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Widespread application of viscoelastic materials the structures, which
have to operate for a long time, requires better understanding of their
mechanical behaviour and fracture properties. It has been observed that
time dependence is of great importance in determining the rate of crack
growth. The effects of viscoelastic characteristics on creep crack growth
initiation are studied in the paper by using the finite element method. In
order to define displacements and stresses around the crack tip in linear
isotropic viscoelastic media new formulation in the time domain has been
produced. We formulate a new constitutive equation in terms of the stress
and crack opening intensity factors, using the correspondence principle
by means of Volterra integrals. Afterwards, the fracture parameters are
computed with an incremental viscoelastic formulation.
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1. Introduction

When the linear viscoelasticity theory is applied to the analysis of fracture
characteristics of a cracked body, it is important to predict the critical time
which expresses the crack growth initiation. Though for a creep loading from
the correspondence principle (Schapery, 1984) it follows that stresses remain
constant in time, the experimental results indicate that cracks in viscoelastic
materials do grow, even under constant loads well beneath the elastic stress
intensity factors. The effect is due to the existence of a failure zone (Schapery,
1975) where the crack tip can propagate. The failure zone size is proportional
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to the stress intensity factor level which reveals a local highly non-linear be-
haviour. If we consider the amount of energy dissipated in the crack growth
process, the crack tip speed depends on the viscoelastic characteristics and the
stress intensity factor value. In order to study the crack initiation phenomena,
several authors have used a far field solution by means of the J-integral type
approach. Though this technique is effective in critical time evaluation, me-
chanical fields in the crack tip viciuity cannot be determined precisely in the
time domain.Therefore, we should introduce the energy release rate into our
considerations for the amount of energy dissipated in the crack tip propaga-
tion to be known. We cannot, however, predict the failure zone size and the
crack growth speed. In order to develop the existing numerical techniques, this
paper deals with a new incremental fracture law which enables us to evaluate
the energy release rate and mechanical fields around the crack tip in the time
domain. The concepts of Schapery and Brincker are used to apply the finite
element method for viscoelastic fracture to the determination of the conditions
for crack growth initiation and local mechanical fields which are defined by
the stress and crack opening intensity factors.

First, a review of the Brincker formulation is presented. The stress and
strain intensity factors enable us to define the singularities of stress and strain
fields, respectively. In order to realise the coupling between global energy rele-
ase rate and local mechanical fields, we introduce new crack opening intensity
factors which represent the crack lips state and allow for evaluation of the
amount of energy dissipated in the crack growth process.

In Section 2, we recall the linear viscoelastic incremental formulation by
means the finite element method (Ghazlan et al., 1995a,b). The coupling with
the local fracture characteristics is proposed by using a spectral decomposition
of the reduced viscoelastic function. Coupled with the J-integral computation,
this formulation allows for determination, in the time domain, of the energy
release rate, stress and crack opening intensity factors courses.

Finally, the last part presents a numerical application which demonstrates
the validity of the formulation. Basing on the creep crack growth initiation,
numerical results are compared with the analytic ones.

2. Crack tip parameters

2.1. Local mechanical fields

According to the linear viscoelastic theory, Brincker (1992) showed that,
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for isotropic materials, rmechanical fields in the crack tip vicinity can be defined
by two stress intensity factors KS,U) and four strain intensity factors Cjs and
Dg, ((8,7) € [1,2]?). Having the polar co-ordinates (r,8) with the origin at

the crack tip the stress and displacement fields are defined as

Uaﬁ("',ﬁ,t) = K( )( k t)faﬁ’Y( )

vamr (2.1)
a(r,0,1) = [9as (0)C (1, b, 1) + hap(0)Dgl, b, 1)] 4/ -

where k denotes compression and p stands for the shear modulus. f,s,, gus
and hqp are well known angular functions. According to the correspondence
principle, the relationships, between stress and strain intensity factors, can be
defined by the Boltzmann form

t (o)
1 0K
Clt) = / 2u(t —7) or dr
0-

) 0K
Dp(t) = _/Qp,t—T or ar

If v designates the Poisson ratio, A is defined as

)= 3—4v for plane strains
] B-v)/(1+v) for plane stresses
2.2. Crack growth initiation criteria

The theory of Schapery takes into account the existence of a failure zone
in the crack tip vicinity (Schapery, 1975). Consider the following two integrals
(see Fig.1)

Jy = / (@dzy — oinjuiy) dS

e (2.3)
Jf = /(@d.’l;g - Uz‘j'ﬂjui,l) ds

Ca

where @ denotes the pseudo-strain energy density and will be detailed in the
next section. By virtue of the properties of line integral invariance and taking
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-

failure zone
Fig. 1. Integration domain and failure zone

into account that fact that we integrate along the paths C; and Cj, we have
(Schapery, 1984)
Jy = Jf (2.4)

If o, represents the stress distribution in the failure zone for a crack opening
mode, Jy is defined as the work Wy required to create the crack extension in
this zone. If [Uj] designates the crack opening displacement (see Fig.1) Wy
can be evaluated as follows

Jp = omlUs] = Wy (2.5)

Eq (2.4) is very important because it allows for direct determination of Wy
with no necessity for forming any hypothesis on the size and behaviour of
the failure zone. Therefore, J, can be calculated by means of a line integral
where the material is considered as linear and viscoelastic. So, at the time #;,
considering Eqgs (2.4) and (2.5), the crack growth initiation is determined by

Jo(ti) = Wy (2.6)

2.3. Crack opening intensity

We can also evaluate J, by using the well-known formula (Kanninen and

Popelar, 1985)
oP(t) AP
Jp(t) = ———— = lim ——— 2.7
o(t) da Avs0 Aa 27
Jy 1s the amount of energy dissipated at an unit step of crack propagation
and J, denotes, in other terms, the energy release rate. Then, & stands for
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the free energy which is not dissipated in the material. Then, according to e.g.
Blackburn (1972), & can be defined by

1
P = J0aptap (2.8)

In order to obtain a relationship between the energy release rate and singular
fields around the crack tip, we rewrite Eq (2.7) as follows

Aa

1
40 = 5 [ oaale, OIULI€ 1) € (29)
0
.
— |
1 ' : :
/\” ® il AT g
2 ; | 1
T | a :
X )
S S0 ;
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Fig. 2. Virtual crack extension in opening mode

Different notation is used in Fig.2. According to Dubois et al. (1996), the
most common way to evaluate relative displacements of crack lips is to define
crack opening intensity factors KE,E)

V(€' 1) = K 25—” [Ua](€',1) = KEE)\/g (2.10)

where ¢’ is the crack lips length between the crack tip and the considered
point. By virtue of Egs (2.1) in (2.10) the relationship between the crack
opening and strain intensity factors is given by

K1) = 2(Cp(t) + Ds(t)] (2.11)
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Substituting Eq (2.11) into Egs (2.2), we obtain the following integral

oK)

(o
8
or

Kﬁkﬂzi/C@—T) dr (2.12)
J

where C(t) is the reduced viscoelastic compliance introduced by Schapery
(1975)

o=

To simplify integration of Eq (2.9), we introduce the opening crack growth
Aa. Upon the definition of crack opening inteusity factors (Eqs (2.11)), the
dissipated energy A® is

(2.13)

KD )KO @)

Ad = -
8

Aa (2.14)
However, by employing the superposition principle we can generalize this ap-
proach to cover a mixed mode problem. Then, by virtue of Egs (2.14) and
(2.7) we can write

KWK W) | KO 0KP ()
8

Ju(t) = + (2.15)

3. Numerical procedure

The energy release rate, stress and crack opening intensity factors courses
in the time dom=»in have been implemented into the finite element software.

3.1. Linear viscoelasticity formulation

For a linear viscoelastic material the constitutive relation may be represen-
ted in terms of the Volterra integral. When considering a non-ageing material
we have (Salencon, 1983)

t
Oo
Eaf = /Jagfﬂga—:é dr (3.1)
o-
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where J,g+5 is the generalized creep compliance function and ¢, 7 represent
time. To obtain the stress and strain state at any time we apply the spec-
tral decomposition technique proposed by Mandel (1966) to each creep tensor
component

1 AR st
oo = o+ o+ 3 [ -] @
aﬁ'yé aﬂ'yé m=1 aﬁ’y&
where )‘SZ')M = 7;/)75/7"(172’))15 gzl)a’yé, (’L S [0, 1, aeey M]) and 7’&7’[3767

(j € [oo,1,...,M]) denote the spring modulus and dash-pot viscosi-
ties,respectively. The decomposition enables us to represent J,g,s in terms of
a generalized Kelvin-Voigt model comprising M elementary cells (see Fig.3).

(€1 () (M)

(0 (o) k 1kl / ikt . k I_Ik{
ki_ikl 7iiki o N AR
o Aﬂj—[_mjj»
(1 () 4, (M)
ikl 77t any

Fig. 3. Generalized Kelvin-Voigt model

Using a finite difference integration and linear approximation of stresses
at each time step (At, = t, — t,_;), the incremental constitutive equation
reads (cf Ghazlan et al., 1995a,b)

(Afaﬁ)n = aﬁ’yé(AO"y&)n + gaﬁ(tn—l) (3'3)

where (Aeqg)n and (Ac,s)n are the strain and stress increments in the time
step At,, respectively. The memory effect of all mechanical fields is stored in
a pseudo-strain £,4(t,—1) which is released in the last increment

Cottn) = { 254 3 [ (1 =) oo+

naﬁ'yé m=1 MupB~4

+ Zem n1)(e” Aafira Bt -1)

(3.4)

where eg’gié(tn_l) is the strain part of the mth Kelvin-Voigt cell of the creep
component J,345 taking the following value
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1 -2 At
65172’)76 (tn) = k(m) (1 —e Tabrd )076(tn—1) +
afB~é
1 1 Al Ay
1- 1 — e "ass ™ ) | (AGns )y + (3.5)
(m) [ (m) < )J yesm
kaﬁ76 AaﬁvéAt"
(m)
+e_’\a676Atnggg,)yé(tn_1) (without summation)

where M,g+s stands for the component of a pseudo-compliance tensor

1 Aty

Mopys = Wg—é + M +
afy afy
(3.6)
M
]_ ]_ _,\(m) At
IS R SR T
(m) (
m=1 kaTgvé AaTZZréAt"

In order to take into consideration the hereditary phenomena caused by a
suplementary loading, we propose to invert the incremental constitutive law,
represented by Eq (3.3)

(Adap)n = Dapys(Aeys)n — Gap(tn-1) (3.7)

This inversion allows us to define D,g,s; as the inverse of the compliance
tensor and 7,4(ty—1) as the pseudo-stress given by

Gap(tno1) = Dagysbs(tn_1) with  D=M"" (3.8)

The study of a complex problem demands numerical treatment. Then, the
incremental equation (3.8) can be introduced into the finite element algori-
thm derived from the principle of virtual displacements, (see Ghazlan et al.,
1995a,b). If the increment of nodal displacement vector is denoted as {Au},,,
the equilibrium equation can be written as

Kr{Au}n = {AF )y + {F} (tn-1) (3.9)

{AFet}), denotes the increment of nodal force vector. {F¥*}(t,_,) denotes
the suplementary viscous load vector, which represents the complete mecha-
nical history. If B is the strain displacement matrix and {2 is the discretized
domain, the vector is defined by

(P (tn-1) = [ BTMEE)tn-1) 42 (3.10)
i
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Kr designates the equivallent stiffness matrix

Kr = /BTM‘lB 0 (3.11)
£

Now, we propose to adapt the behaviour formulation for the crack tip vicinity.
3.2. Incremental fracture formulation

(l) (m) (M)

k k
(0 (%) 4 s
W A/f %—L_]Dj» 1 S -
[0 () (M)
7z 74
K(-‘T)

i

Fig. 4. Spectral decomposition of C(t)

Considering the similarity between the mechanical behaviour (3.1) and
the relationship (2.12), between the stress and crack opening intensity factors
development of the spectral decomposition technique is straightforward (cf
Dubois et al., 1997). We propose a generalized Kelvin-Voigt model which al-
lows us to determine the reduced viscoelastic compliance evolution in time. If
the input data is the stress intensity factor Kl(;’) while the output is the strain

intensity factor K(E), according to the notation given in Fig.4, the reduced
viscoelastic compliance C(t) reads

C(t) = — )+§:[

k( m=] c

+(1- e-Aﬁm")] (3.12)

where ,\ﬁ’”) = kgm)/ﬂﬁm)

Different constants appearing in Eq (3.12) must be compatible with those
appearing in the time evolution (2.13). Using an extention of the behaviour law
modelling (3.3), the incremental fracture formulation enables us to relate, for

each time step Aty the increment of crack opening intensity factors (AK[(,E)),I

with the stress intensity factors increment (AK E;’))n as follows

(ARG ) = Co(AKE )+ B (tn-1) (3.13)



216 F.DUBOIS ET AL.

where C), is a pseudo-reduced function of viscoelastic compliance which de-
pends on the spectral decomposition of C(t) and the time increment At,.
By analogy with Eq (3.6) assuming that the stress intensity factor is linear in
each increment, Cj, takes the following form

p_ 1A, X L ™ at,
Ch=—T5+ =+ X o5 [1- AL (1-e )] (3.14)
k¢ 2n¢ m=1 k¢ ¢

The hereditary behaviour is taken into account in the crack tip vicinity through
Kée)(tn_l) which reflects the influence of the complete history of crack opening
intensity factors.

Upon generalization of Eq (3.4) ?ée)(tn_l) can be defined as follows

K Atn - b - at, (o)
Rt = {20 S [ (- o) )
Nc m=1 kc
(3.15)
M m) (m) A
+ Z Kﬁ (tn_l)<e_’\c tn 1)
m=1
where
(m) _ 1 -alm At, (o)
Ky (tn) = Elm )(1 € )Kﬁ (tn-1) +
1 1 A A, (o)
+k(m) [1 )\(m) (1 € )](AKg )n+ (3.16)
te _/\( )At K( )(tn l)

Finally, in order to compute the energy release rate and kinematical and stati-
cal fields around the crack tip, it is necessary to combine Egs (2.15) and (3.13).
If only the opening mode is considered for each value of At,, the system of
equations proposed by Chazal et al. (1998) can be used

To(tn) = a[(AK O)a)? + b(AK), + ¢ (3.17)
where a, b and ¢ are constants, released at each time increment
B 1
a = gﬁ;
p— OB (tnmt) + K[ tn 1) = K17 (tn-1) (3.18)
8C}, ’

CLE (tay) = K ()

C:KEE)(tn_l) 80!
n
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To solve Eqgs (3.18), we can develop the kinematic opening displacement me-
thod. Using a local displacement interpolation, by virtue of Eqs (2.10), it is
easy to compute the crack opening intensity factors for a complex mode confi-
guration. However, this local method is accurate if the mesh around the crack
tip is highly refined. To overcome this obstacle, we opt for a global technique
which is based on the J,-integral computation.

3.3. Energy release rate computation

The J, integral, which is based on a path independent line integral, poses
difficulties in the integration of the fields, defined at the Gaussian points. Ho-
wever, in contrast to the J-integral technique, the G method, used in elastic,
viscoplastic or dynamic fracture, allowsus to determine the energy release rate
by a surface integral, see Destuynder and Djaoua (1981), Destuynder {1983).
By using the pseudo strain energy @, this integral can be easily extended and
defined as

Go = / (= Dby & + Oagtiaxdes) AV (3.19)

Fig. 5. Integration domain of G#

The integration domain V is a ring (see Fig.5) which is bounded by two
contours defined by g. This mapping function is continuously diferentiable
as in the case of ¢ = 1 and @ = ( inside the ring and ¢ = 0 outside it.
This technique is very effective for simple fracture modes, for a mixed mode
fracture it reveals, however, an energetic separation, which is dealt with in this

paper.
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4. Numerical applications

P R —
80mm

— 10 MPa

10MPa —4——

200 mm

| ~ 500mm

Fig. 6. Central cracked plate mesh

The general formulation, developed in this paper, is implemented into the
finite element software Castem 2000 (produced by the French Energy Atomic
Commission CEA) (Charvet-Quemin et al., 1986). In order to validate this ap-
proach, we consider a viscoelastic plate CTT of 500 mm in length, 200 mm in
width, under the uniform tension of 10 MPa with a central crack of 80 mm in
lenght perpendicular to the direction of loading, as shown in Fig.6. In this con-
figuration, the crack is loaded in an open crack mode. To simplify the analytic
approach, the isotropic material is supposed to behave as a linear viscoelastic
one with a constant Poisson ratio (v = 0.3) (Ghazlan et al., 1995a,b). In
this case, only the Young modulus FE(t) depends on time. In a plane stress
configuration, we use the generalized Kelvin-Voigt model, presented in Fig.7,
which represents the time evolution of 1/F(t).

100 MPa 100 MPa
100 MPa [ ' j T J
1000 MPa-s 1000 MPa-s

Fig. 7. Spectral decomposition of 1/E(t)

Numerical solutions are compared with the results obtained by Masuero
and Creus (1993) as well as with the analytical solution. The elastic value of
Jy, in this case, is 154.85 N/mm. By using Eqgs (2.12) and (2.15),the elastic
fields in the crack tip vicinity are defined by era) and era) which take the
following values

ek (?) = 118.7 N mm~>/2 k() =10.44 mm"/? (4.1)
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In view of the creep plane stress state the stress intensity must be constant.
This consideration enables us to generalize (4.1)

K{)(t) = 118.7 N mm /2 (4.2)

Substituting Eq (4.2) into the local mechanical behaviour (2.12), the crack
opening intensity factor evolution can be predicted by

KO = k0(1) (4.3)

By considering the spectral decomposition shown in Fig.7, the reduced visco-
elastic function C(t) can be written as follows

C(t)=2—em (4.4)
Substituting Eqs (4.4), (4.3) and (4.2) into Eq (2.15) yields
Jo(t) = 154.84(2 — 7 ) N/mm (4.5)

Ji [N/mm}

— analytical solution

210 - numerical solution
-o- solution of Masuero
190
170
150
1300 v v 0 0 ey e e
0 S 10 }g 20 25 Time [s] 30

Fig. 8. Variation of J,

The results in terms of J, are shown in Fig.8, where the numerical and
analytical solutions are plotted. By comparing our numerical technique and
the results of Masuero a difference can be found due to different coarse meshes
used. However, the small error observed is constant over the entire process.
Now, in order’to consider the stress and crack opening intensity factors the
spectral decomposition technique results are presented, in Fig.9 and Fig.10,
respectively. One can note a satisfactory agreement between the numerical
results and analytical solutions.
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Fig. 10. Variation of the crack opening intensity factor Kl(e)
5. Conclusions and perspectives

In order to examine the influence of history-dependent phenomena on the
crack growth initiation process in linear viscoelastic media the new formula-
tion in the time domain has been developed. By introducing the crack opening
intensity factor, the coupling between the energy release rate and the stress
intensity factor is possible in the case of simple fracture mode. If strain inten-
sity factors introduced by Brincker, allow for the strain state determination,
the crack opening intensity factors define the kinematical state of crack lips
that can be used directly in computation of theamount of energy dissipated in
the crack growth process. The numerical approach, in terms of finite elements,
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allows for consideration of a variety of geometrical representations, boundary
conditions and loads. This technique, based on the spectral decomposition of
reduced viscoelastic functions, can easily be generalized to cover anisotropic
materials and advanced to deal with the crack growth process in complex
structures for a mixed mode fracture.
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Modelowanie inicjacji szerokiego pekniecia dla materialéw liniowo

sprezystolepkich

Streszczenie

Szeroko rozpowszechnione konstrukcje z materialéw lepkosprezystych, ktére mu-
szg dzialaé przez dlugi czas, wymagaja lepszego zrozumienia ich mechanicznego za-
chowania | wladciwosci przy zniszczeniu. Zaobserwowano, ze zaleznosé od czasu ma
ogromne znaczenie przy wyznaczaniu predkodci wzrostu pekniecia. W pracy rozpa-
trzono efekt charakterystyki sprezysto-lepkiej na inicjacje wzrostu pekniecia przy pel-
zaniu wykorzystujac metode elementéw skoficzonych. Zaproponowano nowe sformu-
lowania w przestrzeni czasu dla liniowych, izotropowych osrodkéw sprezystoplastycz-
nych w celu wyznaczenia przemieszczen i naprezei wokoét wierzchotka szczeliny. Za-
proponowano nowe réwnania konstytutywne zaleznosci wspolczynnikéw intensywno-
ci naprezen i otwarcia szczeliny wykorzystujac odpowiadajacg zasade calek Volterra.
W rezultacie obliczono parametry zniszczenia w procesie sprzezonym z przyrostowym
sformulowaniem sprezystolepkim.
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