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The paper presents a thermomechanical model of drying of fluid-
saturated capillaric porous materials. The governing equations develo-
ped on the basis of balance equations and thermodynamics of irreversible
processes are presented. Their solution allows for prediction of the evo-
lution of moisture content distribution, deformation of the dried body,
and stress induced by drying. The strains and stresses are examined in
a prismatic bar dried convectively (2D initial-boundary-value problem).
The influence of different drying conditions and various shapes of the
bar cross-section on the strains and stresses is discussed using the linear
and non-liner models, respectively.
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1. Introduction

Modelling of the drying processes of fluid-saturated capillaric porous mate-
rials involves some mechanical problems because they tend to deform materials
and cause their cracking. This paper presents a theory that describes fully
coupled multiphase transport in deformable fluid-saturated capillary-porous
media. Such a theory allows for predictions of the evolution of moisture con-
tent distribution, deformation of the dried body, and stresses induced during
drying. This coupled theory also allows for analysis of the dried materials re-
sponse to the alteration of drying conditions and thus the control of the drying
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induced stresses. Carrying out a computer simulation of the process on the ba-
sis of this theory one can state that when the stresses rise until they reach a
critical state at some points, there is a possibility to reduce them by reducing
the rate of drying. This can be done by altering the drying parameters (e.g.
temperature or humidity of the drying medium).

The present considerations are entirely based on the concept of balance
equations of mass, momentum, energy and entropy, and thermodynamics of ir-
reversible processes with the use of Caratheodory’s principle. The constitutive
and rate equations are formulated which together with the balance equations
create the thermomechanical model of drying.

The strains and stresses are examined in a prismatic bar dried convectively
(2D initial-boundary value problem). The influence of different drying condi-
tions and various shapes of the bar cross-section on the strains and stresses is
discussed using the linear and non-linear models.

Our considerations have resulted in some conclusions of practical impor-
tance. One of them is that the moisture potential reaches local maximum close
to the boundary during intensive heating. This causes blocking of the moisture
flow from the interior of the body towards its boundary and makes the bo-
undary layer dry very quickly. The second conclusion is that the thermal and
shrinkage stresses sum up in some periods of drying and neutralize each other
in other periods. Another conclusion states that the shape of dried body and
the grooves placed on its surface influence considerably the deformations and
stress distribution in the dried body. Optimization of the computer simula-
tion of the drying processes was carried out and one states that the optimal
drying process is that for which the drying rate corresponds to the maximal
stress equal to the permissible stress. For lower drying rates the stresses do not
violate the strength of the material but the time of drying are much longer.

The paper presents the numerical results in the form of diagrams drawn
automatically by computer.

2. Balance equations

To capture the major features of a real dried body, let us assume that the
body consists of a deformable porous solid with uniformly distributed pores
filled with a mixture of water and humid air.

Using of the principles of balance of mass, momentum, and energy for each
individual constituent a {a = S(solid), L(liquid), V(vapour), A(air)} yields
in the following relations (see Kowalski, 1994)
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for a« = S,L,V, A. In the above equations: p, is the partial mass density, v,
and a, denote the velocity and acceleration, respectively, of the constituent
a, Tq is the Cauchy stress tensor, g = — grad pgrqey is the gravitational force
and pgrqy i8 the gravitational potential, e, is the specific internal energy, D,
denotes the strain rate tensor, g, is the heat lux, p, is the specific external
heat supply, Pa,Pq, €o represent the mass, momentum, and energy production
terms associated with the exchange of mass, momentum and energy from other
constituents by means of phase transition, mechanical interactions, and energy
exchange, and symbol (-) denotes the material derivative with convection
velocity .

Taking drying problems into consideration it is convenient to formulate the
field equations in terms of material co-ordinates of the solid matrix. Therefore,
we reformulate the balance equations in such a way that all the thermodyna-
mic functions are referred to the mass of dry body. Such an approach provides
a rational way of constructing a more practical model of drying. Besides, cho-
osing the porous matrix as a reference constituent allows for construction of a
general function (moisture potential) being responsible for the moisture trans-
port and the phase transition. Furthermore, the boundary is clearly defined
and formulation of the boundary conditions creates no difficulties.

We rearrange the balance equations using functions referred to the dry
body mass, namely, specific moisture content X, = p,/ps, relative moisture
flux w, = pa(vq ~ ), total internal energy per unit mass of the dry body
e = 3., Xata, total stress tensor for the multi-phase medium T = 3, T4,
total heat lux ¢ = 3", ¢q,, total heat supply per unit volume pr = 3", paTa,
where p =3, ps is the total mass density. The individual material derivative
of the constituent « is replaced by the material derivative with convection
velocity of the solid (denoted by a dot over the symbol)

#x = ¢2a + (va — v5) grad ¢q (2.2)
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Neglecting the accelerations and kinetic energies as small in drying proces-
ses and ignoring the stress deviator for the moisture, we rearrange Eqs (2.1)
as follows

psXo = —divwg, + po a=L,V,A
divT+ pg =0 T=T" (2.3)

pséa = tr(TD,) = div (g + 3 waha) + pr + Y wa-g
o o

where D, = [gradwv; + (gradv,)"]/2 is the strain rate tensor of the porous
solid, ho = eq — P,/pqo is the enthalpy of the constituent «, and P, is the
partial pressure of the constituent «.

3. Caratheodory’s principle. The second law of thermodynamics

Eq (2.3)3 represents the energy balance for the medium contained in a
unit volume appointed by the porous body in a current configuration, i.e., it
is expressed in the space variables (z,t). Its form expressed in the material
variables (X,t) (reference configuration) is

E = tr(TRégr)) + p?Z hoXo + tr(TREST)) ~ Divg®+ R+
&
(3.1)
_ waGrad (ha + tgrav) — JZ Pala
& &

where F = p?e and pf = pgJ are the internal energy and the porous
body mass density, respectively, per unit volume of the reference configuration,
J = detF is the determinant of the deformation gradient F = Grad xz,
EET) and Eg") are the reversible and irreversible strain rate tensors of the -
porous solid, TR = JF_IT(F_I)T is the second Piola-Kirchoff stress tensor,
g = Jg(F ") and wf = Jw,(F™")T are the heat and moisture fluxes, both
measured per unit area of the reference configuration, and R = Jpr is the
external heat supply per unit volume of the reference configuration.
According to Caratheodory’s principle there are adiabatically inaccessible
states in the neighbourhood of every state, which means that for an adiabatic
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reversible process the deferential (Pfaffian)

Dy

— =B w(TE)) = oY haXa (3.2)
a

has to be equal to zero (see e.g. Guminski, 1974).

It can be shown (see e.g. Naphtali, 1966; Hutter, 1977) that the differential
form in Eq (3.2) for a reversible process is integrable, which means that there
exists an integrating factor 7'(8) > 0 which turns the differential form in
Eq (3.2) into a potential, which consists of the sum of entropies of individual
constituents

ﬁ[ — o (TRED) - th X]-pf%:Xaéa (3.3)

We express Eq (3.3) in terms of the free Helmholtz energy F = E — ST
with § = pR S X,s, being the total entropy of the medium per unit volume
of the reference configuration

o (TRE™)) 4 pR Zﬂa - (3.4)

where p, = hg — 54T 1s the free enthalpy per unit mass of the constituent «

(chemical potential).
Combining Eq (3.3) with Eq (3.1) one obtains

TS = tr(TREE:) Dlv( +Zw saT)+R Zw Grad,u.a—JZpa,ua
(3.5)
where [a = o + tgrav-

The thermodynamic system is limited by the boundary of the porous so-
lid. The heat flow appear due to conduction and mass transported through
the boundary. We separate from Eq (3.5) the entropy exchanged by the ther-
modynamic system with the ambient medium and subtract it from the total
entropy. The difference is called the entropy produced in the system during
irreversible process. According to the second law of thermodynamics this part
of entropy is always positive. Thus, we have

tr(TRESLT) ZwRGradua—JZpaua——( +Zw Sa )-gradT;O

(3.6)

This residual inequality expresses the amount of energy dissipated per

unit time and per unit volume. From the mathematical point of view it is

a constraint which helps to draw some conclusions concerning the form of
thermodynamic fluxes.
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4. Constitutive assumptions

One can find a family of admissible processes which satisfy the inequality
(3.6). Taking into account another tensorial representation of the individual
terms in this inequality and Curie’s principle, we formulate the sufficient con-
ditions for satisfying it

wl = — A, Grad i, Ay >0
¢+ > wls,T = —Ar GradT Ap >0
* (4.1)
~ w -
pL:T(,UJV—#L):_pV w>0
E‘(giT) — E(4)TR E(4)TR ®TR 2 0

Thus, the mass fluxes, Eq (4.1);, depend on the gradients of moisture po-
tentials. The heat flux and heat transported by the mass flux, Eq (4.1),, are
proportional to the temperature gradient. The rate of mass transformation
due to the liquid-vapour phase transition, Eq (4.1)3, is proportional to the dif-
ference between chemical potentials of liquid and vapour. Eq (4.1)4 is similar
to the Newton-Cauchy-Poisson law for viscous bodies or the law of plastic flow

under an additional condition concerning yielding, (see Kowalski, 1996a).
We assume that the free energy, Eq (3.4) being a function of the thermo-
dynamical state depends on strain tensor ng), moisture content X,, and

temperature T. Thus, the equations of state have the form

oF oF
R R/ e(r) _ (r)
= =T%E)’ X, 1 = - = " X,
aEg.,.) ( s ) ) S 81—1 S( tI‘ Es bl Q) )
(4.2)
1 OF T
bo = JFOX, = ,ua(trEg ). X,,T)

The explicit forms of the above functions can be found e.g. by, expanding
them into a Taylor series and interpreting properly the respective coeflicients.

The fundamental set of Egs (2.3), (4.1) and (4.2), together with the initial
and boundary conditions give the basis for formulation of boundary value
problems.



DRYING PROCESSES IN CONTEXT... 625
5. Set governing of equations

Now, we shall apply the thermomechanical model of drying of capillary-
porous materials presented above to solving some boundary value problems.
After making the assumptions about preheating and constant drying rate pe-
riods, the complete system of differential equations describing deformations
and distributions of temperature and moisture potential inside the dried body
(see for instance Kowalski and Rybicki, 1994, 1996b; Kowalski et al., 1997;
Rybicki, 1993) has the form

)
2, XNy e — e SN\ XX Ps
MV uz+(M+A Cx)umz—('yg 7ch)6’2+ ox i
. . Cp
Ko Vi =p+ ’Y—Xui,i ~ (5.1)
Ps Ps

KrV20 = 0 + Ky ; — K

Here w;, p, 8 denote the displacement vector of the porous solid, moisture
potential, and temperature, respectively, and

A A T,
K, = mQCX Kp = _;Z" Ku _ TCOPS*
P Cy Y9Cx6C,
Yo = (2M + 3A)a0 X = (2M + 3A)ax
T 2
K, =T(1- %) ¢ =y + 8
CXYo YoCx

where ¢, is the specific heat of medium at a constant volume, ¢y and cx
are the coefficients of thermal capacity and moisture content capacity of the
moisture potential, 7} is the reference temperature (absolute).

The system of equations represents: the deformations of the dried mate-
rials, Eq (5.1); the moisture potential distribution , the gradient being respon-
sible for the moisture transport, Eq (5.1)9; and the temperature distribution,

The moisture potential is considered here as a linear function of the mo-
isture content X, temperature @ and volumetric strain ¢

1

p=—|co(d — 0;) — vpe + cx (X — X,)] (5.2)

Ps

The internal stresses occur during drying due to non-uniform distributions
of the moisture content and temperature. We use the following physical rela-
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tion between stresses o;;, strains ¢;;, temperature ¢ and moisture content X
Oy = QMEU —+ [AE — ’)’0(9 - 97-) — ’Yx(X - XT)]zSi]- (5.3)

where X, is the reference moisture content.

During the constant drying rate period the temperature 6 is equal to
the wet-bulb thermmometer and remains constant. In this period the system of
governing equations is reduced to Eqs (5.1)1,2. The differential equation for
the temperature field is trivial in this case.

6. Formulation of the initial-boundary-value problem

We shall discuss the problem of convective drying of a prismatic bar, Fig.1.
This is a 2D problem and all functions are assumed to be dependent on the
co-ordinates z,y and time ¢.

Fig. 1. Rectangular cross-section of the dried bar. Boundary conditions

For the 2D problem, the displacement of the porous solid in 2-direction
is assumed to be zero, and all other functions are assumed to be dependent
on the co-ordinates z,y and time ¢, ie. u;z = ug(z,y,t), uy = uy(z,y,t),
B = ;,L(.’L',y,t), = H(QI,y,t)-

We formulate the initial-boundary-value problem as follows: find the func-
tions wug, uy, § and p which, within the rectangle (—L,L)x (—H, H) and for
t € RT, satisfy the system of equations (5.1) under the following conditions
(see Fig.1.):
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— for the stresses
Uij

4B
— for the moisture exchange

Apn - grad,u‘aB+ = j:am(,u‘aB_ — ,ua) (6.2)
— for the heat exchange
Arn - grad 0(83+ = tar (Ba - 0‘83_) + lag, (,u‘aB_ - ,ua) (6.3)

under the initial conditions: o;;(z,y,0) =0, p(z,y,0) = uo, 6(z,y,0) = 6.
In the above conditions pu, and 6, denote the chemical potential and tempe-
rature of the drying medium (air) and [ is the latent heat of evaporation.

7. Results

The method for solving the considered problem is based on the Galerkin
discretization (finite elements) in space and on the difference approximation
of time derivatives in the final system of ordinary differential equations (see
e.g. Wait ant Mitchell, 1986; Rybicki, 1994; Musielak, 1991).

7.1. Drying of the bar with the rectangular cross-section

Fig.2 illustrates the distribution of moisture content in a quarter of the
rectangular cross-section of the dried bar. It is seen that the value of X near
the boundary is smaller than in the middle of the cross-section. This non-
uniform distribution of X together with non-uniformity of the temperature
distribution are the reasons the strains of the dried material arise and, as a
consequence, the reasons for the internal stress generation. The stresses will
be shown further on.

Fig.3 shows the evolution of the moisture potential x and temperature
f along the z-axis. Because of the temperature elevation near the boundary
it can happen that the moisture potential becomes a local extremum as it
is shown in Fig.3 (dashed line). In such a case, there is a negative moisture
potential gradient on the right-hand side of the maximum (solid line) and a
positive one on its left-hand side (dashed line). It is the reason why the flow
of moisture from the interior of the dried body to its boundary is blocked
due to the thermodiffusional effect. The boundary layer is dried very quickly
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Fig. 2. Distribution of the moisture content after five hours of the process
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Fig. 3. Distribution of the moisture potential and temperature along z-axis at
t = 10 min

(10°N/m?]|

moisture |/
—

Fig. 4. Evolution of the drying induced stresses due to the temperature and the
moisture content alteration along section y =0, 0 < < L after 7min of the drying
process
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and shrinks rapidly, whereas the interior does not or even swells a bit. The
shrinkage stresses which appear in the boundary layer at that moment can
cause its cracking.

Fig.4 illustrates the distribution of thermal, shrinkage and total stresses
along the z-axis. It can be seen that near the boundary the thermal stresses
are negative and the shrinkage ones are positive. And, vice versa, in the interior
the thermal stresses are positive and the shrinkage ones are negative. In both
cases they reduce each other and the total stresses become smaller.

7.2. Drying induced stresses dependent on the shape of the dried body

-120 ( ;250
150290
B 90
0 70 60 0

A

Fig. 5. Displacement contour lines (a) ug (b) u, [1077m] at the instant ¢ = 10 min
in the the rectangular bar

(b)
eSS
3 R

-30-40

- - - —

Fig. 6. Displacement contour lines (a) u; (b) u, [107"m]| at the instant ¢t = 10 min
in the square bar

The influence of the dried body shape on shrinkage strains is illustrated
by the drying of two different bars: the first one having a rectangular cross-

7 — Mechanika Teoretyczna
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section (—L,L)x(—2L,2L), and the second one having a square cross-section
(-L,L) x (=L, L). Displacement in the z-direction at an instant is depicted
in Fig.6a for the first bar and in the Fig.6a for the second one. Shrinkage in
the z-direction appears at all points of the regions but is much grater near
the edge where the moisture is intensively removed. The displacements wug,
are qualitatively similar for both bars, unlike the displacements u,. These
displacements are shown in Fig.5b for the rectangular bar and in Fig.6b for
the square one. Unexpectedly, in the internal region of rectangular bar there
appear the positive displacements despite a decrease in moisture content in
the whole rectangle. The shape of the dried body affects shrinkage on both
sides of the rectangle, being much stronger,however, on the longer side. This
asymmetrical shrinkage leads to some strange tension force appearing inside
the body. This effect is observed only for a rectangular bar. No such effects can
be observed for a square domain whose displacement wu, is shown in Fig.6b.

The drying of bars with square cross sections: (a) without any groove, (b)
with circular grooves, (c) with rectangular grooves and (d) with triangular
grooves (see Fig.7) is considered. It acknowledges the influence of the dried
body shape on the drying induced stresses.

v A
&
-
o 3
/
/
//
2L /. D
\V% NPy
©
2L

(@) (®) ; (©) ; (d) ;
Fig. 7. Cross-section of the dried bar with marked grooves

Fig.8 shows the distributions of normal stresses o, plotted on the half
of quarter of the bars cross-sections. The tensile stresses appear near the bar
boundary and the compressive ones in the internal part of cross-section. They
attain their maximum values on the boundary. For all the grooves considered
stresses reach zero at the border of the grooves, and they have maximum
values inside the grooves. This phenomenon is especially dangerous in the
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Fig. 8. Distributions of the normal stresses o, after five hours of the drying
process in the cross-section of the bar: (a) without grooves, (b) with circular
grooves, (c¢) with rectangular grooves, (d) with triangular grooves

case of triangular-shaped groove. One to this groove in stresses increase even
more than six times in comparison with a bar without grooves.

7.3. Moisture dependent mechanical properties

This numerical example is connected with the influence of the moisture
content on materials constants. We assume here that the stress-strain-moisture
relation (Eq (5.3)) is non-linear. The Young modulus F is assumed to be a
linear function of the moisture content X, and as a consequence of it the
constants M, A, yx and -y (Eq (5.3)) are also linear functions of the moisture
content.

In Fig.9 maximal values of the normal stresses ¢,; and oy, are shown. If
we take the mechanical constants to be independent of the moisture content
(averaged values), we obtain understated values of the maximum of tensional
stresses. In the case considered the discrepancy for the oy, stresses is greater
than 20%. The results obtained for the average Young modulus, that the
tangential stresses on the longer side are greater than those on the shorter
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Fig. 9. Maximal normal stresses: (a) o5 for E = E(X) (Eq (2.3),) at the point
(0,H), (b) 4q for £ = E, (Eq (3.1)) at the point (0, H), (¢} oy for E = E(X)
(Eq (2.3);) at the point (L,0), (d) oy for E = E, (Eq (3.1)) at the point (L,0)

one (see Fig.9b,d). But if we assume the mechanical constants to be linear
functions of the moisture content we see that the tangential stresses on the
shorter side are higher. It is due to the fact that this side has a smaller moisture
content, so it is more rigid and the stresses are higher.

7.4. Optimal control of computer simulation of drying

The mathematical model of drying may be used to construction of a com-
puter programme for simulation of the drying process. The simulated processes
are carried out in such a way that the drying-induced stresses never exceed
the stress limit.

The object of control in our considerations is a simulated drying process,
and precisely, the mathematical model of this process given by Eqgs (5.1) and
the boundary conditions (6.1) to (6.3). We formulate our problem as follows:
find such a programme of alteration of the drying parameters (temperature
T, and moisture content X,) at which the drying rate is possibly maximal
and the drying stresses never exceed the admissible stresses for a given dried
material. Thus, one must observe the tension stresses at the boundary of the
dried material, which are usually the largest. These stresses must never exceed
the admissible value but their necessary reduction during drying process, when
they tend to exceed the admissible stresses, ought to be carried out in such
a way that they remain close to the admissible value. Otherwise, the rate of
drying would reduced too much. This is the principle of maximum drying rate
(see also Leitman, 1966).

Fig.10 presents a controlled drying process from the beginning to the 11th
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Fig. 10. Optimal drying process

hour through a suitable alteration of the temperature 7,. The upper part
of the figure presents the moisture content alteration W and the lower part
illustrates the evolution of the stresses at the point (L, 0) for the following
programme: from the beginning to 8.6 hours of the drying process the drying
parameters were T, = 70°C and Y, = 0.035, since that time the humidity was
kept constant and the temperature of the drying medium was altered by the
computer automatically in such a way that the stresses have never exceeded
the permissible stress oy, = 200 kPa. Moreover, it is seen that the stress oy,
is nearly constant and equal to 200 kPa through the whole course of drying.
One expects that the drying rate in this case is the optimal one.

8. Short review of authors’ works concerning drying

Analysis of the mechanical behaviour of porous materials during drying has
been carried out by the authors for about ten years. Within the framework of
this studies two thermomechanical models have been developed: the first one
based on the thermoelasticity of fluid-saturated porous media, see Kowalski
(1987), (1990), and the second one based on the continuum mixture theory, see
Boer and Kowalski (1995). The models were extended onto permanent defor-
mations (Kowalski, 1996a) and the boundary conditions for them were widely
discussed by Kowalski and Rybicki (1995a), Kowalski and Strumitto (1997).
At the same time a number of numerical examples were solved. First, the in-
fluence of the deformation of the dried body upon heat and moisture diffusion
in its inside was examined, Kowalski and Musielak (1988). Then, the problem
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of shrinkage strains and stresses was studied (see Kowalski, 1996b; Kowalski
et al., 1992; Kowalski and Rybicki, 1994, 1996b; Rybicki, 1993, 1994) based
on the linearised model (Kowalski, 1987, 1990). 1D and 2D initial-boundary
valued problems, including various phenomena, were analysed. The second mo-
del of drying (Boer and Kowalski, 1995; Kowalski, 1994) including gas phase
and evaporation inside the dried body was applied by Felcyn et al. (1996), Ko-
walski et al. (1996a,c), Musielak (1991), (1996) to examine the drying-induced
strains and stresses. In these works the equations contained nonlinear terms
describing phase transitions. Then, other nonlinear phenomena and their in-
fluence on stress generation were investigated: the nonlinear elasticity for ce-
ramics (Kowalski and Musielak, 1995) and the orthotropic diffusion with the
orthotropic nonlinear elasticity for wood (Kowalski and Musielak, 1998). The
response of dried materials to drying conditions was analysed by Kowalski et
al. (1997), Kowalski and Rybicki (1995b). The results of these papers were
applied to the problem of optimal control of drying (Kowalski and Rybicki,
1996a, 1998).

Except for the construction of the drying models based on the phenome-
nological approach and the numerical studies connected with the computer
simulated drying processes the authors carried out also some experimental
investigation concerning both the drying processes (Felcyn et al., 1996) and
wetting processes (Kowal et al., 1992; Kowal and Kowalski, 1995; Kowalski
and Kowal, 1998). Three review papers concerning the movement of the phase
transition zone by drying (Kowalski and Musielak, 1989), the damage models
with the view to their applications to dried materials (Kowalski and Musielak,
1995) and the acoustic emission as a method for the diagnosis of the dried
materials damage (Kowalski and Musielak, 1992) were written as well.

Main results of the aforementioned research have been published in the
manuscript (Kowalski et al., 1996b).
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Procesy suszenia w kontekscie teorii zawilZonych materialéw porowatych

Streszczenie

W pracy przedstawiono termomechaniczny model suszenia zawilzonych materia-
16w kapilarno porowatych. Zaprezentowano réwnania podstawowe, wyprowadzone na
bazie rownan bilansu i termodynamiki proceséw nieodwracalnych. Rozwigzanie tych
réwnan pozwala na analize ewolucji rozkladu zawartodci wilgoci, opis deformacji su-
szonego materialu i analize naprezen suszarniczych. Odksztalcenia i naprezenia sg
analizowane na przykladzie pryzmatycznego preta suszonego konwekcyjnie (dwuwy-
miarowy problem poczagtkowo-brzegowy). Dyskutowany jest wplyw réznych warun-
kéw suszenia i ksztaltu przekroju suszonego preta na odksztalcenia i naprezenia przy
zastosowaniu liniowego i nieliniowego modelu.
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