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The paper deals with a flow of liquid containing dissolved gas through
a porous medium. Due to a pressure drop below the saturation pressure
along the flow course, bubbles of gas can be emitted in the liquid. They
are deposited in the pores of the medium, decreasing its porosity and
" permeability. Thus, the phenomenon of colmatage occurs.

This process is described by Henry’s equations (2.1), the equations of ba-
lance transport (2.2), motion (2.4), with initial boundary conditions (2.5)
taken into consideration. Basing on these equations there are obtained:
function of the position and time of the medium porosity &(z,t), func-
tion of the pressure distribution A(z,¢), and time-dependent discharge
of flow ¢(t). Diagrams of these functions are shown in Fig.1 + Fig.6.
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1. Introduction

In this paper a flow of liquid containing a dissolved gas through a porous
medium has been considered. During this process a pressure drop along the
flow course has been observed. When additionally conditioned, this drop can
result in bubbling of the gas in the liquid. These bubbles emitted from the
liquid are deposited in the pores of medium, which causes a decrease in the
porosity of the medium and, consequently, reduces its permeability. Such a
process is known as the colmatage. Those who are interested in this problem
are refered to the papers given References.
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2. Formulation of the problem

The phenomena discussed affect the discharge of flow and the pressure
distribution in the deposit. In this paper the flow at the constant pressure
difference is considered. Let us assume that a liquid containing a gas dissolved
of the concentration ng is forced into a one-dimensional homogeneous medium
of the length L under the constant pressure hg, and flows out of it under the
pressure hyp,.

We assume that hg is greater than the saturation pressure hj under which
the gas starts bubbling. Thus, the gas starts bubbling at a certain point in the
flow course, i.e. when the pressure drops to the critical value hg.

Let us introduce the following denotations

Ci(z,t) — gas mass dissolved in the unit volume of liquid

Cy(z,t) - volume of gas bubbles deposited in the medium pores unit

e(z,t) - function of the porosity of the medium

h{z,t) — function representation the pressure distribution in the
deposit

q(t) - discharge of flow.

Certain dependences among thus determined functions should be formula-
ted, l.e., according to Henry’s law, we have

Co when h(z,t) > hy
Copezt)  when h(z,t) < hy

b
We assume that the total amount of the gas emitted remains in the medium
and it is not dissolved again in the liquid.

In the model under consideration the changes in gas volume caused by the
pressure change are not taken into account. Thus, we assume that the flow
proceeds due to insignificant pressure changes.

Thus, we assume that the volume of gas bubbles separated from the liquid
is proportional to their mass, and we obtain the balance-transport equation
in the following form

602 (‘7'.7 t)
—— t+ a)qft
o1 19(t)
where o) is a certain proportionality factor.
Let us notice, that if the initial deposit porosity is denoted by &g than

acl (‘7"7 t)

o =0 (2.2)

6(.’1:, t) =€&p — GQ (.’L‘, t) (23)
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The equation of motion (cf Trzaska, 1986; Trzaska and Sobowska, 1992) is
another formula describing the process in question
Oh(z,1) aq(t)

g E@oP (24)

where ¢ is a certain constant.
The assumptions previously discussed give the initial boundary conditions

C\(z,t) = Cy e(z,0) = gp
(2.5)
h(0,t) = ho hL,t) =hy

Let us notice that hy < hi < ho.

3. Solution of the problem

Let the point at which the pressure takes the critical value Ay at the
moment t be denoted by z = f(t). Thush

h(f(t),t) — hy (3.1)

Then, let the inverse of f be denoted by ¢ = g(z) and represent the time at
which the pressure takes the value h; at an established point z. So, we have

h(z,9(2)) = (3.2)

See Fig.6.
Eq (2.1), after taking Eqgs (2.2), (2.3) and (3.1) into consideration, can be
rewritten as

oeet) 0 for 0<z< f(2)
ot aqé’%ﬂ;’_t) for f(t)<z<L

where a = a;Cy/hg. Introducing Eq (2.4)

0 for 0<z< f(¢
Oe(z,t) )

5 _[66‘%’2&)3 for f(t)<z<L
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Let us notice that for f(¢) < z < L the following equation holds

t
e(z,t) = *eb - 4aa/q2(t) dt
0

For z = f(t¢) we have

9(z)

E(f(t),t) =5(:E,g(:v)) =1 £4 — 4daa / q%(t) dt
0

It results from Eq (3.3) that for 0 < z < f(t), e(z,t) is a function of the

variable z only.
To retain the continuity of function e(z,t), the equality must be satisfied

n this area

9(z)
e(z,t) = ‘e — daa / q2(t) dt
0

To sum up, we obtain the following formula

()
{/53—4aagf Q?(t)dt  for 0< < f(t)

0
e(z,t) = (3.4)

t
\‘/68 - 4aa({q2(t) dt for f(t)<z<L

Integrating Eq (2.4) and introducing Eq (3.4) and taking tho conditions (2.5)3
and (3.1) into account, the following formulae are obtained

z

ho —/ ag(t) dz for 0<z< f(t)
0 9(z) 5
! (53 — 4aa / g2(t) dt)
Bz, t) = 4 ° (3.5)
hy — aq(t)[iB _tf(t)} for f(t) <z<L
| (ed —4aa [ ¢*(t) dt ’
R
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Now, the unknown functions f(¢), g(z) and ¢(t) appearing in the above
formulae will be determined. The following system of equations will be used

f(o)
ho — / aq(t)(d)x hy
gz 3
0 {/(68 —4daa [ ¢3(t) dt)

0

(3.6)
aq(t)[L — f(1)]

;/(68 - 4aaftq2(t) dt)3

0

=hr

Eq (3.6),; results from the continuity of function A(z,t) at the point z = f(t);
while Eq (3.6)7 is a consequence of the boundary condition (2.5)4. Eq (3.6);
is transformed into

f(t
o dz _ho— hg
9(z) ~ ag(t)
0 \/ (8 - 40a [ (%) dt)3
0

and both sides are differentiated with respect to t. The following is obtained

F'(#) __(ho—he)d'(2)
\% (68 " ton go:{(t» 20 dt)3 ag*(t)

Hence, after transformations and considering that g( f(t)) = t, we have

t ! 2
4 (53 - 4aa/(12(t) dt)a = _ﬁ%
0

Introducing the above formula into Eq (3.6), the following equation is obtained

q'(t) _hr—h f(@)
q(t)  ho—hx L — f(t)

which after integrating over t gives the following dependence

) =1 - (1 - z0)(XD) et (37)
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where zo = f(0), g0 = ¢(0).
The values of =z, go can be found examining Eq (2.4) at the instant
t = 0. Integrating this equation over ¢, with the conditions (2.5)2 3 taken into

consideration, the following is obtained
h(z,0) = hg — 20,
€0

This is a linear function and on the conditions (2.5)3 4 it has to have the form

ho — hr,

h(z,0) = hy — T (3.8)
Comparing both formulae obtained, we calculate
ho — hp)ed
g0 = ¢(0) = _g_(% (3.9)

Next, taking into account the condition (3.1) in Eq (3.8), zq = f(0) is found.

Thus
ho — hp,

hkzho— I

Z0

and hence (ho — hy)L
0 — Itk
— VY TR 3.10
o ho — hy, ( )
Eq (3.7) 1s introduced into Eq (3.6)9. An the integral equation is obtained

after transformations

a4 ho—hy 4 hg—hy

a(L — :L-O)]% % 3R—hs {q(t)} vy

t
4 2
50—4aa/q(t)dt:[—————
hy — h
/ k= hr

It is differentiated with respect to t. Introducing Eq (3.10) and after certain
transformations a differential equation of the following form is obtained
sho~hy g L4 . 4 ho-hy
¢ (H]a®)] T = —30a78L 8 (hy — hp)3(he — hr)gg " TTE (311)

The following function is the solution of Eq (3.11) when %’,:—z%% -3 # -1,
ie. 2hg —3hg +hp #0

3 _ hy—h
q(t) = ML—}”’)(I —~ At)%%o—snkihb (3.12)
a

where
. 201(2]10 b 3hk + hL)(ho - h[,)é'g

A
alL?

(3.13)
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If 2hg — 3h + hp =0, the following function is the solution of Eq (3.11)

q(t) = gg(h(;%e‘m (3.14)

where )
B = 2a(h0 — hL)ZE(Q)
al?

(3.15)

The function ¢(t) given both by Eqgs (3.12) and (3.14) is a decreasing function
of time. Fig.1 presents diagrams of this function for various cases.

q {l
90

—
14

Fig. 1. Diagrams of function ¢(¢) obtained from Eq (3.12) for different values of
initial saturation and terminal pressures, respecive

Introducing Eqgs (3.12) or (3.14) into Eq (3.7) we get the function f(¢).

We have
f&)y=1f1- hg:zzu —At)ﬂ%b—%;"z%] (3.16)
when 2hg — 3hy + hp # 0 and
f&)=L(1- %e‘%Bt) (3.17)
when 2hg — 3hg + by = 0. In each case this function is increasing, i.e.

(&) =2 £(0) = =zo.
Now, the function ¢ = g(x) will be determined. This is an inverse to the
function z = f(t), i.e.
t=glx) = z=f(t)
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Let 2hg — 3hy + h # 0. Now t is calculated from the equation z = f(t)
where f(t) is given by Eq (3.16). In this case for z > 2y we have

2(2hg—3hy +hp
L s B

A
When 2hg — 3hy + hp = 0, the function g¢(z) has the form

2 2L
g(z) = =In — for z 2>

53T -5 L (3.19)

W —

Now, it is possible to determine the functions e(z,t), h(z,t). It is enough to
introduce the determined formulae for the functions ¢(t), f(¢), g(z) into Eqgs
(3.4), (3.5) and made suitable calculations. When 2h¢ — 3hy + hy, # 0, then

(€ for 0<z<xg

(o) = ¢ o EEEM T o sy << f) (aa0)

ho—hy,

| eo(1 — At)TRo-3h A1) for f(t)<z<L

For 2hg — 3hg + hr = 0, the function e(z,t) is expressed by

€0 for 0<z< %L
e(z,t) =< 3T for IL<z< (1) (3.21)
goe 2Bt for f(t)<z<L

Fig.2 and Fig.3 present the diagrams of function e(z,t) at a given point
z or at a determined instant t for various cases.
The function h(z,t) is expressed by the following formula

(ho—c(hLLhL—)‘” for 0<z < o
L(hy — h hethr
h(z,t) =< hO—C(hO—hk)[<h0_(}fL)(LL_)m)]hO o for zo< < f(t)
\hL+C(h0_hLL)(1_‘”) for f(t)<z<L

(3.22)
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£ (a) xp<xj<xy<xy | & (b) Xg<Xx|< X<y
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Fig. 2. Illustration of the porosity variation at the determined points z > xo when
(a) 2hg — 3k + hy > 0, (b) 2hg — 3kx + hr <0
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Fig. 3. lllustration of the porosity variation at the determined moments of the
process duration when (a) 2hg — 3k + hy > 0, (b) 2hg — 3kx + R <0

and
3Ch—hy)

__Shg—hp)
C = (1 — At)Zho=-3hx+hL)
when 2hg — 3hg + by # 0, and

(ho—%we‘m for 0<z< 4L
2
Wz, t) = { ho — %%{Le*m for LL<a<f(t)

\ 2h +hL_ED_z_hL[(Q;_L)e%B‘+%L] for f(t)<z<L
3 (3.23)
when 2hy — 3hy + hp = 0.
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h 0=19<i11<I3<l3<i4

xo=f(t0) | -Vzﬁf(lz) Poxa=fly) Loy
xy=£{1)) 3=f(3)

Fig. 4. Illustration of the process pointing to the moving point ¢(¢) at which the
pressure takes the critical value of saturation hy

Fig.4 shows diagrams of the function A(z,t) for various moments of the
process duration.

Summing up, we want to say that the way in which the process proceeds
in affected by the sign of expression 2hg — 3k + Az in an essential manner.

If 2hg — 3hg + hy > 0, then the discharge of low ¢(t) (Eq (3.12)) at
the instant ¢ = 1/A has the zero value, i.e. the flow of a liquid through a
porous medium dies out. The function f(t) (Eq (3.16)) takes the value L for
t=1/A.

If 2ho —3hx + hy <0, the discharge of flow never taks the zero value, the
medium is never ”choked”, but by virtue of Eqs (3.12), (3.14) lim;_,, ¢{t) = 0.
Basing on Eqs (3.16) and (3.17) we have limg,, f(t) = L.

When ¢ > 1/A in the case of 2hy — 3hy + hy > 0, or as ¢t — oo for
2hy — 3hx + hy < 0, by virtue of Eq (3.20) the asymptotic distribution of
porosity in the medium has the form

€0 for 0<z <z
E(I’ t) == ho—h (3.24)
(L — z)(ho — hy) 30010y .
50[ The — hr) } for zo <z <L

I 2hg — 3hg + hy = 0, then basing on Eq (3.21) the following equation is
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obtained
€0 when 0Kz < %L

e(z, t) = (3.25)
%EOLZI when %L<1<L

From Eqs (3.22) and (3.23) the boundary distribution of pressure has the form

(3.26)

h(z) = ho when 0Kz <L
= hr when z =1
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Kolmatacja towarzyszaca przeplywowi zgazowanej cieczy przez o$rodki
porowate

Streszczenie
Tematem prac jest przeplyw cieczy zawierajacej rozpuszczony gaz przez osrodek
porowaty. W wyniku spadku ci$nienia ponizej ciénienia nasycenia na drodze prze-

plywu moze dochodzié do wytracania sie gazu w postaci pecherzykéw. Osadzaja sie

18 — Mechanika Teoretyczna
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one w przestrzeni porowej odrodka doprowadzajgc do zmniejszenia jego porowatosci
i przepuszczalnodci. Zachodzi wigc zjawisko kolmatacji.

Proces ten opisano réwnaniami Henry’ego (2.1), bilansu transportu (2.2) i ru-
chu (2.4), z uwzglednieniem warunkéw poczatkowo-brzegowych (2.5). W oparciu o te
réwnania uzyskano funkcje polozenia i czasu porowatodci odrodka e(z,t), rozkladu
cidnienia h(z,t), oraz wydatek przeplywu w funkcji czasu ¢(t). Wykresy tych funkeji
ilustruja rysunki 1 =+ 4.
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