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The problem of macroscopic behaviour of a periodic, elastic-plastic, fi-
brous composite material with frictional fibre-matrix interface is conside-
red. Anti-plane shear of the material is analysed. The problem is formu-
lated with the help of variational inequalities using the two approaches:
displacement-based and stress-based ones. The variational inequalities
are solved using the finite element method. In the case of stress-based
approach, the Prandtl stress function is utilized. The obtained effective
constitutive model of the composite can be used directly in analysis of
the problem of torsion of a composite bar with a fine, periodic structure.
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1. Introduction

The problem of determination of effective constitutive relations for a pe-
riodic, fibrous, elastic-plastic composite material is analysed. It is assumed
that there is no adhesion between components of the composite material on
the fibre-matrix interface, and the slip is governed by the Coulomb friction
law. The problem of anti-plane (longitudinal) shear is studied. It was shown
by Suquet (1985) that the mechanical properties of the considered composite
can be described by the generalised standard material model.

Following the concepts of homogenisation theory (e.g. Duvaut, 1976; Ben-
soussan et al., 1978; Sanchez-Palencia, 1980; Suquet, 1985), the cell problem,

'This work was written to commemorate the 40th anniversary of the Faculty of Civil and
Environmental Engineering and Architecture.
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which is to be solved in order to find the effective constitutive relations, is for-
mulated in two dual forms of variational inequalities, which are solved using
the displacement-based and stress-based finite element methods.

The problem of anti-plane shear of elastic composite with frictional fibre-
matrix interface was studied by Teng and Agah-Tehrani (1992), where the
composite cylinder model had been employed to simplify corresponding boun-
dary conditions. The same problemn was solved by Wieckowski (1995a) using
the dual finite element analysis. The problem of plane strain was analysed by
Lene and Leguillon (1981), and Lene (1984) but for other models of interface
slip, elastic and viscoelastic ones, respectively.

The problemn 1s interesting in analysis of torsion of a periodic, composite
bar reinforced with fibres, the diameter of which is very small with respect to
dimensions of the bar cross-section. The analysis of such a problem, based on
the direct discretisation of the cross-section of the heterogeneous body may be
very time-consuming even when using a very fast cornputer. The computation
time is reduced significantly when the problem is solved in two steps: firstly,
the effective constitutive relations of the material are determined solving the
appropriate boundary value problemn for only one repeatable cell of the body,
and secondly the standard discretisation 1s used in order to solve the torsion
problem for the homogenised material which, generally, exhibitis anisotropic
behaviour.

2. Formulation of the problem

We consider periodic a fibrs reinforced composite body, the parts of which
are composed of isotropic elastic-plastic materials. The structure of the body,
and its typical cell are shown in Fig.1.

The quasi-static evolution problem of anti-plane shear of the composite
material is considered. The plane of shear is assumed to be parallel to the
fibres, i.e. the macroscopic strain tensor has only two non-zero components, it
means Fso 7 0, Eopg = E33 =0, where o, =1,2

1

Byj = &; () = m!(‘) dy

€i; denotes the tensor of small deformations, meas(Y’) is the area of the basic
repeatable cell. The displacement ficld has the following components (see e.g.
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Fig. 1. Composite material structure, and its typical cell

Fig. 2. Displacement decomposition into the homogeneous part Fy,z, and periodic
oscillation w
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Suquet, 1985; Duvaut, 1976; Bensoussan et al., 1978)
Uy = B3T3 Uy = u = FiygZo +w (21)

where w = w(y,) is Y-periodic. The relation (2.1), is represented in Fig.2.
The wanted Y-periodic fields of displacements w(t), and stresses o(t)
satisfy the following relations:

(1) the strain-displacement relations

1
€3¢ = §(u3,a + Ua,3) on Y (2.2)

(ii) the equilibrium equation
O30, =0 on Y (2.3)
where o3, are the non-zero components of the stress tensor;

(iii) the Prandtl-Reuss constitutive relations, see e.g. Duvaut and Lions
(1976), Hill (1950)

o = 50+ 5,

o 1 -

€50 = 56703 on Y (2.4)
éga(’fga — 03&) <0 Vr e B

where a dot indicates the time derivative, £ and &P are the elastic and
plastic parts of strain, respectively, G denotes the elastic shear modulus,
and

B:{TER22 T3a7‘3a<7'g}

is the set of plastic admissible stresses, where 7q is the plastic limit for
shear stresses (the Huber-Mises yield condition is considered);

(iv) the continuity condition for the stress vector on the interface
of +o7 =0 on S
where
+ + .+ + _

O = 03,7y, Or = 03,7 ng = ~T, = Ng

n is the unit vector outwardly normal to S (see Fig.1);
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(v) the Coulomb law of friction on the interface (e.g. Duvaut and Lious. 1976)

lor| <g — [w]=0 . e
or| =g — ]/\]]2 0 [@] = -ror } at €5 if gly) >0
or =0 at 2 €S5S if gly) =0
(2.5)
where or =0of, [(1)] = ()" — (:)7, g is a non-negative function - the
limit for fibre-matrix tractions;

(vi) the initial conditions
w=20 O3 =10 for t=0
where t is the time variable.

In (2.5), g = g(y) = po,, where p denotes the friction coefficient. and
On = OapTigng iS the stress component nornal to the interface, which is caused.
e.g., by shrinkage of the matrix or external pressure acting in the z,z,-plaue.
Since the stresses o0,g are not unknown variables in the anti-plane shear
problem, the function ¢ does not depend on the solution o¢j3,. This means
tlhiat we have here a simpler case of the Coulomb friction law than in general.
This case 1s known in the literature as Tresca’s law of friction.

The displacement field w solving the problem (i)+(vi) is defined up to
an additive constant (see e.g. Bensoussan et al., 1978), which means that the
translation of the zxs-cross-section in the xzj3-direction does not affect the
field of strains and stresses. To avoid the problem of non-uniqueness of the
solution for displacement field, the following condition is added

/wdy:()

Y

3. VFinite element solution in displacements
3.1. Variational formulation
Let V and W be the spaces

V= {v EHY(Y\S): =0, v Y-periodic}
W = {v EBVY\S): =0 v Y-periodic}
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where H'(Y \ S) is the Sobolev space (see Adams, 1975), and BV (Y \ S) is
the space of functions of bounded variations (see e.g. Matthies et al., 1979).
Let P be the set

P= {T € [LAY))?: 7(z) € B(z) ae on y} (3.1)

where L2(Y) is the space of square integrable functions (Adams, 1975), and
the abbreviation a.e. means “almmost everywhere”. Let [ = [0,T] be a time
interval, where 7 > 0.

Let us formulate the problem in the variational form. It follows from
Eq (2.4) that

) 1.
(53a - %USQ)(Tl}a — 030) <0 vreB

Integration of the above inequality over Y \ .5, and using Eqgs (2.1) and (2.2)
and the definition of set P (3.1) lead to the following inequality

1. 1 .
[ (Ggose = 51) (750 = 03) dy > S/ Bra(rsa = o3a) dy VT € P
Y\S

The equilibrium equation (2.3) implies for periodic fields: o, v, w

/ 030,0(v — W) dz = /UT([['U]] ~[@]) ds +
Y\S S
(3.2)

- / 030(7/,61 - w,a) dy =0
\s

Because the following inequality is true, see Duvaut and Lions (1976)
or([vl = [w]) = g(|[v]| = [[@])})  on S
Eq (3.2) leads to the inequality
[ osalva—tia) dy > [l =Ll ds  voev
Y\S s

Therefore, the considered problem can be written in the variational form
as follows:
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e Find (o,w): I — P x W such that a.e. on [

b(o, 7 —0) - (elw), 7 —0) > (E, 7 —0) VT €P
(o,e(v —w)) > j(v) — j(w) YveV (3.3)
a(0)=0

where the following notation is used

1 n
b(x,7) = / %X-’Jaﬁ%a dz (x,7) = / X3aT3a 4T
Y Y

e, =

= —v
3o 9 ¢

The variational formulation (3.3) was given separately for the plasticity and
friction problems e.g. by Duvaut and Lions (1976), Glowinski et al. (1976), and
Glowinski (1984).

3.2. Finite element approximation

The solution to the problem is found, using an incremental procedure, for
finite number of time instants ¢y,...,%5,....¢n =T (0 <t < ... <1y <
. < ty). The time derivative is approximated by the difference quotient

Xn _ Xn—l B Axn

tn - tn—L Atn

IR

x(tn)

where x" = x(t,).

Let 7y be a triangulationof Y, Y = K;, K;NK; = 0 for ¢ # j, where
K; is the triangular subdomain of Y. Let Fy(K) and P, (K) be the spaces
of constant and linear functions, respectively. We define the spaces

Hy={re[’W): 7 B

€ [R(K)], Kie 77;}
' (3.4)

th{UEV: o € Pk, Kieﬁl}

We can write the discrete problem as follows:
e For n=1,2,...,N, find (o}, w}}) € P, x V), such that

n—1
op =0, "+ Aoy wit = wi™t + Aw

]
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and

b(Aop, T —op) — (e(Awyy), 7 — o) 2 (AE™, T —0o},) V1€ P,

(oh,e(v — Awy)) 2 j(v) — j(Awp) Vv € Vy,
o) =0

where F;, = PN H,,.

Using outcornes of convex analysis (Ekeland and Temam, 1976). we cau
notice that the increment of displacement Awj € V} satisfy the inequality
Yv eV,

(P(O’ZL '+ 2G(e(Aw) + AE™)), e(v — Aw}{)) +j(v) — j(Aw)) = 0 (3.9)
where P is the operator of projection such that

inf I = oll* = |P(0) = o|)® (3.6)

|7l = /b{7,7). In the considered problem, the operator has a very simple
form

where |o| = /03,034
Inequality (3.5) is derived in a more detailed way by Wieckowski (1995b)
for the torsion problem, see also Duvaut and Lions (1976), Johnson (1981).
The stresses a the instant ¢, are calculated from the expression, see Jolin-
son (1977), (1981), Samuelsson and Froier (1979)

ot = P(of 4 26(e(duf) + AE"))

3.3. Iterative solution

Let Aj, be the space

Ay = {/\EL2(S) : AI?-QSEPO(FimS)’ K, EWL}

The following procedure is utilized for each instant ¢, € I:

(i) initialization of Aw} € Vj and X € Ap:

2w =g A0 =g
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(ii) calculation of the successive estimation of Aw;t(i) and A% from the
equations

a(AwZ(i) — sz(iﬁl),v - Aw:(i)) =
= —(Plop~! +2G(e(Awp V) + ABM), e(v — AwpV)) +

1 : (1
-5 [ Al - (aw P ds vt
S

A8 = max{—l, min(1, A0 4 ngw:(i_L))}
until the required accuracy is achieved, where

1
a(u,v) = / §Gu)av)a dy w >0
Y\s

4. Finite element solution in stresses

4.1. Variational formulation
Let X be the space of statically admissible fields of stresses
X = {7‘ € [LA(Y))?: T3a,a = 0o0nY, T3ana‘6y Y-anti—periodic}
and let C be the following set
C= {T c[LAY)?: |rr| <g ae. on S}
The constitutive relations (2.4) imply the equation
O30 — 2G (€30 — €5,) = 0

Multiplication of both sides of the above relation by the expression (734—034),
integration over the domain Y \ S, and the use of the Green formula lead to
the following equation

1 . .
/ ﬁUI}a(TI}a - U3a) dy - / E‘Ja(T3a - Uf}a) dy +
Y\S YAS

1 . 1 . )
+3 / wiry —or)ds = 2 /ﬂwH(TT —or)ds — / 8 (136 — 030 )dy
8y 5 s
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The friction law (2.5) implies the following inequality, fulfilled on S (see
e.g. Duvaut and Lions, 1976)

[w](rr —or) 20 vreC (4.1)

From the conditions of periodicity for displacement and stress fields it
follows that

/u'}(Tga — 03a)Ng d5 =0 Yw € W V1,0 € X (4.2)
oY
Eqgs (4.1) and (4.2), and the inequality in Eq (2.4) lead to the inequality
1 . .
/ EUSQ(TLSOL — 03q) dy 2 / B (TSQ — 0134) dy
Y\S Y\S
which is true for each 7 and o belonging to the set

K=XnpPnC

Thus the problem can be formulated in stresses as follows:

o Find o € K such that a.e. on I =10,T] (T > 0)

b(d,T—U)Z(E,T—U) vr e K
(4.3)

a(0)=0
4.2. Finite element approximation

The same type of time discretisation as that used for the displacernent
formulation, is considered for the dual one (4.3). The statically admissible
fields of stresses are constructed using the Prandtl stress function, 1, i.e.

T3 = eaﬁw,ﬁ

where the function v is approximated using the triangular element with linear
shape functions, which means that % is an element of the following space

Z, = {1/) e H\(Y): |

= PUK;), Ki€Th)

It can be proved that fields of stresses belong to the space

X, = X N H,
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where the space Hj is defined in Eq (3.4);.

Stress fields generated by the function ¢ € Z,, satisfy the equilibrium
equation (2.3) only inside the cell Y. The stress field, to be statically adinis-
sible, should also satisfy the periodicity condition implied by the definition of
the space X. This condition is fulfilled by periodic location of nodes along
the cell boundary 9Y, and the use of the method of Lagrange multipliers (see
Wieckowski (1995¢) for details).

The discrete problem has the following form:

e or n=1,2,..., N, find o} € K} such that
oy, = a,’f”l + Ao}
b(Aol, 7 — o)) = (AE™, 7 — o}}) v € K,
o) =0

where
K,=X,nPNC

4.3. Iterative solution

Again, an adaptation of the iterative algorithin utilized to the problem of
torsion of elastic-plastic composite bar with frictional interfaces is applied (see
Wieckowski, 1995b).

Let us define the following spaces

M= {pel’(Y): p _€PR(K), Ki€Ti)

Ap={re L’ (v): A

s EPUEINS), Ki€Th

For each time instant #,, the following iterative procedure is utilized:
(1) initialization of p € My and X € Ay:
N(O) = 20—
(i1) for each iteration, calculation of the successive estimation of Aaﬁ(i), ()
and A from the following equations

b(Aar D 7 — o™y = (AR 7 — oY) 4

—b(u(i_l)ax(i_(),’r - O;:(i)) - //\(i_L)(TT - arrfsf)) ds V7 e X,
S
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9= (1= )0

i)
0 for affsl =
AD = ¢ max [max(AEY,0) + 4,0]  for 0% >0
min[min(/\(i_l), 0) — A,O} for UT%) <0
until the required accuracy is achieved, where

A=w(1- 9)|) w>0 (4.4)

n(z
ITh
The multiplier A can be interpreted as the slip increment defined on the
corresponding segment of S.

5. Effective constitutive relations

1t was shown by Suquet (1985) that mechanical behaviour of the conside-
red composite body can be described by constitutive model of a generalised
standard material, where the total deformation of the body can be split into
the elastic and inelastic parts. In the case of anti-plane shear the composite
material can be treated as a linearly elastic-plastic body with anisotropic har-
dening. Let us assume that the directions z; and z9 are parallel to the edges
of rectangular repeatable cell of the composite material, which means that
there exists the material symmetry with respect to z3z,- and z3xe-planes.
Let B®% denote a set of plastically admissible stresses for a homogenised
material equivalent in macro scale to the considered composite

T3] — a31\2 | /T32 — (322
P (P (BEYa) 6
T031 7032

ot
—_
~—

The effective constitutive relations can be written as follows

Fyo = B+ B,
where the elastic and plastic parts of the strain rate satisfy the following
relations

By = zGeﬁ T (no summation over «)

EP (Tao — G34) O Viy, € B
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In Eq (5.1), a3, denotes the kinematic shift which depends on the plastic

B p -
strain FEy,, it means

30 = 3a(EL) (no summation over ¢) (5.2)

The kinematic shift function s, can be found by solving the cell problem
formulated in Eqs (3.3) or Eqs (4.3). The effective shear modulus G&7 for the
Z3Z4-plane can also be found from the solution to the same problems but for
sufficiently small strain F3,. The effective plastic limit 7y3, is equal to the
value of mean stress, which corresponds to the initiation of plastic zones or
slip on fibre-matrix interface, caused by shearing in the zsz,-plane.

Eq (5.2), obtained from numerical analysis as a set of pairs (E},, a,),
can be used directly for defining the hardening function or can be represented
at its curvilinear part — with satisfactory accuracy from the engineering poiut
of view — by the following function

Tya = aa\/(baEga +1)2 -1 a=1,2 (no surnmation over «) (5.3)

where a, and b, are constants of values such chosen that (5.3) is well-fitted
to (5.2).

6. Numerical results

Let us consider a composite body with a square basic cell, I} =1y =1
(see Fig.3), for which the ratio of fibre diameter to the cell side length is
R/l =0.75.

Calculations have been done for the following values of elastic constants:
E = 35GPa, v = 0.35 for the matrix (epoxy resin), and FE = 209 GPa,
v = 0.3 for the fibre (steel); and the plastic limits for shear stresses, 79: 173.2
and 11.55 MPa for matrix and fibre, respectively. Calculations have been done
for two values of limit for the shear tractions on the fibre-matrix interface, g¢,
8 and 10 MPa. The cases when both the fibre and matrix are assumed to be
perfectly elastic, and when there is no slip on the fibre-matrix interface are
also considered. All the five variants of data analysed are shown in Table 1.
The load has been applied as follows: E3, = 0.005¢, Esy = 0, t € [0,1]. The
load increment has been set as 5- 1075,
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21,

Lj

AR

Fig. 3. Dimensions of basic cell

Table 1
variant | op [MPa] | og [MPa] | g [MPa] |
fibre matrix
1 300 20 00 (no slip)
2 300 20 8
3 00 00 8 (elastic case)
4 300 20 10
5 o0 o0 10 (elastic case)
The following convergence criteria have been used to stop the iterative
procedures
lg — gt~ V)

Pl <e=1-10"1 for both the solutions

]U(i), -9 4
max (0, PL=9) <e=1-10""  additionally for the statically
9 admissible solution

where ¢ denotes the vector of degrees of freedom. Parameters w involved in
Egs (3.7) and (4.4) have been set as 1-107% and 5-107°, in the displacement
and equilibrium models of FEM, respectively.

For a square repeatable cell with a circular fibre, the composite material
has the same properties with respect to both the directions z, and x4, i.e.
GST = @St = G, 131 = 1o = 0.

The effective shear modulus and plastic shear limit, obtained from both
the models of FEM are shown in Table 2.
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Table 2. Effective properties of composite

unit | displacement | equilibrium I mean
model | model L value
G*" | GPa 3.2756 3.2605 [ 3.2680 |
7o | MPa g=o0 7.0600 6.9075 | 6.9837
g = 8MPa 4.7986 4.8049 4.8017 |
g = 10 MPa 5.9959 6.0061 6.0010 |

The relation between o3 and FE3) obtained by the use of the displacernent
approach to FEM is shown in Fig.4. The figure shows also the relative diffe-
rence between the results obtained from both the finite elements models used.
The maximurm difference between botlh the results does not exceed 1.3%.

The hardening functions (5.2) are represented in Fig.5 — they have been
obtained as mean values taken from both the finite element solutions: kine-
matically and statically admissible.

Calculations confirm that the shift function g3, can be represented in the
form (5.3). Two parameters a and b (in the case of square cell a; = ay = «,
by = by = b) involved in Eq (5.3) have been found as a result of minimization
of the following expression

Z(a (bES,, +1)2—1— agai)Q

t

where Ef . denotes the plastic strain obtained for the ith load increment,
and @34 = 034 — To- The values of both Egai and 3o are considered as
mean values obtained from both the finite element solutions: kinematically
and statically admissible. A gradient minimization method (see Bazaraa and
Shetty, 1979; Kreglewski at al., 1984) has been employed to find parameters
a and b. For example, in the case of variant No. 3, the following values have
been obtained

a = 22.572MPa b=12.758

and the relative difference between a3, and @&, in the sense of the least
square method is

\/E {WE;F;M) - aSaz} i

/ 9
2. A

which can be considered as a small value from the engineering point of view.
In Fig.6 + Fig.8, the plastic and slip zones are shown. Diagrams (a) and
(b), in these figures, represent the results obtained by the displacement- and

=2.02%

2 — Mechanika Teoretyczna
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Fig. 4. o3,- L4, relations



LONGITUDINAL SHEARING OF ELASTIC-PLASTIC FIBROUS COMPOSITFE... 871

D

Kinematic shift [MPa]
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10

Average plastic Strain

Fig. 5. as)-E%, relations

stress-based methods, respectively. The plastic zones plotted for the variant
No. 1 for the two values of strain Fj3;, which correspond to the beginning of
non-linear response of the composite and its limit value, is given in Fig.6.

The next two figures present the plastic and slip zones obtained for variants
No. 2 and 4, respectively. It can be noticed that the initiation of slip zones
corresponds to the point on the &-E path at which the material starts to
behave non-linearly. The initiation of plastic zones corresponds to the points
at which the &-F paths (Fig.5) for variants 2 +4 start to fork. The instant, at
which plastic and slip zones cover all the height of the basic cell, corresponds
to the horizontal part of the &-F path. The comparison of Fig.7 and Fig.8
reveals that the plastic zones start to appear heigher (for the right upper
quarter of the cell) for a lower value of g.

Moreover, the non-monotonic strain evolution for the component F£3, has
been considered according to the upper diagram presented in Fig.9. The cor-
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NS

125, =0.00500

Fig. 6. Plastic zones, no interface slip

responding &3;-£3, paths are shown in the lower diagramn in the same fgure
for variants of data No. 4 and 5 — the Bauschinger effect can be observed.

The results show a very good agreement between the two applied appro-
aches although the number of elements used to discretisation of the quarter of
the cell is relatively small — the region is divided into 336 triangles.
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\

[, =0.00390

Fig. 7. Plastic and slip zones, g =8 MPa
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Podluzne $cinanie sprezysto-plastycznego kompozytu wldknistego

z uwzglednieniem tarcia na powierzchniach witdékien

Streszczenie

W pracy rozwazono zagadnienie efektywnych wlasnosci periodycznego, sprezys-
to-plastycznego kompozytu widknistego, poddanego stanowi anty-plaskiego Scinania,
uwzgledniajac zjawisko tarcia na powierzchni laczacej widkno i matryce. Zagadnie-
nie zostalo sformulowane w przemieszczeniach 1 naprezeniach w postaci nieréwnosci
wariacyjnych, ktére rozwiazano za pomoca metody elementow skonczonych. W przy-
padku sformutowania naprezeniowego zastosowano funkcje naprezen Prandtla. Otrzy-
mane efektywne zwigzki konstytutywne dla rozwazanego kompozytu moga by¢ bez-
poérednio wykorzystane w analizie zagadnienia swobodnego skrecania preta kompo-
zytowego o periodycznej strukturze wldkniste].
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