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In this paper a method of macro-modelling of nonperiodic multilayered
elastic plates is proposed. The approach 1s based on certain concepts
of the nonstandard analysis, given by Robinson (1966), combined with
some a priori postulated physical assumptions devised by Wozniak (1986,
1991) for periodic media. Using this method, the homogenized model
of nonperiodic plate will be derived and applied to the evaluation of
inhomogeneity effects on a critical force and a free vibration frequency
for a simply supported laminated plate.
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1. Introduction

The derivation of effective coefficients for multilayered elastic periodic me-
dia is a thoroughly studied problem. In this paper a method of macro-
modelling of multilayered but nonperiodic plates is proposed. The basis of
considerations is the microlocal homogenization given by Wozniak (1986) for
micro-periodic media. In this work the aforementioned approach will be mo-
dified and applied to the modelling of elastic multilayered nonperiodic plates.

The proposed method of macro-modelling is based on three heuristic hy-
pothesis and certain concepts of the nonstandard analysis. The nonstandard
notions are used only as a mathematical tool and they do not enter the resul-
ting relations. The equations of micromechanics, due to the discontinuous and
highly oscillating form of functions describing material properties of the com-
posite body, are a starting point of the considerations. Taking into account
the internal constraints [or unknown macro-displacements (Wozniak, 1986) as
well as for micro-displacements, determined in terms of certain extra unknows
called microlocal parameters or correctors (Matysiak and Nagérko, 1989), and
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using a method of the nonstandard analysis (Robinson, 1966) we arrive at
the homogenized models of nonperiodic multilayered plates. The fundamental
relations constitute a system of linear algebraic equations in microlocal para-
meters and a system of partial differential equations of the second order in
the macro-displacements. The obtained macro-models are plausible from the
engineering standpoint and may constitute the basis for numerical analysis. In
this paper, the derived effective model will be applied to determination of the
effect of the micro- heterogeneity on the stability and dynamic behaviour of
nonperiodic laminated Reissner-type plates. The problem will be studied wi-
thin the framework of nonlinear plate theory. The considerations are focused
on the multilayered plates made of three homogeneous linear-elastic anisotro-
pic materials, but the method can also be applied to the structures composed
of a large number of different materials.

2. Preliminaries

An underformed plate which occupies a region (2 in physical space (para-
metrized by the Cartesian orthogonal coordinates z1,z9,23) bounded by the
coordinate planes z3 = ht, 23 = hA~, where h* > 0, A~ < 0 and by the
cylindrical surface I' = 011 x (h™,h*), where I is a regular region on the
plane 0zjz;is considered. We define z = (27,29, 23) € 2, 24 = (21,29) € II,
23 € [h™,h*], T € [0, 7] stands for the time coordinate.

The plate is composed of N basic layers bounded by the coordinate planes
23 =h" + (i, K =0,1,2,..., N, with (5 =0, {(y = h, where h = ht — h~
denotes the thickness of the plate; (x_1 describes the distance of A'th basic
lamina from the boundry plane 23 = A~. The thickness ey = (x ~ (w1,
K =1,2,...N,((x > (x—1), of every basic layer is assumed to be sufficiently
small when compared to the thickness £ of the plate; i.e. we shall deal with
the nonperiodic plates composed of a large number of laminae. Moreover,
let every basic layer (({x-1,(x), K = 1,2,...,N, consist of three sublayers
(Ch—15Cr-1+ 0K ), (Cr-1+bsc,Ci—1 + 6K + 65 ), (Ch -1 + 0K + 0k, (i), made
of three different homogeneous anisotropic linear-elastic materials; by éx, éx
we denote the thicknesses of upper and middle sublayers, respectively of the
Kth basic unit. Perfect bonding between the layers is assumed. The scheme
of the plate and basic notions are shown in Fig.1.

Hereinafter the subscripts ¢, 5 run over 1,2,3 and are referred to the
Cartesian orthogonal coordinate system 0z;2,23; the subscripts «,3,7,0
run over 1,2 being related to the coordinate system 0z;2; on the plane
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Fig. 1. Scheme of the composite

z3 = 0. Non-tensorial indices a,d take values 1,2 and are related to the
postulated a priori micro-shape functions. The summation convetion holds
with respect to all aforementioned indices.

The composite is loaded on the boundary planes a3 = h*, 23 = h~ by me-
ans of the known normal surface tractions p3(24,7), P2 (24, 7), respectively,
and on the part I' of the boundary the displacements up(z,7),z € I, are
known. By e;;(z,7), ti;(2,7) we denote strains and stresses, respectively, as
the functions defined (almost everywhere) on 2. Let u,(z,7), b3(z, 7) be the
displacements and body forces, respectively. The properties of the plate under
consideration are determined by a mass density p(23) and the tensor of elastic
modulae c¢“*(z3). The fields p(x3), c’*(z3) are defined almost everywhere
on {2 and assumed to be piecewise constant; they are highly oscillating fields.

We shall define the subsets of [A™,A*] by means of

N T
- _ 0K - oK
L= h™ + Crk-1,h" + (k-1 + nrex K=— ;= —
KL:JI ( K —1 K—1 NMKEK ) NK K K K
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N
s= U (h- (K1 FReRy AT+ G+ (ke F 771{)51\-') (2.1)
K=1
N
U= U <h_ + -1+ (nx + R )R, R+ g‘;\f) K=1,2,..N
K=1

It is assumed that the composite is made of three homogeneous linear-
elastic anisotropic materials which in the undeformed state occupy the parts
I x L, II x8, I xU of the region (2. Hence the mass denisity p(z3)
and the tensor of elastic constants ¢ (z3) of the nonperiodic plate under
consideration will be given by

(Lp. Lewakty if 23€L
(P(%),cwk’(a:g)) =< (Sp, Sk if z3¢€8 (2.2)
(Upﬁb'czjkl) if xs € U
where Lp, Letikl Sy Sciikl Up Uciikl are material constants related to the parts

I x L, II x5, xU, respectively.
We introduce the discrete functions defined at the points

b+ & b=+ 2 =+ 3, bt}

-, Nh K
ﬁ(h- + IJT}?) =Tk K=12..N

These discrete functions describe the distribution of layers and sublayers
in the composite under consideration.

3. The primary problem — the equations of micromechanics

The governing equations of the plate under consideration will be represen-
ted by:

e Thestrain-displacement relations in which the non-linear terms involving
gradients of wu,(z,7) are neglected

1
eap(T,7) = uga gz, 7) + 'z-us,a(x,T)U&,@(x»T) €a3(%,7) = o 3)(2, T)
(3.1)

e3(@, 7) = uz3(z, 7) ze 1€ ][rgT]
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e The stress-strain relations

Pz, 1) = 60'976(1'3)675(11,)(1‘,7”) 10'3(93,7) = 2(‘a335($3)€35($,TJ
(3.2)
where 3 525
By _ oS, y €T (es)c " 1)
¢ as) = ¢ (ws) JEEETP
e The virtual work principle
ht )
/ /[t“f*aew + 2ty + 13 03] dll dus =
- 02
3 3¢ .
/[méuBLFH +p_éu$L3:h_} A (3.3)
1)
ht ht )
//pb35U3 dll dxs — / /pﬂ,icﬁui dll dzs dIl = dzydz,
/7,_ .Q ]1— .Q

which holds for any admissible virtual displacement field éu;, such that
du;(z,7)=01for z €[

e The initial and boundary conditions

u(z, 7o) = up(x) u(z, 7o) = vol(T) z e 2 (34)

uw(z,7) = up(z.7) zec I T € {70, 7/] (3.5)

The equations of micromechanics (3.1)-(3.5) are the starting point of the
analysis.

Now we formulate the following:
Problem P: for known (2, p2,p3, b3, ug, vo, up and Lp, Letikl Sp Sciakt Uy,
Uciikl a5 well as for the known L,S,U, find the displacements u(z,7)
and stresses t(z,7), z € §2, 7 € [70,7y], such that Eqgs (3.1) = (3.5)
under conditions (2.2) hold.

The above primary problem does not constitute a mathematical approach
which can be successfully applied to numerical calculation of engineering pro-
blems. That is why we shall pass from the problem P to a certain effective
problem P and to the computational model of nonperiodic multilayered plates
which will be plausible for engineering applications.
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In order to formulate the problem P we shall first formulate a certain
auxiliary problem P() and then a sequence of problems P m=1,2,, ..,
leading to a nonstandard problem P{¥), where & is an infinitely large positive
integer (Robinson, 1966). The effective problem P will be obtained using a
certain special approximation of the problem P)

4. Passage to the nonstandard problem — modelling hypotheses

In order to formulate an auxiliary problem P{!) we shall approximate the
discrete functions ((x3), fj(x3), 7(x3) by certain continuous and differentiable
functions ((3), m(23), 172(x3), respectively, defined on the interval [A™,hT]

¢: [h7,hT] = [0,h] m o [h7 AT = (0,1) 2 [h7,hF] = (0,1)
(4.1)
The above continuous functions have to satisfy the following conditions

(i) ¢(z3) must be a strongly monotone function, such that ((z3 = A7) =0,
((zg=hT)=nh

(i1) m{23), m2(xa) cannot be highly oscillating functions and

Vaz € [h™, hT] miz3)+ mies) <1

For periodic structure these functions reduce to the constants.

In the problem P() the new thickness of A'th basic layer E(I\l).,
K = 1,2,...N, the new thlcknesses of upper and middle sublayers b(

55\1) and subsets LW, S0 711 are determined by the functions (4.1) in the
following form

1) C C(l 61( (1) (1) g}\__) (1\1),7( ) (4.2)

ul
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where
Kh Kh
¢ -QK( +/T> i) =m (/ +—N_>
(4.4)
i =m(h + %) K=12..,N

In the problem P, the tensor of elastic constants ¢?*(z3) and the mass
density p(z3) will be given by (4.5)

(L/) L. z;lcl) if 25 € L(I)
(plza)cMza)) = ¢ (S %M) i 2y € S (4.5)
(U/LU Lchl) if a3 € Q)

Now we formulate the following

Problem PW): for known (2, p?, p3, 6%, uo, vy, ur and Lp, Lkt Sp, ¢kt
Up, U, Z]“ , as in the problem P, and for known L), S U() find the
displacements u(z,7) and stresses t(z,7),z € {2, T € 1, 7], such that

Eqgs (3.1) + (3.5) under conditions (4.5) hold.

The method of macro-modelling of nonperiodic multilayered plates propo-
sed in the paper is based on three hypotheses. The first hypothesis is reffered
to as

The layer distribution hypothesis. If the discrete functions (2.3) + (2.5)
can be approximated by the continuous and differentiable functions (4.1)
satisfying the aforementioned conditions (i), (i), then the solution to the
boundary-initial value problem P can be approximated by the solution
to the problem P(1)

The above hypothesis cannot be accepted for the periodically-laminated
media.

Now we formulate a sequence of problems P(™) where m is an arbitrary
positive integer. The problem P(™) describes a certain composite which is
made of m/N number of thin basic layers.

In the problem P(™) the new thickness of Rth basic layer Efqm’),

R = 1,2,..,mN, and new thicknesses of upper and middle sublayers (5%”)
5 ) 1especL1vely are defined as {ollows
Egn) = an) _ Clgr_b)l (S»;%m) — ggl)ngn) 6( rn)ﬁ(m (46)
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where
(m) — — ﬂ (m) _ _ ﬂ
ro = CR(h + mN> R =Th (h + mN) -
(4.7)
Rh

ﬁl(tém) =N (]1_ + m)

In the problem P) | the subsets LM §(m)  [(m) and functions
ek (23), p(a3) are given by Eqs (4.3), (4.5), respectively, in which the su-
perscript (1) and the subscript A = 1,2,...,V must be replaced by (m) and
R=1,2,...,mN, respectively.

Then an arbitrary auxiliary problem P(™). m = 1,2, ..., will be stated as
follows

Problem P{™): for known £, p* p+,b ug, vo, up and Lp, Letakl Sy 05

Up, Ueiid a5 in the problem P, and for known L{m) §(m) pr{m) ﬁnd
the displacements u(x,7) and stresses t(z,7),2 € Q, T E [TO,Tf], such
that Eqs (3.1) + (3.5) hold.

1]1\1

Define (1) = maxs([\l-)., LN = 1,2,..., N, as the maximum thickness of a
layer in a plate described by the problem P{). The second hypothesis, given
by Wozniak (1986), will be referred to as

The homogenization hypothesis. If (1) = max 6([3-) € h, K =1,2,...,N,
then the problem P can be approximated by the problem P{™) for
every positive integer m.

The known transfer principle (Robinson, 1966) implies that the sequence
of problems P!™) is leading to a nonstandard problem P) where & is
an infinitely large positive integer. The problem P) describes a certain
composite which is made of an infinite number of infinitely thin layers.

The formulation of the problem P{) is similar to that of the problem
P™). We replace the entities 2, I, p*, p3, b, ug, vo, ur and Lp, Lei¥ 9p,
Setikl Up  Uciikl | ((a3), m(23), ma(z3) with the standard entities, which will
be denoted by *2, *IT, ..., *m(x3), *n2(x3). respectively. Instead of the func-
tions p(733) R 23), w(z, ), t(z,7) we introduce the nonstandard functions
{w )p(13) (w )Zf“(:v;m (D)H(:r,r), (D)t(z,'r), respectively. Now, Eqs (4.6), (4.7)
have the form

555) = QM CM 1 5(w = »M)771\7) 55\/1) = 55\7)771\4 (4.8)
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where
(:}) s _ A{[h (:/) _ % - ﬂ{[h
Cv’ = €<h + J)/\/) i =7 <h" + :.}IV)
{4.9)
~ Mh
iy = m(h + &N) M= 1,2,..,0N
®

The subsets L), §() U@ and functions “ki7*!(z5), “p(a3) are de-
termined by Eqs (4.3), (4.5) in which the superscript (1) and the subscript
K =1,2...., N must be replaced by (&) and M =1,2,...,0N, respectively.

Now, we introduce the third hypothesis (Wozniak, 1991}.

The micro-macro localization hypothesis. The approximate solution to
the nonstandard problem P(“) can be expected in the class of functions

given by
(;)(z )= Waolta, T)+ 23" Dola . 7) + hol23) Q% (20, T)
(4.10)
ug;)(z,r) = "Ws(2za,T) x € T € 1o, 7/] = 1,2

where

- YW, *D,, Q% are (sufficiently regular) arbitrary and independent
unknown standard functions, the fields W;, D, are called macro-
displacements (Wozniak, 1991), the functions % are called microlocal
(or correction) parameters (Matysiak and Nagdrko, 1989)

— he(@3) are postulated a priori, linear independent, nonstandard micro-
shape functions (WozZniak, 1991); they take only infinitesimal values but
their derivatives take standard values.

The micro-shape functions introduced in this paper are represented gra-
phically in Fig.2.

It can be ohserved that Eqs (4.10) represents a certain generalization of
the known kinematic hypothesis for the Reissner-tvpe plate theory, which
takes into account the effect of plate inhomogeneity on the distribution of
displacements.

In the nonstandard structure M*, using the micro-macro localization
hypothesis (4.10) as well as the strain-displacement relations (3.1) and the
stress-strain relations (3.2), after neglecting the terms involving micro-shape
functions (but not their derivatives!) we obtain the strain tensor and the
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Fig. 2. The graph of the micro-shape functions h;(z3), ha(23)

stresses *Lgod =Sped *Uped in the parts *IT X L), =T % S(‘:), I x UW) of
the region *f2, respectively. Then, taking into account the known theorems of
nonstandard integral calculus (Robinson, 1966; Wozniak, 1991) we arrive at
the virtual work principle, which includies only the standard entities; so we
can pass from the nonstandard structure *M to the classical structure a.
The approximate solution to the nonstandard problem can be found as the
solution to a certain problem for the macro-displacements and the correction
parameters. This problem does not involve any nonstandard entity; it will be
called effective or microlocal and denote by P.

5. The effective problem - the equations of macromechanics

Tet us define

Taj(xar) = [‘taj((lt,T)ﬁl(l‘:;) + Staj<xar)772('r3) +
+51%9 (2, )1 = m(zs) — 72(23)] (5.1)

plza) = Fpmy(as) + Spma(as) + Yp[l — m(z3) — mlzs)]  (5.2)
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The tensor T (z,7) will be called the mean stress tensor. The scalar
p(z3) will be called the mean mass density. Since the functions W;, D,, Q%
are arbitrary and independent, then after introducing denotations

At ht
NoB(zy,7) = /Taﬁ drs M (g, ) = /ngQﬁ dzs
h_ h‘
At Lt
0°(30,7) = | T°% das Ploar) =2+ [zl das (53)
h_ h__
ht ht
F= [ #es) das F= [ st das
h= h—

and using the divergence theorem as well as the du Bois-Reymonde lemma, we
obtain from the virtual work principle the following equations of homogenized
model

— the plate equations of motion

NP 52, 7) = fW(24,T)
MP (2o, 7) — Q¥(20,7) = FD¥ (20, T) (5.4)

A~ e

Qe ) + (N 20, TWao(2a,7)) 4 9(20,7) = FW (20, 7)

i}

— the system of linear algebraic formulas for correctors

P04 (20, 7) = —h[c2®) (W s(2a,7) + Ds(va, 7)) (5.5)
where
ht [ o338 S.a338
¢ ¢ d i =b=1
f (771(1‘3) + 772(-1‘3)) 3 if o
At S 0336 U .a338
o ¢ ¢ dxsy if =b=2 ,
Pe33 = hf_ (m(zg) T T (as) - ng(zg)) vaonod (5.6)
hf+5a335 . a=1 A b=2
— 7— 1 or
m2(%3) a=2 A b=1
’[C?BBIS:" = Lca335 _ Sca336 |[C%335]| = Sca335 _ Ucoz335 (5.7)

A solution to Eq (5.5) can be written in the form

Qb(war) = ~hK e, [ (Wa p(20, ™) + Dp(was 7)) (5.8)

4 — Mechanjka Teoretyczna
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where K, are defined by

PRKE,, = 6068 (5.9)

a

Let us observe that [c23%] = 0 implies that Q%(2,,7) = 0 and the
micro-local effects in this case disappear. After eliminating the correctors
from the homogenized model, by means of Eq (5.9), we arrive at the equations
of macromechanics expressed only in terms of macro-displacements:

— The plate constitutive equations

— 1
N o,y = B, (o) + 5Wa(ra TIWas(za, 7] +

§
+ F7D. s(2a,7)

. 1
MB(z0,7) = T ﬁﬂ‘s{W%(g(a;mT)—i—‘—Z—Wgn(l‘a,‘i‘)wlg(.’ca,r)} +(5.10)
a3y

D”r’:‘s(wa? T)

Q%(2ar7) = (B* = HO¥)Ws (20, 7) + Dpl2,7)]

9395 = he%) K i, [

a .

ht ht
B = / T (23) dzs B = /00335@3) 43
h- h=
(5.11)
ht bt
TPl = ?am&(m)zs drs G = / éaﬁw(zfﬂg’g dra
h- he

S - e .
CO = Lo, (1) 4 S22V 5) + Ve (1 = m(as) — ma(e3)]

0'675, (BaBBﬂ _ HO‘33,@) are

It can be proven that tensors —B_aﬁvﬁ, Fam&, G
positive definite.

— Combining Eqs (5.10) and (5.4) we arrive at the system of five nonlinear
differential equations of motion in five basic unknows: W,, D,. However, in
stability and vibration problems the system of governing equations will take

the form
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(Bag,gﬂ _ Hasaﬂ)[I’VB,aﬁ + D(a.ﬂ)] + NO"BWB,ozﬂ + p3 +
W eWs . — fl3 =0

(5.12)
o ffyé =af~yé
F (W, s+ Wi+ Wsaspl+ G D.sp +
—(B%¥ — Ho338) W3 5+ Dg] — fD =
Nozﬁ 5 - j?Wo =0
’ (5.13)

No# = o [Ww,s + éWB,'yWS,é] + FG[M&D(v,&)
The underlined terms in Eqs (5.12), (5.13) depend on F°" and repre-
sent the coupling between N,g and Mg in the plate constitutive relations
(5.10). The equations of motion (5.12), (5.13) and the constitutive relations
(5.10) have to be considered together with the appropriate initial and boun-
dary conditions which have a form analogous to that used in the well known
Reissner-type plate theories. The effect of the heterogeneity of a laminated
plate is described in Eqs (5.10) and (5.12) by the tensor with components
He338 defined by Eq (5.11);. It can be shown that for homogeneous plates
(in this case Q%(za,7) = 0and F 0), after neglecting the inertia terms
fW™ and non-linear terms, the resulting equations (5.12), (5.13) reduce to the
well known equations of the Reissner-type plate theory.
The effective problem can be stated as follows:

Problem P: for known (2, p3, p>, 03, initial and boundary conditions
for macro-displacements and Lp, Letakt Sp Seiakl Uy Upakl a5 well as
for known 7y(23), 72(z3), find the macro-displacements W;(2,, ),

Dy(q, 7)), satisfying the equations of homogenized model.

6. Example

In order to illustrate the general results obtained in the paper we shall
apply Eqs (5.12), (5.13) to the analysis of the stability and free vibrations of a
rectangular plate which is simply suported on the edges z; =0, 2y = a;. We
assume that At = —h~ = h/2 and then FP"° — 0. We shall consider this
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problem as one-dimensional, setting z, = z1. For simplicity we shall neglect
the inertia terms fW and the body forces. We also assume that p? = 0.
Let

oo
. mmw -
Ws(zq1,7) = E A, sin ——zqe7tm7
m=1 a

(6.1)

[
T .
D](iL‘l,T) = Z Bm Ccos a—l'le teomT

m=1 1

Using the aforementioned assumptions and subsituting (6.1) into (5.12) we
obtain for A,, # 0, B #0

Fw? — ANZ + N2, — Al .
= 1111 =0 (6.2)
—AX, Jwi -G AL - A
where
A= 13 3% N'(r) = —N"(r) A =
ay

Let us introduce the parameters

1331 1331 2
o o B
= J1331 — T1111
B G e

where £ (0 < € < 1) characterizes the relative heterogenity of laminated plate
structure (for ¢ = 0 we are dealing with a homogeneous plate) and s is the
plate slenderness parameter.

We shall restrict ourselves to the analysis of the following two cases:

e if w? =0, then for a critical force we obtain the condition

—11 B1331(1 “f)
T4 (1 - €)s?

which describes the effect of nonperiodically laminated plate structure

(6.3)

heterogeneity on the plate stability.

o if N'' =0 then, after neglecting the terms fw? we obtain the formula
o T BT g
! fa11+(1—€)32

which has a form similar to Eq (6.3) and characterizes the effect of
laminated plate structure on the plate free vibration frequency.

(6.4)
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7. Conclusions

The main aim of this paper was to derive an effective model of certain
nonperiodically-laminated plates which takes into account the micro-local ef-
fects and which is plausible from the engineering standpoint and may consti-
tute the basis for numerical analysis.

From Eqs (6.3),(6.4), it follows that the effects of heterogenity of the plate
under consideration on a critical force and free vibration frequency are negligi-
bly small. However, if £ is close to 1 then the heterogenity of laminated plate
structure leads to a sudden decrease of the critical force and free vibration
frequency. These conclusions are similar to those obtained by Konieczny et
al. (1995), which where related to the theory of nonperiodic laminated plates
with interlaminar imperfections.
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Niestandardowa metoda makro-modelowania nieperiodycznie
uwarstwionych plyt

Streszczenie

W pracy zaprezentowana jest metoda efektywnego makromodelowania sprezys-
tych plyt o nieperiodycznie warstwowej strukturze. Model zhomogenizowany wypro-
wadzony zostal w oparciu o metode mikrolokalnego modelowania kompozytéw mikro-
periodycznych opracowang przez Wozniaka (1986); metoda ta zostala przez autordw
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pracy zmodyfikowana 1 rozszerzona do modelowania plyt warstwowych o strukturze
nieperiodycznej. W proponowane] procedurze makro-modelowania wykorzystane sa
pojecia i twierdzenia z analizy niestandardowej (Robinson, 1966). Wyplowadzony
model zhomogenizowany nieperiodycznie uwarstwionej plyty typu Reissnera zastoso-
wany bedzie do zbadania wplywu niejednorodnosci struktury kompozytu na wartogé
sity krytycznej i czestosé drgan wlasnych plyty swobodnie podparte) na brzegach.
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