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In the paper basic concepts of new methodology of the fuzzy boundary
element method are presented. This article deals with fuzzy-set-valued
mappings which are solutions of the fuzzy boundary integral equations.
Exact fuzzy solutions of the fuzzy boundary integral equations are defi-
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applications are considered in defails for boundary potential problems
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1. Introduction

When a physical problem is transformed into a deterministic boundary pro-
blem, we usually cannot be sure that the modelling is perfect. The following
three issues can be discussed when considering the nature of this uncertaing:
human based uncertainty, system uncertainty and random uncertainty. The
prediction of these three types of uncertainty is difficult and the present me-
thods, embodied in the reliability theory, tend to concentrate on the random
uncertainty.

The boundary problem may not be known exactly and some functions:
1.e., the shape of a structure, material properties, boundary conditions, exter-
nal or internal excitations, solutions etc. may contain unknown parameters.
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Especially, if they are known from some measurements they definitely are sub-
jected to errors. The analysis of the effect of these errors leads to the study
of qualitative and quantitative behaviour of the solution uncertainty. There is
however, a fundamental difference between the nature of random uncertainty
and that of human and system uncertainty. To analyse this type of uncerta-
inty a mathematical approach which is directed at vagueness as distinct from
randomness is required and this is the potential role of fuzzy sets. Many dif-
ferent interpretations are possible for terminology of uncertain aspects of the
Boundary Element Method (BEM). We focus our attention on the fuzzy-set-
theoretic description of uncertain phenomena in BEM, and will refer to these
approaches as the Fuzzy Boundary Element Method (FBEM). These terms
are used here to refer to the boundary element method which accounts for
uncertainties in boundary conditions or material properties of a structure as
well as the boundary shape. Such uncertainties are usually distributed on
a boundary or within a domain of the structure and should be modelled as
spatial or spatially-temporal fuzzy fields.

Applications of the FBEM appear to have been initiated in the 1995. The
earliest application used the fuzzy boundary integral equation to solve fuzzy
boundary value potential problem with uncertain boundary conditions and
internal sources (cf Burczynski and Skrzypezyk, 1995, 1996a, 1996b). Then
the FBEM was used for elastostatic problems (cf Pilch, 1996; Skrzypczyk
and Burczynski, 1997a,b). Modelling uncertainties as fuzzy variables or fuzzy
processes suggests the use of fuzzy-set-theoretical methods, which are closely
related to a convex modelling of uncertainties. Only linear static problems
are studied and applications to non-linear or dynamic problems are left for a
future study. Using BEM to solve a boundary value problem in some domain
with prescribed boundary conditions on the boundary, one can obtain the
Boundary Integral Equation. From now we assume that boundary conditions,
material properties, internal prescribed fields and the shape of a boundary are
uncertain and we’ll model this uncertainty using fuzzy variables. We obtain
the Fuzzy Boundary Integral Equation where all operations are in fuzzy sense.

Singular integrals are understood in the sense of fuzzy principal values.
New results in singular integration and singular integration over a fuzzy do-
main are presented by Skrzypczyk (1996), (1997), Skrzypczyk and Burczyiski
(1998a,b).

Different types of fuzzy solutions are discussed as well as their existence
and properties. Linear, quadratic and cubic Fuzzy Boundary Elements are
introduced to consider how integral expressions can be discretized to find the
system of Fuzzy Algebraic Equations from which the fuzzy boundary values
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can be found (cf Burczynski and Skrzypczyk, 1997a,b; Skrzypezyk and Bur-
czynski, 1997a.b, 1998a,b).

[lustrative examples {rom the potential theory are given to comment dif-
ferent aspects of the presented theory. The interval and trapezoid-type fuzzy
boundary conditions are considered. To complete the presentation the poten-
tial problem in a fuzzy domain is discussed.

Presented methods give the complete methodology how to obtain good
approximations of the solutions of uncertain boundary problems with the use
of fuzzy analysis.

2. Basic definitions and notation

In the paper we use the following notions.

R" ~ set of n-dimensional reals

(R™,]-]) ~ mn-dimensional Euklidean space with the metric |- |

R(Ry) - set of reals (nonnegative reals respectively)

r ~  k-dimensional (k£ < mn) manifold in the Euklidean
space R™.

Let I(R) (similarly I(R™)) denote the set ol all closed, bounded intervals
Z = [z7,z%] on the real line R (R" respectively), where =z~ and =zt denote
end points of the interval Z. We call other elements of sets I(R) (I(R™))
the interval numbers (interval vectors respectively) (cf Alefeld and Herzberger,
1983; Bauch et al., 1987; Moore, 1966; Neumaier, 1990).

Let F(R™) be a class of fuzzy sets in R™, i.e. the set of maps (¢f Czogala
and Pedrycz, 1985; Dubois and Prade, 1988; Kacprzyk, 1986; Negoita and
Ralescu, 1975)

F(R") := {u . R" — [0,1]}

We call a fuzzy number the set @ € F(R") defined by the so called membership
function wp(z;a),2 € R™ and satisfying some additional conditions (c¢f Dubois
and Prade, 1979, 1988; Felbin, 1992; Kaleva, 1987, 1990) Let additionally

EA::{IER":LL(QE;'&)Z/\} 0<A<1

By F*(R") C F(R") we denote the set of all fuzzy numbers. The interval
numbers are naturally particular examples of fuzzy numbers.

It f: R*x R" — R"is a usual real function, then according to the
Zadeh extension principle we can extend f to a fuzzy function f: F*(R") %
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F~(R™) — F~*(R")in the following way (cf Czogala and Pedrycz, 1985; Dubois
and Prade, 1979, 1988; Felbin, 1992; Kacprzyk. 1986; Kaleva, 1987. 1990:
Negoita and Ralescu. 1975)

,u(z;f(ﬂ.i?)) = sup plr:w)Ap(y;v) (2.1)
=[{r.y)
where A, vee denote max and min, respectively. It is a well known result,
that N _
lw,v) = fluy,vy) Vu.v € FT(R") 0<AL] (2.2)
if fis a continuous function (Nguyen, 1978). Notice, that [(R™) C F*(R"),
(cf Guang-Quan, 1991; Kaleva, 1987, 1990).

3. Fuzzy singular integration over a fuzzy domain

Notice, that a fuzzy singular integral in a non-fuzzy domain, in the Fuzzy
Principal Value (FPV) of Cauchy tvpe was defined first by Skrzypezyk (1996)
and investigated further by Burczyiski and Skrzypczvk (1995), (1996a,b),
(1997a,b), Skrzypezyk and Burczyiski (1997a.b). Fuzzy singular integration
over a fuzzy domain was defined first by Skrzypczvk (1997). for further results
see Skrzypezyk and Burczyfski (199%a).

Let M denote further a set of manifolds in 2", By a fuzzy domain I we
understand a fuzzy subset of manifolds from M, i.e. a map M into [0, 1].
With each map [I' we consider its membership function ,u(F;f), 1" C M.

Let F(M) denote a class of fuzzyv subsets of M.

One can define a fuzzy domain in another way:

o Classical map I, defined over a set of parameters U C RP with the
values in M

o Classical map defined over a fuzzy set A C F*(R?) with the values in

I, ie. such that p(;A) < p(I)ol.

We know, that the membership function of a fuzzy singular integral defined
over some non-fuzzy domain I is as follows

,ur<w; /ﬁ(y) (lI’(y)> rcmMm we R
r

and can be considered as the conditional membership function.
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Besides, let h: T — F*(R™) be a measurable fuzzy function (cf Aumanit,
1965; Kaleva. 1987, 1990; Nanda. 1989). integrable in the FPV-sense over each
subset I' C M. Then a singular integral (cf Mikhlin, 1986; Piskorek, 1980;
Pogorzelski, 1970) of the fuzzy function L in the FPV-sense over the {uzzy
set ' C F{M), will be denoted further as (FPV)f; /_z,(y) dl'(y) and its
membership function is defined in the following way (w € R)

pr(wi (FPV) [y ar(y)) =

~

= sup {1 Ty A ul—(UJ;(FPtf')f/E<y>dr(m)}

The integral defined in such a way will be called the generalized fuzzy singular
integral of the fuzzy function h over the fuzzy domain f(x), in the Fuzzy
Principal Value (FPV) of the Cauchy type (for details see Skrzypezyk, 1996;
Skrzypezyk and Burczynski, 1998a.b).

4. Fuzzy boundary integral equations

Using BEM to solve a potential boundary value problem in a domain 2
with the prescribed boundary conditions on the I' boundary of §2: Dirichlet
(essential) conditions of the type wu(z) = ug(z), for 2 € [y and Neumann (na-
tural) conditions such as ¢(x) = Qu(2)/0n = gol2),for x € [, ' = I) U I3,
one obtains

@)+ [ Qe yuty) Ay + [ Ul ey) dy) =
r 2 .
(4.1)

= [ Uw.aty) dr(w) cer
I

where £(2), z € {2 1s a known source density function and U is a fundamental
solution of the Laplace equation (¢ = 0U//dn), (see Brebbia and Dominguez,
1989; Brebbia et al., 1984; Burczyniski, 1995). We now assume that the values
of some of boundary quantities, source density function and contour I are
uncertain and we shall model this uncertainty using fuzzy variables.

18 — Mechanika Teoretyczna
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Let g, ¢p, Eand T be fuzzy functions. Define
uw: o oela)u(x) +fQ1g y)dl(y)+

+QfU(fLuyJ§(y) df2(y) zrfl (v y)qly) dl(y)
UA(x‘F) = (4.2)

up(z) € Toa(z) qo(2) € Gor(2)

z€l zel3

£(2) € £,(2) e I'cM

The conditional exact fuzzy solution 1y (w]]“)., x € I' C M is defined as follows

ur(yii(z|0) = sup{X: ye Un2|D)} relfcM yekR
(4.3)
and the exact fuzzy solution u,(z),z € [ is defined according to the min-max
composition of fuzzy relations

plosin@)) = sup {u(0) A pr (w0} ve B (4

Eq (4.4) describes the membership function function of the first-type fuzzy
solution of boundary potential problem defined over a fuzzy domain.

Alternatively let substitute %, go, gand I for wo, qo, € and I, respecti-
vely, and let all operations be considered in the fuzzy sense. Thus we consider
further the fuzzy analogue of Eq (4.1), as follows

clz)u(x +/O z,y)uly) dl(y /U z,y)Ely) dR(y) =

= /U(@',y)(}‘(\y) dI'(y) rel’

r
Fuzzy integrals are understood in the sense of fuzzy principal value, as
defined in Section 3. We want to solve formally Eq (4.5) for ., which will
be called a fuzzy solution of the second kind and will be denoted ,. It
is a difficult problem to solve Eq (4.5) in such a way, so we are looking ra-

ther for approximate methods (cf Buckley, 1992a,b; Buckley and Qu, 1990a.b,
1991a.b). Now we discuss how to solve Eq (4.5) for the conditional fuzzy
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function u(xz), z € I' C M. Let

Uor(z) = [ugy(2), uby(2)] rel}
Gor(@) = [g5\ (@), ([o\ (@)] x € Iy (4.6)
&) = [65(2), & (2)] x €

Assume, that we are looking for the interval-type solution

da(z) = [uy(2), ul(z)] relCM (1.7)

where 0 < A < 1. Taking A-cuts, VO < A < 1 of the fuzzy Eq (4.5) we obtain
formally the infinite set of interval boundary integral equations as follows for
relcM

o(x)[ui(z), ul(a /O z, ) () ul(y)] dl(y) +
(1.8)

+ / (e, )€ (y), € (y)] dRy) = / Ui, o)lary) o (9)] d00y)
5 7

We solve Eq (4.8) for the interval values ui(z) and ul(z) producing the
family of interval functions w3y, 0 < A < 1 Following we define the fuzzy
solution of the second type wu by the relation

;L(y;ﬁg(.r[FJ) = sup{/\ Y€ ﬂg,\(zrlf’)} rel cM ye R
(4.9)
Naturally, we are now interested in the relationship between the solutions
Uy, uy and 1us. Following Burczynski and Skrzypezyk (1995), (1996a,b),
(1997a,b), Skrzypczyk and Burczynski (1997a,b). and taking into considera-
tion the results of Buckley et al. (1990h), (1991a,a), we have w;y\(2) = u3z(2),
Vo< A< l,zel C M.

5. Fuzzy boundary element method — computational methodology

Now, let us consider how Eq (4.8) can be discretized to find the system
of fuzzy algebraic equations from which the boundary values can be found.
Assume for simplicity that the body is two-dimensional and its boundary is
divided into N elements. Let M D ' Uf:l I’;, where I is the boundary
of the jth element. The fuzzy (interval) values of @, and ¢, are assumed to
be fuzzy constant/linear/cubic etc. over each element.
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5.1. Constant fuzzy elements

The points, at which the unknown fuzzy values are considered, are called
as usual nodes and taken to be in the middle of the element for the so-called
constant fuzzy elements. Later on we will also discuss the case of linear fuzzy
elements, i.e. those elements for which the nodes are at the extremes or ends.

For the constant fuzzy elements considered here the boundary is assumed
to be divided into N elements, let M O I' = Uﬁ-vzl I';, where [ is the
boundary of the jth element. The fuzzy (interval) values of %) and ¢, are
assumed to be fuzzy constant over each element and equal to the fuzzy value
at the mid-element node. Eq (4.8) can be discretized for a given point ¢ before
applying any fuzzy boundary conditions as follows

mw)—Z/Q%,mnyw+/U%L&yNQ

1= 1r
(5.1)
N N
Z/ (2, ¥)q\(y) dI'(y) eI
: F j:]
or with respect to the interval ends of A-cuts
1 N
5@,((%‘)@?(%’)] = Z/Q(l‘z‘,y)[ﬂi(y)ﬁf(y)] dI'(y) +
jzlr
+/o v )€ (0).EF ()] ds2Ay) = (5.2)
N
—Z/U”ﬂMﬂmmMF) welJ7,
=1, =1

The point ith is one of the boundary nodes. Note that for this type of fuzzy
element (i.e. fuzzy constant) the boundary must be always smooth as the node
is at the centre of the element, hence the multiplier of u,(x;) is 0.5.

5.2. Linear/quadratic/higher order fuzzy elements

Up to now we have only considered the case of fuzzy constant elements,
i.e. those with the values of fuzzy variables assumed to be the same all over
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the element. Now, let us consider a linear variation of fuzzy # and ¢. In this
case the nodes are considered to be at the ends of the element. see Fig.1.

Region of uncertainty Interval nodal value

Uy a or qZX

/

E=-1o— E=1
e 1/2 ——de———1/2 —

Interval nodal value
ly; or q,

Fig. 1. Fuzzy boundary linear element

The governing fuzzy integral statement can now be written as Eq (4.8).
After discretizing the boundary into a series of N elements Eq (4.8) can be
rewritten as

i Z/Qm, Jirly) dr(y +/U($u?/)6x(?/) i0(y) =
0 (5.3)
N N
Z/ (z:, 9)q\(y) d(y) :L"iEUF]
4 j=1

¢; = 0/2n, where 6 is the non-fuzzy internal angle of the corner in radians.

The values of @, and ¢\ at any point on the element can be defined in
terms of their nodal fuzzy values and two linear interpolating functions ¢,
and ¢, which are given in terms of the homogeneous coordinate ¢, i.e.

uN(£) = driign + P2tign
(5.4)

(&) = d1G1n + b2020

where ¢ is the dimensionless coordinate varying from —1 to +1 and the two
interpolating functions are

bi=50-8) b= 5046) (55)
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The integrals in Eq (5.3) are more difficult to calculate than those for the
fuzzy constant element as the uy and ¢ vary fuzzy linearly over each I
and hence it is not possible to take them out of the integrals.

Region of uncertainty
Interval nodal value

Uyy OF qZ/l

Interval nodal value

Uy, or qlzl

£=0 E=1

fae——1/2——te—— 1 /2 ——

E=1

Fig. 2. Fuzzy boundary quadratic element

Approximations based on higher order fuzzy elements i.e. quadratic, cubic
etc. can be calculated in a similar way, see Fig.2.

5.3. Methodology of fuzzy arithmetical computations

If we now assume that the position of 7th point can vary from 1 to N
one obtains a system of N fuzzy algebraic equations resulting from Eqs (5.2)
or (5.3). This set of fuzzy equations can be expressed in a matrix form as

HiU\ =G\Q,\ + V) (5.6)

where H, and G, are two N x N non-fuzzy matrices and 17,\, é/\, f/A are
the fuzzy vectors of length N, VA € [0,1]. Notice that N; fuzzy values of
and N, fuzzy values of ¢\ are known on 77 and I3, respectively, hence there
are only N fuzzy unknowns in Eqs (5.6). One has to rearrange the system to
obtain the standard system of fuzzy algebraic equations

AX, =F, Vo< A< (5.7)

where .;(A 1s a fuzzy (interval) vector of unknown A-cuts w, and ¢\ fuzzy
boundary values. Eq (5.7) can now be solved and all the boundary values are



Fuzzy BEM IN THE ANALYSIS OF UNCERTAIN SYSTEMS 503

then known. Let VO < A <1

Xyo= {X: AX =Fy A= o), Fr= [, .

arij € dxijy frni € Fur ivj = 1,‘2,---,]\’}
Define _il(F), I' C M, afuzzy subset of R™. by its membership function
;L(:}:;Xﬂf)) = sup{/\: a:EX,\} ze RV IcM (5.9)

We call Xl(l“) an exact fuzzy conditional solution of FBEM for arbitrary
" C M. In further considerations the parameter I' is fixed and we can,
therefore, omit it. ~

Assume now that no A C Ay is singular V0 < A < 1. We wish to
find the set of solutions X’l and its relation to Eq (5.7), where the interval
multiplication and addition are used to evaluate its left-hand side. We now
try to solve Eq (5.7) {for the 27, and xt\, :=1,2,..,N,0< A <1, and hope
they are the A-cuts of fuzzy numbers Z;,¢=1,2,...,N. In any case, assume
that this method does produce fuzzy numbers z;,¢=1,2,..., V.

Define X,(I"), I' C M, a fuzzy subset of RN, by its membership function

X R - s N
II_I/(I)_XQ(F)) = 1r§nil§nN{“(‘l“$l)} z=[z;]€ER rcm (5.10)

We can prove that X,\ C [)}2‘/\,5(;], VO< AL, I C M.

Many authors (cf Moore, 1965; Neumaier, 1990; Skrzypczyk and Pownuk,
1997) discussed methods for computmg an interval vector Xay containing

Xl\ The exact calculation of X1\ is ve1y difficult for multidimensional
problems. The interval vector Xy = [XQ\,XQA] V0 < A < 1 defines a region
in an N-dimensional space bounded by the planes z; = z;, and z; = 1?'\,
i=1,2,..,N. Since Xy, will usually not be a rectangle in RN, we would
expect Xl,\ to be a proper subset of XQ)\ Naturally, the smallest X3, is of

interest. We shall use X as the approximate fuzzy solution of Eq (5.7).

6. Numerical results
6.1. Interval boundary conditions

The following example shows how the presented methods work for fuzzy
boundary conditions. Analyse a simple potential problem. Consider the case
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of a square close domain of the type shown in Fig.3, where the boundary has
been discretized into 12 fuzzy constant elements with 5 internal points (cf
Brebbia and Dominguez, 1989; Burczynski and Skrzypczyk, 1995. 1996a,b.
1997a.b; Skrzypczyk and Burczynski. 1998a).

=[0:0]
u—[290 330 ISR S|
— )
IOT internal points A
\S boundary
X T i
. [ ¢ \ * i “nodes
] :
4=[290,320] T * . T
——
12 distance |
% u= Y]
e+ —
1
4=[0,0] /

Fig. 3. Interval potential problem

It 1s assumed, that the boundary conditions wp and ¢o in the considered
potential problem are the following interval functions

dol2) = [ug(2), ud(2)] z el
Go(e) = [qg (), g3 (2)] x €I

and 5(1-) =0, Vz € 2. Numerical values are given in Fig.3.

Let the interval solution be denoted as u(x) = [u~(2),u*(z)],z € I'. Since
all boundary values are interval functions it is enough to solve the potential
problem in the interval formulation only.

To compare the fuzzy results with the deterministic ones the potential
problem under consideration was solved for mid-point boundary values, i.e.

uo(e) = %(u&(:c)—kuar(a‘)) z €I}
(6.2)
1
qo(x)zz(f[o( )‘i"Io( )) r €Iy
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10
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20

—
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30

Distance begining from the Ist eiement

Fig. 4. Interval and mid-point potential solution

To illustrate a specific character of the interval calculations fuzzy results
for internal points are presented in details in Table 1. To demonstrate quali-
tative character of fuzziness of results all values of the potential are presented
graphically as interval functions of domain circumference, see Fig.4.

Table 1. Fuzzy results of internal values

Internal points

Potential

u-

155.5196

ut

1 3.00 [ 101.6876

2.00 | 47.9807

154.8040 | 256.0090
257.2826
206.7500
156.7115
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1 =(290.300,310,330) 3=(0:00.9)
- . 9 8 i
—]
6
10 internal points Lv
h ~. boundary
| £ RS | ooty
¢ \ ¢ .~ nodes

[

r -
| o

.0
!
i
| distance .
' % u:(Q,0,0,0)

[
|
|
|

—1

P ) — I T 3 T 3
_=(290300310320)  §=(0,0.0.0),

Fig. 5. Fuzzy potential problem with fuzzy trapezoidal boundary conditions

400

A4

w
(=]
>

iyl I N S 1 L L

200

Fuzzy trapezoidal potential

b
M. Il

L B o e o e e B LA B e
0 10 20 30
Distance begining from the lst element

4

Fig. 6. Trapezoidal membership functions of boundary solutions
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6.2. Trapezoidal boundary conditions

Consider now the same potential problem as in subsection 6.1 but with
fuzzy boundary conditions ol the trapezoidal membership functions. Such
membership functions can be characterised as the ordered quadruple equi-
valent to the points of the trapezoid. Numerical values of the considered
boundary values are given in Fig.5.

Since only boundary conditions are of the fuzzy character, the exact fuzzy
solution has membership functions also of the trapezoidal shape. The results
are presented in Fig.6. The values of membership (unctions of the solution at
the internal points have trapezoidal character too. The numerical values are
omitted for simplicity (cf Skrzypezyk and Burczynski, 1997a.b).

6.3. Potential problem in the fuzzy domain

4=[0,9]
w=90310] 4—dpbpad
— )
10 internal poinis M.
'k boundar
=[295305] 1 L 1 boundary
_11774:‘97 f%o’ ] . \ e nodes
11 [ SL-T
u=1295315] . . 20
12 . oy
distance
™. u«=[0,0}
r — + -
Sl 2 3
4={0.01/

[Fig. 7. Fuzzy boundary conditions

Now, consider the same potential problem. Assume, that boundary func-
tions are of the interval character. This assumption is made for simplicity of
calculations only. The methodology of calculations allows one to consider any
shapes of membership functions. The boundary conditions wug and gy are
independent with respect to the boundary fluctuations and E(_a:) =0,V € £

The numerical values for boundary conditions are presented in Fig.7. Ad-
ditionally assume, that the considered domain is fuzzy — its boundary is a
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tetragon with apexes which can take uncertain positions. Let the coordinates
(x;, 4,0 = 1,2,3,4) be known with accuracy (+7;,+0;,t = 1,2,3.4), respec-
tively, see Fig.8. In such a way, the considered domain is the fuzzy function
of 8 fuzzy parameters, see Section 3.

8

E gﬂ 2‘{'3

E g —s - 7l
6? ‘gl 10 9 8 7 §
af il 6m

S
2:— m2 z 5h

E_ S 2 T
OE Q| wd S 2 4 },q

E 27 20,

:J_L W N A Laov g g ea ey by ey lia s cvs gy
2 2 4 [ 8

Fig. 8. Fuzzy domain of the boundary problem

At first we analyse the appropriate conditional solutions with respect to
the fuzzy boundary. We know, that each conditional solution is the interval
function, see Section 4. Denote this solution as w(z|l") = [u™(z),ut(2)],
x € I' ¢ M. If all conditional solutions are known, we use the max-min
formula to obtain the global membership functions for interesting solutions —
boundary or internal.

In Fig.9 the global boundary solution for the potential function is given.
For comparison one conditional solution is presented for the particular case of
the domain signed in Fig.8. It is also possible to analyse the potential problem
in fully complicated form, with all fuzzy elements - internal sources, boundary
conditions and the shape of boundary.

7. Concluslons

This paper is a continuation of earlier works summarising our knowledge
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400

f conditional solution
(1) 7 global solution

1
300 g

; interval values H'*

] .

] ; ‘ |
2004 |

] | |

] \ N i

b h | |

] | \

N i 1
100 \ ‘

] y

b

11 snll

: | N

L [
T — — T
0 10 20 .30

Fig. 9. Global fuzzy solution and the conditional one

about applications of the boundary element method to fuzzy analysis. It shows
the new theoretical and computational methodology of the fuzzy analysis in
potential theory. Sample applications are presented to potential problems with
boundary conditions not sharply given by characterised by fuzzy functions of
the interval type and trapezoidal-type membership functions.

A main conclusion is that fuzzy sets can be effectively used to estimate
system uncertainty in boundary problems and random uncertainty can be
calculated with a new technique called the FBEM approach.
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Metoda rozmytych elementéw brzegowych w analizie systeméw
niepewnych

Streszczenie

W pracy przedstawiono elementy nowej koncepcji metody rozmytych elemen-
tow brzegowych. Artykul omawia odwzorowania o wartosciach rozmytych, ktore
sa rozwiazaniami rozmytych brzegowych réwnail calkowych.  Analiza przepro-
wadzona jest na przykladzie problemu brzegowego klasycznej teorii potencjalu
z uwzgledniemem rozmytych warunkdw brzegowych typu Dirichleta 1 Neumanna, roz-
mytej funkcji gestosci zrodel oraz rozmytego ksztaltu obszaru.
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