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One of serious drawbacks in the bone endoprosthetics is the implant sepa-
ration from bone or cement. Stress concentrations on the implant surface
are deemed major factor in this process and implant shape optimization
seems to be a natural way of improvement of stress distribution. An im-
portant tool in effective optimization algorithms is the design sensitivity
analysis (DSA).

The discretized formulation of the problem in terms of the finite ele-
ment method is presented in this paper. A three-dimensional model of
femur with a cementless implant is analysed. Frictionless contact and
perfect bonding are assumed on the smooth and rough parts of the im-
plant surface, respectively. Computational examples show the stress con-
centrations and their sensitivity to various geometric parameters of the
implant.
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1. Introduction

Bone implantation (endoprosthetics) is a standard surgical technique em-
ployed in treatment of joint failures, especially in hips and knees. It consists
in replacement of the disfunctional joint with an artificial one. The latter may
be connected with the skeletal bones in various ways. The most common one
consists in drilling a hole in the living bone and either enforced pressing the
implant into the bone (cementless endoprosthesis) or filling the hole with po-
lymeric cement and placing the implant in it (cemented endoprosthesis).
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One of serious drawbacks of this technique consist in separation of the
implant from either bone tissue or cement occurring after certain period of
time. The main reason is bone fracture or degradation around the implant
surface. Also, in the case of cemented implants, mechanical failure of the aging
cement plays a role in the failure of the entire bone-cement-implant system.

In either case, unnatural stress distribution is considered to be the main
reason for the failure. The implant is much stiffer than the bone tissue which
results in some areas of bone being understressed (stress-shielded) and some
other — subject to extreme stress concentration. Little is known so far about
precise failure criteria. Kuiper and Huiskes (1997) suggested that surface shear
stress might play a major role in crack development in bone tissue. Hedia et al.
(1996) introduced the notion of fatigue notch factor being a functional of the
equivalent stress distribution. This factor is deemed responsible for mechanical
damage of a cement layer around cemented implant, but may also affect the
damage of bone tissue around the cementless implant. The strain energy is
believed to affect the bone degradation in understressed areas (Kuiper and
Huiskes, 1997).

It is widely believed that optimization of the implant properties may signi-
ficantly improve the reliability of joint endoprostheses. Thus, among numerous
papers devoted to equilibrium analysis of the bone-implant systems (Kang et
al., 1993; Keaveny and Bartel, 1993; Mann et al., 1995; McNamarsa et al., 1997,
Dammak et al., 1997; and many others) appearing in the literature, the issue
of design optimization has been raised (Yang et al., 1984) and has become
of increasing interest in the recent years (Hedia et al., 1996, 1997; Kuiper
and Huiskes, 1997). The design parameters are either material constants of
the implant (which is the simplest case from the computational point of view
but has little practical implications) or shape parameters. Optimization of the
latter seems most promising in terms of the expected improvement. So far,
only two-dimensional linearly elastic models have been discussed, which poses
essential limitations on the results precision and reliability.

The design sensitivity analysis (DSA) is a crucial tool in most advanced and
efficient optimization algorithms. Theoretical background for numerical appli-
cations was presented by Haug et al., 1986; nonlinear finite-element aspects
were discussed extensively by Kleiber et al. (1997). Many finite element codes
provide now the feature of DSA in the linear range as an add-on to the equili-
brium analysis. However, both the equilibrium and sensitivity results obtained
for nonlinear material and/or geometric behavior of the structure may signifi-
cantly differ from the linear approximations. In the bone-implant analysis this
may occur when contact boundary conditions on the implant interface are to
be considered.
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The present paper provides a three-dimensional numerical model of a bone-
implant system offering the possibility of sensitivity analysis. The femur with
a cementless endoprosthesis is chosen as an example. Since the main goal is to
test the numerical algorithm and the developed software rather than to obtain
precise results, some simplifying assumptions about the material and geometric
model are made. The bone model is symmetric with respect to the longitudinal
plane and all cross-sections are piecewise semi-elliptic. Two types of boundary
conditions are assumed on the bone-implant interface: perfect bonding on the
rough (porous-coated) part of the implant surface (tissue ingrowth into the
surface pores is thus allowed) and frictionless sliding on the smooth part of
the implant surface. The bone material is assumed isotropically elastic with
different material constants for cortical and spongeous bone tissues. The stress
distribution on the bone-implant interface is analysed. The analysis is followed
by the sensitivity analysis with geometric parameters defining the implant
shape taken as design variables.

2. Formulation of the problem

2.1. Continuum eqautions

The displacement formulation of a geometrically linear solid equilibrium
problem in the Cartesian coordinate system has the following form

oij; —fi=0 in £2 (2.1)
where
oij — stress
fi — mass forces
{2 - area occupied by material.

The indices i, run over the values 1,2,3. Stress is related to the unknown
displacement field u; via the constitutive equation

0ij = 0ij(€x) (2.2)

and the geometric equation

1
€y = E(Ui,j + uj5) (2.3)

where €;; stands for strain and oyj(ex) is a known function. For elastic

materials
035(ext) = Cijrin (2.4)
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The constitutive equations employed in the particular problem of bone-implant
analysis will be discussed in Section 2.4.
The boundary conditions on the external surface of (2 are as follows

oyn; = ti on 0§2°
U; = ﬁi on 0% (2-5)
where fi and %4; are known.

Contact surfaces within (2 are handled as follows. If this is a perfect-
bonding surface, it is treated as an internal surface where Eq (2.1) holds. If
this is a slide surface, Eq (2.5); holds on both sides (i.e. for each contacting

(e)
= ti

body separately) with the same value of %; which is, however, unknown

O3nj = tz(-c) on 002° (2.6)

If the frictionless contact is considered, then a normal (i.e. parallel to n;) com-
ponent of tgc) is the only non-zero one. For numerical reasons, we will slightly
weaken the latter contact condition by allowing for a non-zero penetration d
on the contact surface, and relating the normal contact force tSf) to d with

the equation
) = —kd (2.7)

where k is an arbitrary penalty coefficient determined on the basis of stiffness
coefficients and dimensions of the contacting bodies. For negative d (contact
clearance), k is assumed zero.

2.2. Finite element formulation

In the finite element method (Zienkiewicz, 1977) an approximate solution
1s sought in the class of linear combination of the shape functions ¥;,

ui(zr) = Yia(Zk)a a=1,...,N (2.8)

where g, are unknown parameters which in physical sense, at a certain choice
of the shape function form, represent values of the displacement components at
selected material points called nodes. The functions are defined on subdomains
of {2 called elements and are continuous in {2 and differentiable within each
element.

Substitution of Eq (2.8) into Eqgs (2.1)-(2.5) and application of the Galerkin
method leads to the following equation

Fy = Qq (2.9)
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where
Py = /B,wak 0 (2.10)
n
is the internal nodal force vector
Qo = /W,-af,- a2 + / iof; d(602) (2.11)
2 o520
is the external nodal load p
Ek
ke = o (2.12)
Qo
is the geometric matrix consisting of properly ordered spatial derivatives of
U;o, and oy, €, Kk =1,...,6, denote the stress and strain component vectors,

respectively, expressed in the so-called finite-element vector/matrix notation:

{ok} = {o11,022,033,023,031,012}

{ex} = {en,€2,¢€33,2€23,2€31,2610}

(symmetry of both the stress and strain tensors is assumed). The elastic con-
stitutive tensor components Cj;r are written in this notation as a 6 x 6
matrix Cyn-

The shape functions ¥;, are defined according to the linear isoparametric
element concept (Zienkiewicz, 1977). Cubic (8-node), prismatic (6-node), py-
ramidal (5-node) and tetrahedral (4-node) elements are used in the numerical
examples below.

The contact equations (2.6) and (2.7) are modelled as follows. A fictitious
zone (2°¢ between the contacting surfaces is introduced. It is filled with a
medium whose constitutive equation is

or = 19{1,1,1,0,0,0}

He) kJ =kJ for J>0
" 0 for J<0

(2.13)

Bt

where £ is the coefficient from Eq (2.7), Ap is the initial area of potential
contact zone and J is the volumetric deformation of the contact zone with
respect to a reference configuration C° in which the zone area A4 and thickness
d are finite and constant. In other words

J = det[F,-j]
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where Fj; is the deformation gradient from 2° to 2¢. This is a numerical
approximation of Eq (2.7) that penalizes possible penetration of the contacting
bodies. Note that J can take zero or negative values.

Detailed presentation and discussion of this finite element contact model
can be found in Kowalczyk (1994). Let us only recall that the contact forces
contribution to the internal nodal force equals

Fe = / KWy T F57 de (2.14)
7

where (-). denotes differentiation with respect to spatial coordinates in C°.
This contribution should be added to the vector F, computed from Eq (2.10).
Eq (2.9) with contact phenomena included should thus read

Fo+ FS = Qq (2.15)

Eq (2.15) is thus generally a nonlinear (however, in the small-strain elastic case,
linear) equation with respect to unknown vector ¢,, & = 1,...,N. To solve
it, the Newton-Raphson scheme is employed in which subsequent corrections
to the current approximate solution are found from the equation

Kaﬁ‘SQﬁ =Qq— (Fa + FS) (2-16)
with
d(Fy + F§ — Qq)
dgp

being the tangent stiffness matrix of the structure. Neglecting the dependence
of Q, on g, we can write

Kup = (2.17)

Ko = [ BrnaCunBng d2 +
N
(2.18)
+ / Ko (255 By =~ B Pt ) Wpy J? d2e
o

In the small-strain elastic case Eq (2.15) becomes linear and the solution is
found from

Kopap = Qa (2.19)

Having the solution ¢, we are able to compute any structural response
#(qq) (stress, strain, energy, etc.).
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2.3. Design sesitivity analysis

The goal of the design sesitivity analysis (DSA) is to compute the total
derivative of structural response ¢(gq, h) with respect to design parameter h.
Let us write it in the form

b _ d¢

d¢ dga
dh — dh dh (2.20)

gatda(h)  dgy dh

We have to find the unknown dgo/dh from the following equation (cf
Eq (2.15))
d‘Iﬂ d(Qa - Fa)
Kyp—F=—-—"--
*#dh dh lgattga(h)

Once the equilibrium solution ¢, is known, the right-hand side of Eq (2.21)
as well as the derivatives of ¢ in the right-hand side of Eq (2.20) can be
computed. Note that the coefficient matrix in the equation above is the same
stiffness matrix that was used in the equilibrium analysis - it is thus known
in the decomposed form and it is a relatively cheap operation to get the so-
lution against an additional right-hand side vector. Thus, solving Eq (2.21)
and substituting the result into Eq (2.20) leads to the solution of the DSA
problem.

The procedure presented above is called direct differentiation method.
There is an alternative method called adjoint system method that can be used
instead. It can be easily understood if Eq (2.21) is directly substituted into
Eq (2.20)

dp _ do

dh ~ dh

(2.21)

o Qs = Fy ~ F)
qcx#‘]a(h) d(Ia aff dh

(2.22)

9P (h)

Introducing a vector A, and defining it as the solution of the following equ-
ation

dé
K. ghg = —2 2.93
a8 = o (2.23)
we can write
d$ do d(Qp — Fp ~ F§)
dp _ a9 A 2.94
dh~ dhlaataamy T dh G aa(h) (2:24)

In both methods, the arrays

d dp dQa

i d(Fo + F5)
dh lga#ga(h) d(Ia dh

‘Ia:}é%(h) dh

ga#qa(h)
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have to be computed and a system of equations with the coefficient matrix
K has to be solved against additional right-hand sides. The methods are fully
equivalent numerically but their efliciency may be different, depending on the
number of design parameters and responses (performances) in the problem.

While the differentiation of ¢ and (), is usually trivial, computation of
the explicit design derivative of F|, + F£ requires introduction of a fictitious
design-independent reference configuration C. This is because not only all
the integrand components, but also the integration domain §2, are design-
dependent (Fig.1). This configuration is often associated with the parent con-
figuration of an isoparametric finite element and so is it done in this paper
(Fig.2).

Integration in 2 is thus replaced by integration in 2. We have (cf
Eq (2.10))

F, = /Bkaakf ds? (2.25)
n
and
dF _
do#qa(h ) -
dBka do'k dj __
= J+ B B —
./ ch?é(hx )Uk ko g dh %x#qor(h) + ka kdh ch#lloz(h))
(2.26)
dBka dO’k 1 dj
= — B By,
Q/( b aataa® T T 7% 0 g taaty T TR T ah qa;aqa(h))
with P iC q
Ok kl €]
T = — + Cr— 2.27
dh 1ga#qa (k) dh qa;éqa(h)el KCah Ga#qa(h) ( )

J denotes here the gradient deformation from §2 to §2. Correct computation
of design derivatives of strain and the geometric matrix By, requires that
explicit dependence of each material point coordinates on h be taken into
account.

The same issue refers to the contact contribution to the internal nodal
force vector F°. However, this time no transformations are necessary because
F° is defined as an integral in the configuration C° (cf Eq (2.14)) which is
design independent and can be identified with the configuration C for the
contact zone. Explicit design differentiation of Eq (2.14) yields
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actual configuration
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Fig. 1. Actual and design-independent reference configurations
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&
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Fig. 2. Examples of isoparametric elements — actual and parent configurations
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dFS ~
dh do#qa(h) N (2 28)
dk’ NN 12
= | Ya;i{ = FPly WOF Pt - Frlpo )OOk 2 10c
/ aJ(dh Ga#qa(h) 7* @R, 7 7 )dh QQ?I-'Qa(h))
o

2.4. Constitutive models

There are two types of the material considered in the analysed model of
bone-implant system. These are: implant material and bone tissue.

Implant is assumed to be made of titanium alloy and it is modelled as
elastic material with the Young modulus E = 120 GPa and the Poisson ratio
v =40.3.

Bone tissue is generally anisotropic viscoelastic material whose mechanical
properties and anisotropy orientation depend on the bone type and position
in the bone. They are also specific to the individual and may vary in time
due to diseases and stress-induced remodelling. Here, we will neglect viscous
effects appearing in the bone. We will also neglect material anisotropy. This
is a significant simplification, especially for cortical bone, however, it can be
justified at the stage of algorithm and software testing. Maximum values of
anisotropic elastic moduli will be taken as valid in all material directions.

Spatial variation of the elastic constants in bone will be accounted for by
distinguishing two material types: cortical bone (constituting an external layer
of bone whose thickness is smaller at the bone head and larger in the shaft)
and spongeous bone (filling the bone head and, partially, the shaft). Material
properties of each tissue type will be taken as spatial average over each tissue
volume and no spatial variations of material properties within each tissue type
are considered.

Values of material constants assumed in the model are taken from experi-
mental data published in the literature. Vast discrepancies between the results
obtained by different authors can be observed, especially for spongeous bone
(Martens et al., 1983; Cowin, 1989; Hobatho et al., 1997). In the analysis below
we will take the following values:

o for cortical bone: FE = 17GPa, v = 0.35 (based on averaged data
measured in orthotropic material tests reported by Cowin, 1989)

e for spongeous bone: E = 0.5 GPa (based on averaged data measured
in orthotropic material tests by Hobatho et al., 1997, excluding data
measured for the femoral head and neck), v = 0.35.
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1=1335N

Fig. 3. Finite element model of the femur with a solid implant. Grey denotes
implant, light-grey — cortical bone, white — spongeous bone, thick lines indicate
sliding area
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Fig. 4. Illustration to the design variables definition for a solid implant: dotted lines
denote perturbed geometry for each variable
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Fig. 5. Deformed mesh for a solid implant (displacement scaled by the factor 10)
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3. Computational examples

Two cementless implant types were analysed: solid and hollow. The latter
is not a typical one and is tested in order to determine how decreased implant
stiffness affects stress concentrations in bone.

Geometry, finite element mesh with boundary conditions and loads for a
bone with a solid implant are presented in Fig.3. Three-dimensional geometry
is somewhat idealized by assuming semi-elliptic cross-section shapes at each
level and planar symmetry with respect to the longitudinal plane intersecting
medial and lateral bone contours. Symmetric half of the system is thus only
analysed. Load values are assumed as for regular walking. Perfect bonding is
assumed on the porous-coated implant surface part and frictionless contact
condition on the remaining (smooth) part.

Both equilibrium and sensitivity analyses have been carriet out. The direct
differentiation method has been employed in the DSA computations. Three de-
sign variables were considered: implant length, thickness of the distal implant
end and height of the rough (porous-coated) implant surface zone (see Fig.4).
Stress distributions in the bone tissue along the lateral and medial lines on
the bone-implant surface (or free internal bone surface) are taken as design
performances. The equivalent (Huber-Mises) stress is only considered.

Deformation of the loaded model is shown in Fig.5. The values of design
performances and their sensitivities (derivatives with respect to each design
variable) are shown in Fig.6 (medial side) and Fig.7 (lateral side).

As it can be seen from the results, the contact interaction between implant
and bone arises, apart from the coated implant zone, at the distal (bottom)
part of the implant on the lateral side and everywhere but the distal part
of the implant on the medial side. This can be explained by the difference
in deformation patterns of the relatively stiff stem and compliant bone shaft.
Extreme stress concentrations occur predominantly on the lateral side, at the
distal end (which is due to the bending reactions between the stem and shaft)
and in the upper part (which is caused by the neighboring tendon which gene-
rates a loading force). On the medial side, increased stresses are only observed
on the porous-coated implant part with an extreme value at the end of this
zone. This value is slightly smaller (but comparable) than extreme values on
the lateral side.

The sensitivity graphs indicate that implant length does not substantially
affect stress distribution and its increase will affect a slight decrease of all the
stress values around the concentration areas. Implant bottom end thickness
considerably influence the stress concentration at the distal implant end (its
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increase will drop the stress values) and, to a much less extent, the remaining
stress peaks, but its range of possible variations is much more limited than in
the remaining design parameters. The coated zone height affects mainly the
medial stress peak around the bottom end of the coated zone. Increase of the
third parameter will cause a drop in high stress values on the coated interface.
Also, a slight decrease of the peak stress is expected.

High stresses at the top end of lateral implant-bone interface appear to be
essentially insensitive to the design parameters considered. Only the implant
distal end thickness may affect it but to a relatively small extent. Modification
of the interface geometry in this area (by decreasing the implant size in favor
of more tissue left) may have a strong effect on the stress concentration but
this would be very difficult from the technological point of view.

Another computational example is similar to the previous one but the solid
implant is replaced by a hollow one. Since the large difference between stem
and tissue stiffness is the main reason for uneven stress distributions in the
implanted bone, the idea was to significantly decrease the stem stifness by
removing a major part of its material. All remaining model characteristics
remain the same. One additional design parameter has been introduced for
this type of implant — the implant wall thickness.

The finite element mesh is presented in Fig.8. Fig.9 and Fig.10 present
equilibrium and sensitivity results for this example. Stress concentrations are
located in the same places as for the solid implant. Extreme stress values on
the lateral side are considerably smaller, moreover, their sensitivities to the
wall thickness are much higher than to the other parameters and indicate the
rule the thinner the wall the smaller the stress. This is not the case, however,
for the stresses on the upper medial side (at the coated zone end) where the
stress concentration is even higher than for the solid implant and decreasing
the wall thickness makes it even higher. Sensitivities of stresses to the other
three parameters have similar distributions as for the solid implant.

4. Conclusions

An efficient numerical tool enabling the finite element analysis of bone-
implant system supplemented with the design sensitivity analysis feature has
been developed and successfully tested. The DSA computations are performed
at low numerical cost and the code is suitable for applications to efficient 3D
shape optimization algorithms.
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F2= 987N

Fig. 8. Finite element model of the femur with a hollow implant (see explanations to

Fig.3)
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Bone-implant finite element models analysed in the numerical examples
presented in the paper have idealized geometry, yet they provide a good qu-
alitative information about the code abilities and, on the other hand, on the
influence of geometric parameters of the implant stem on the stress distribu-
tion in the bone tissue. We can conclude that distal end thickness affects the
peak values of stress concentration with the positive sign (i.e., the thinner im-
plant distal end, the lower stress concentrations). The same can be said about
the implant length and the coated zone height, but the values of sensitivities
to these parameters are significantly smaller. Application of a hollow implant
makes some stress concentration decrease while some others raise. This result
needs further study including analysis of an implant with variable thickness,
especially along its circumference.

Simplifications in bone geometric and material modelling may raise the
question of reliability of the above results. The algorithm and the developed
code can be, however, applied to more sophisticated finite element models with
more details of geometry and distribution of material properties included.
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Streszczenie

Jednym z powaznych mankamentéw endoprotetyki stawéw jest odrywanie sig im-

plantu od cementu lub kosci. Gléwna przyczyng tego zjawiska sa koncentracje na-
prezeri na powierzchni implantu. Optymalizacja ksztaltu implantu jest uwazana za



NUMERICAL EVALUATION OF SENSITIVITY... 577

naturalng droge do przeciwdzialania temu zjawisku. Waznym narzedziem w algoryt-
mach optymalizacji jest analiza wrazliwo$ci parametrycznej (DSA).

Praca przedstawia sformulowanie zagadnienia wrazliwosci w zdyskretyzowanym
ujeciu metody elementéw skoniczonych. Analizowana jest ko$¢ udowa z implantem
bezcementowym o powierzchni gladkiej, a w goérnej czesci porowatej. Przyklady nu-
meryczne przedstawiajg koncentracje naprezen w tkance kostnej i ich wrazliwoéé na
rézne parametry ksztaltu implantu.
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