Abramson
(1957).

5.3. The free vibration of a simply supported beam

The analysis of this problem will enable us to investigate the influence of
the cross-section warping constraint upon the frequencies of higher modes of
free vibration. We look after the solution of Fq (3.17), satisfying boundary

conditions
w = U sin o € cos pr a, =7mn  (n=12..) (5.12)

Then the equation of vibration is of the form

B S T F . E ‘
55(-"62 - B2 [-C;-IA - ﬁﬁ(l tat ﬂ721>$2 + /32] +
(5.13)
E . E .
_ 4 4 g2 2) .2 41 —
whereby the following notation is introduced: 2 = p/pg, pp = a?2/A,
B, = Ma, and pg is the circular nondimmensional {requency of vibration

acording to the Euler-Bernoulli model of the beam, A is the slenderness ratio
of the beam. The second square bracket in Eq (5.13), when compared to zero,
is the Timoshenko equation. The results of calculation of the frequency ratios
.I(Ta) and z(; (o =1,2;i=1,2,3) according to Timoshenko and the model
of constrained warping of a beam with a circular cross-section, are shown in
Table 2. A comparison of the results received by the use of Timoshenko’s
model and those obtained using the constrained warping model, explains that
the constraint causes an increase in the frequency of the first branch and a
frequency decrease of the second branch. The differences between them are
greater, the smaller the beam slenderness ratio is and the higher the mode of
vibration.
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Table 2. Comparison of = = p/pg for various A with a simply supported
circular cross-sectional beam with {ree and constrained warping (v = 0.25)

Mode | Nondim. Slenderness ratio A

n f1equency 8 12 16 20
& 0.8009 | 0.8919 | 0.9335 | 0.9556
:L(T) 4.7513 | 9.5799 | 16.2664 | 24.8307

1 2 (V) 0.8011 | 0.8919 | 0.9335 | 0.9556
2(2) 47200 | 9.5321 | 16.1819 | 24.6996
2(3) 15.4772 | 34.5444 | 61.2372 | 95.5566

2D 0.5723 | 0.7139 | 0.8009 | 0.8556

e 1.6584 | 2.9916 | 4.7413 | 6.6145

2 2 0.5745 | 0.7149 | 0.8011 | 0.8559
2(2) 1.5256 | 2.9793 | 4.7199 | 6.8997
S 4.0323 | 8.8027 | 15.4772 | 24.0579

Making use of the results of calculating 2(®)(n,)), (a = 1,2) obtained
for the beam model with constrained warping, we can determine the shear
coefficients f;,(ﬁ)), (a = 1,2) which should appear in the classic equation of
Timoshenko. Then

1 G/E ) ($(o'))2
B L= 14
Ry (anzleal /A2 [ (a,,lg;(a)/x)-z} (5.14)

Table 3. Shear coefficient f{g?)(n,/\) for a simply supported circular
cross-section beam

! Mode | Frequency branch Mode | Frequency branch
A n a=1 o =2 A n a=1 a =2

0.86045 | 0.84676 0.85794 | 0.84749
0.86849 | 0.84537 0.86045 | 0.84676
0.87904 | 0.84447 | 16 0.86406 | 0.84601
0.89076 | 0.84392 0.86849 | 0.84537

0]
N A

Hence, it is evident that the coeflicients of shear, defined in this way,
depend upon the number of the frequency branch (« = 1,2), the mode of
beam vibration (7n), as well as, upon the beam slenderness ratio. The results
of these calculations are given in Table 3. From Table 3, it is clear that the

coefficients of shear of the first branch & < H(TI) < 1, the coefficients of the

second branch n(Ta) <K=6/7for n=1,2,3,4.



I'HE EFFECTS OF CONSTRAINED CROSS-SECTIONAL WARPING ... 139

We now introduce the new denotation s, = [Ep/(GA)J*. Then, for the
thickness shear mode (n = 0) for a simply supported beam. Eq (5.13) may
be presented in the form

on
—
(W2}
~

~ ~ Ly B
530-<€+E)50+1—0 (5.1
Hence, for the narrow rectangular cross-section (K = 5/6, & = 3/35) the
smaller root amounts to (sg); = 0.822925. A value like this was obtained by
Leung (1990). For a beam with a circular cross-section (k = 6/7,& = 1/12)
is (soh = 0.847933 and (sg) = 14.152067. We see that (sp); < K and
(80)2 > ]/é‘\

It is also worth noticing that (sg); = 1 and (sg); = 1/ if it is assumed
that ¥ = 1. For Timoshenko’s beam model (£ = 0) we have sy = K.

5.4. The natural vibration of a cantilever beam

In the above considered problem of a simply supported beam, the frequ-
encies of natural vibration do not depend npon the parameter k, determining
the form of the warping function y. For the example of the cantilever beam
vibration, we shall investigate the influence of that parameter upon the fre-
quencies. We shall first do it in the case of beam in which the warping of
the cross-section is free (Timoshenko’s model). For this, in Eqs (3.4), we
neglect the equation of the shearing moment, and assume a’priori the rela-
tion v +w + 7y = 0. Then, on the basis of the remaining equations and the
constitutive relations (see Eqs (3.13) and (3.14)), we obtain

ou — Ow E 0%

9 = T .a¢ ge - M e -
(5.16)

0Q 0% oM 9w .~  E 9%Q

9~ or? e = o PN a o

where the dimensionless magnitudes: % = u/L, Q = Q/EA, M = ML/EJ
have been introduced. The boundary conditions for a cantilever beam are:
%(0) = w(0) = 0 and Q(1) = M(1) = 0. The set of equations and condi-
tions allows us to calculate the nondimensional frequencies of natural vibra-
tion p = pL/cp with the use of the Runge-Kutta method of numerical
integration of ordinary differential equations. Table 4 presents the calculation
result of the magnitudes 7 = pA = wlL?\/pA/E.J for circular cross-sections of
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a beam and for coefficients of shear kg — Timoshenko’s, kc — Cowper’s and
k1 determined from condition x{1) = 0. A comparison of the results of the
above mentioned calculations indicates that:

— considering Possion’s coefficient v in the formulae for the coefficient of shear
Ka2, causes a decrease of the r = pA value;

— an increase of the coefficient k results in an increase of the r = pA value.

Table 4. Comparison of r = pA for various k& and v for a circular
cross-sectional cantilever beam with free warping
[ Circle (v = 0) Circle (v = 0.3) )
A | Mode | kyr = 2/3 ke =6/7 k=1 kr =0.722 | ke = 0.886 ky =1
(n=2/9) (n=0) |(n=-1/6) (n=0185)| (n=0) |(n=-—0.128)
1 3.2250 | 3.2769 3.3036 3.1884 3.2388 3.2647 |
0] 2 14.879 | 15.335 15.586 14.276 14.661 14.872
3 33.129 | 33.913 34.391 31.431 32.025 32.381
1 34351 | 3.4503 34579 34237 34388 3.4464
20 | 2 19.328 | 19.575 19.702 18.979 19.212 19.332
3 47.862 | 48.621 49.386 46.386 47.059 47.416

The results of the 7 = pA calculations, for a narrow rectangular cross-
sections, and for different values of the parameter & and different values of
the slenderness ratio A, are shown in Table 5. As before, an increase of & and
A causes an increase of r. Similar calculations were made by Ewing (1990)
for A =13.856 and A = 34.641 in the case when k =5/6.

Now we shall investigate the influence of the constrained warping of the
cross-sections (the influence of &) and the influence of the {forn of the warping
[unction (the effect of k) on the frequencies of {ree vibration of a cantilever
beam, naking use of the variational method in calculations. By asing Hamil-
ton’s principle to determine the nondimensional frequency ol vibration p, we
obtain the equation

det |[K — p?M| =0 (5.17)

where

([0 0 0
K = / 0 Pl g |+
o Lo el ewlwy

(5.18)
v WL (1 - Ra2) by
+ X2 ¥, bo¥] (1~ ka2)potbs dg

(1= ro2)hs®y| (L — Koo )sthy (1 — 299 + koo )thsths
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L[ A2l 0 0
M:/ 0 Pyl bl | de (5.19)
0 0 sty <ty

In the matrices of stiffness and mass written above, ¥, = ()7, (1 = 1,2,3:
n=1,2,...) are subsequently the vectors of the basic functions of the displa-
cement expansion u, the angle of bending w and the angle of shearing ~.

Table 5. Comparison of » = pA for various £ of a narrow rectangular
cross-sectional cantilever beam with free warping

Mode Slenderness ratio A, (v = 0)
k n 10 13.856 20 34.641
1 3.1689 | 3.2207 | 3.4177 | 3.4822
kr =2/3 2 14.045 | 16.589 | 18.837 | 20.790
(n=0.2) 3 30.873 | 38.066 | 45.849 | 54.548
1 3.2271 | 3.3548 | 3.4353 | 3.4884
ke =5/6 2 14.469 | 16.971 | 19.104 | 20.907
(n=20) 3 31.503 | 38.856 | 46.604 | 54.989
1 3.2675 | 3.3780 | 3.4471 | 3.4925
ky =1 2 14.788 | 17.244 | 19.288 | 20.986
| (n=-0.2) 3 32.032 | 39.466 | 47.146 | 55.290

Table 6. Comparison of » = pA for various k of a narrow rectangular
cross-sectional cantilever beam with constrained warping

B Mode | Slenderness ratio A, (v = 0)
k n 10 13.856 20 34.641
kr =2/3 1 3.2298 | 3.3615 | 3.3446 | 3.4881
(n=0.2) 2 14.560 | 17.213 | 19.203 | 20.906
1 3.2358 | 3.3650 | 3.4354 | 3.4884
ke =5/6 2 14.746 | 16.980 | 19.110 | 20.910
(n=20) 3 32.446 | 38.882 | 46.633 | 55.006
kp =1 1 3.2298 | 3.3551 | 3.4354 | 3.4884
(n=-0.2) 2 14.560 | 17.196 | 19.093 | 20.912

In Table 6 the results are presented of the calculations of the » = pA
for the subsequent vibration modes, for narrow rectangular cross-sections of
a cantilever beam. The basic functions %, = (£*)7 are adopted as simple
polynomials satisfying the boundary conditions at the fixed end of the beam.

A comparison of the calculation results in the data shown in Tables 5 and

Tables 6, allows us to state that:
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— constrained warping of cross-sections results in an increase of the frequencies
of vibration when 7 > 0, (kK < 5/6) and a decrease when 71 < 0,
(k>5/6);

— for some sufficiently large values of the slenderness ratio A. the influence
of the form of the warping function (i.e. the influence of £) on the
{requencies is small.

In conclusion. we may state that the constrained warping, in the case of a
cantilever beam with narrow rectangular cross-sections, has little influence on
the vibration frequencies.
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Wplyw ksztaltu i skrepowania spaczania przekrojéw poprzecznych na
zgiecie belek

Streszczenie

W pracy przedstawiono réwnania ruchu belki zginanej o dowolnych jednospdj-
nych przekrojach poprzecznych. Uw7gl¢dmono skrepowanie deplanacji przekrojow
poprzecznych, spowodowanej nieréwnomiernymscinaniem. Wprowadzono dodatkowy
parametr charakteryzujacy ksztalt funkcji deplanacji przekrojéw poprzecznych helkl
A% podanych réwnaniach wystepuja dwa niezalezne, bezwymlalowc wspélczynniki Sci-
nania. Jeden z nich charakteryzuje scinanie skrepowane, a drugl scinanie swobodne.
Pokazano, ze wspdlezynniki te sa niezalezne od ksztaltu fun[\ql deplanacji. Rdwna-
nia ruchu i zwiazki konstytutywne w szczegdlnym przypadku deplanacji swobodnej
sprowadzaja sie do réwnar 1 zwiazkow wystepujacych w teorit Timoshenko.

W pracy puedstamono szereg waznych przykladow ilustrujacych teorie zgiecia
belek. Wzieto w nich pod uwage ksztalt funkcji deplanacji 1 skrepowanie deplana-

cji dowolnych jednospdjnych pI/e]\IOJow poprzecznych. W szczegolnym przypadku
)odano rownanie okreslajace wielkosé parametrdw postact drgan scianania poprzecz-
nego belki (thickness shear mode) swobodnie podpartej, posia.da.jq.cej dowolny prze-
krdj poprzeczny.

Przeprowadzono krytyczna analize wynikéw prac Levinsona (1981). Bickforda
(1982), BEwinga (1990}, Leunga (1990).
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