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Continuous bone remodeling consists in simultaneous resorption of tis-
sues and synthesis of a new matrix. If, due to variable external or internal
conditions, the equilibrium is disrupted, significant rearrangements of the
micro-structure and bone shape are possible. Many mathematical and
computational models of this adaptation phenomenon can be assingned
one of the two categories; namely, theoretical models originating from
the theory of adaptive elasticity and computational models making use
of the optimization theory.

In the present paper the approach based on the hypothesis of optimal re-
sponse of a bone is proposed. It enables derivation of various adaptation
laws associated with extremum of the objective functional under a set of
appropriate constraints and makes a bridge between the aforementioned
categories. In order to illustrate possible application of the proposed ge-
neral approach the specific formulation is presented and mathematical
relations governing the adaptation process are derived. Four numerical
examples illustrating some of possible applications of the presented re-
lations are included.
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1. Introduction

The ability of a bone to adapt its internal structure and external shape
according to environmental conditions has long been known. In general, the
three classes of changes can be distinguished: growth, remodeling and mor-
phogenesis, see e.g. Taber (1995). The growth is associated with variation in a
bone volume and is composed of surface and volumetric changes. Remodeling
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is characterized by changes of local properties of a tissue. The morphogenesis
is defined as a change of shape with a constant volume. But in fact the mentio-
ned classes overlap each other and in the present paper the term ”remodeling”
is used to express the variations of internal structure and the shape with or
without volume changes.

In normal situation the living bone undergoes continuous changes. The
mass transportation, simultaneous resorption and deposition of tissues result
in the equilibrium state, i.e. in spite of extraordinary complexity of the pro-
cesses continuously taking place ”inside the bone” at the macro level no si-
gnificant changes are observed. This is a commonly accepted fact, confirmed
by observations, that bone remodeling depends upon its mechanical loading.
Besides, many other factors; e.g., hormonal, genetic and metabolic effects, in-
fluence this process. There probably exists some range of values of parameters
defining environmental conditions as loading or boundary conditions for which
the internal activities of bone stuff result in a stable state. In the case when
the external conditions exceed these bounds, some of the effects predominate
and remodeling takes place. This self-regulatory process is very important as
it enables adaptation of the organism to variable external conditions. But so-
metimes it may work against us. An evident example is the situation after
arthroplasty. A part of bone carrying the load is suddenly cut off and re-
placed by the implant. This results in a change of stress distribution and in
consequence — in remodeling of internal structure and external shape. In some
subdomains the bone resorbs what can, after a sufficiently long period of time,
lead to loosening of the implant. In that context the problem of prediction of
long-term adaptation process and associated changes of the bone structure
is crucial (see e.g. one of the presented in the following sections illustrative
examples).

Although Wolft’s law, Wolff (1892) has been already known for more than
century, the problem of a precise formulation of mathematical relations go-
verning the adaptation process of tissues continues to attract researchers. In
fact, answers to many problems associated with adaptation phenomena are
still unknown. On the other hand, the knowledge about mechanisms of bone
remodeling due to adaptation to variable environmental conditions is of great
practical importance. This fact, together with rapidly increasing computatio-
nal possibilities, results in growing scientific activity in this area.

The mechanism governing the bone adaptation is still not completely
known. Since the bone represents a very complex structure no mathemati-
cal model can describe at present all of the effects which may contribute to
remodeling. Thus the choice should be made to investigate the most significant
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relations. If only mechanical loading and its effects for remodeling is considered
the situation is much simpler. According to Cowin et al. (1991) the mechani-
cal state of tissue is sensed by osteocytes. Then this information is processed
according to the adaptation law coded somewhere and, transferred to actor
cells — osteoblasts and osteoclasts. There exist different theories explaining
the mechanisms by which the tissues sense the actual state of strains. Among
the others, piezoelectric effects were considered by Gjelsvik (1973a,b), micro-
cracks by Carter (1984), Radin (1972) and Prendergast and Huiskes (1995),
changes of solubility of hydroxiapatite by Justus and Luft (1970), hydrostatic
pressure of extracellular fluid by Pauwels (1960), and others.

Despite the fact that various conditions influence the process of adapta-
tion, the present discussion based on the idea introduced by Lekszycki (1999)
is restricted to a simple case of remodeling controlled only by mechanical envi-
ronment of bone — an assumption is made that strain variations within the
considered domain result in appropriate local changes of material properties.
It should be emphasized that main effort in this paper is directed towards
promotin of the approach — variational formulation based on the hypothesis of
optimal response of a bone. Which effects are included in the formulation by
means of objective functional and constraints and what is selected as ”control
variables” represents here a secondary question because the method is general
and various phenomena can be investigated. In contrast to most of the formu-
lations exploiting the ideas developed in structural optimization, where only
optimal solution is searched for, i.e. the final asymptotic state to which the
bone tends under constant external conditions but never reaches it, the appro-
ach discussed in the present paper enables one to follow in time the changes
of bone internal structure and its external shape due to varying ”excitations”.

In the next section the formulation of adaptation problem is discussed and
specific adaptation law 1s derived to illustrate the general idea. The simplest
case — when only material changes are considered and no external shape un-
dergoes variations, and local material parameter is selected to represent the
"design variable”. The goal of the adaptation is to determine the action en-
suring, within the specified constraints and actual mechanical state, maximal
velocity of global stiffness increase or — if impossible because of constraints —
minimal decrease at each moment of time.

Selected illustrative numerical examples of possible applications of the pro-
posed mathematical description are presented in the following sections. They
do not deplete a list of possible applications, e.g. the effects of osteoporosis can
be examined in different situations. This and other problems will be discussed
in forthcoming papers (e.g. anisotropic characteristics of the material).
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2. Hypothesis of optimal response of bone and the associated
adaptation law

Most actions which happen in nature can be treated as a result of optimi-
zation — this is a very strong statement and is rather a matter of belief than a
scientific reasoning. At the moment it can’t be proved in general, but on the
other hand, there are many examples showing that there exists some ”general
deep thought” governing the actions and Nature minimizes ”efforts” or ”co-
sts” of events. Indeed, many phenomena are associated with an extremum of
some functional under adequate additional constraints. The main difficulty is
probably to realize that the event under consideration is an effect of optimal
decision and the determination of the functional and especially of appropriate
constraints is in most cases very difficult in practice. But they probably exist,
not only for many physical, chemical or biological processes, but also econo-
mical, social and others. Of course no random events are considered here, but
what is random and what deterministic is again more a philosophical question
which is not a subject of present discussion. The approach proposed in this
paper is based on the hypothesis of optimal response of a bone and is discussed
in detail in the present section.

As was pointed out by Huiskes (1997) there exist numerous mathematical
and computational models of bone adaptation; since many of them have never
been validated in medical and biological investigations this situation is very
confusing. The present work does not fall into the category mentioned above.

This is not the aim of the present paper to present one more, specific mo-
del representing the adaptation phenomenon of bone tissues. On the contrary,
the goal is to propose a general approach, based on the assumption of optimal
response of a bone, which enables one to construct a large variety of models,
associated with a specific objective functional and a set of constraints. This
selection depends very much on the specific phenomenon that is to be repre-
sented by the model. It was mentioned above that the search for an objective
functional associated with a specific behavior of a considered system is often
a complex and difficult task. On the other hand, such an approach, if success-
ful, puts more light to the problem and allows better understanding of the
mechanisms governing the considered process. In addition, such variational
approach is often associated with significant practical advantages. One of the
examples is the application of variational methods to computational aspects
of numerical analysis of the adaptation process.

In the present paper a simple model is derived and used in numerical
computations. The reason that this analysis is included here, in spite of the
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fact that the model was not validated and has no links to the results of medical
research, is simple — this is just the illustration of possible application of the
general approach proposed in the paper. In future research, the facts obtained
from biological investigations can be included in the formulation as constraints
or objectives and models derived in this manner can possibly be compared
with medical observations. Only then, the model can be used in prediction of
specific bone behavior.

The formulation discussed in the present work combines the two charac-
teristic trends of the research into bone remodeling, i.e., adaptive elasticity
introduced by Cowin and Hegedus (1976) and developed in numerous papers,
see e.g. Taber (1995), Huiskes (1997), Hart and Davy (1989), Huiskes et al.
(1987) and - the application of the optimization theory, see e.g. Pedersen
(1993), Bendsge and Mota Soares (1993), Bendsge et al. (1994). For more
comprehensive discussion of adaptation models see e.g. the review paper by
Telega and Lekszycki (in preparation). In the present work the hypothesis of
"optimal response of bone” introduced by Lekszycki (1999) and developed by
Lekszycki and Stawinski (1998) is used and instead of optimization of bone
shape and its internal structure, what is usually made in the works represen-
ting application of optimization theory, the optimization of actual response of
bone due to variable in time mechanical conditions is performed. Basing on
the functional representing the rate of a change of the bone global stiffness,
described by the velocity of the potential energy, and - in addition — on the
set of equality an inequality constraints the adaptation law is derived. The
control variable, or in another words — the design variable, is represented in
the case discussed here by the local Young modulus. For the same of simplicity
the second material coefficient, the Poisson ratio, is assumed constant. The ad-
aptation law together with constraints and classical formulas for equilibrium
state and geometrical relations determine a set of equations describing fully
the adaptation process.

The present derivation is made for non-homogeneous, isotropic material,
but extension of the formulation is simple. Let us consider a body made of
non-homogeneous, isotropic material (Fig.1). To begin the discussion let us
assume that the loading and boundary conditions do not change in time and
formulate the classical optimization problem. In order to do so the objective
functional has to be specified. An arbitrary functional of displacement field,
strain or stress can be selected. In the present discussion the global stiffness
of the body represented by the total potential energy is chosen. This is the
simplest possible case, but since this is not a goal of the present discussion
to derive a specific sophisticated model, but rather to illustrate the general
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Fig. 1. A body under consideration

procedure such a functional can serve as a good example

G=H(u)= Ulei;) dV — | Tyu; dSt — | fiu; dV (2.1)
Joenar [rmes- |

where U = o;;e;; denotes the density of the strain energy. In the optimiza-
tion problem the design variables (control variables), i.e. the variables that
undergo changes due to optimization and have to be selected to satisfy the
extremum of the objective functional, should be defined. In the present for-
mulation the local material properties are selected for optimization. In a more
sophisticated formulation the micro-structure of the material described by a
set of parameters defined in the unit cell can be selected and related by me-
ans of homogenization with material constants as e.g. the Young modulus. At
present, directly the Young modulus F is selected to control local changes of
the material associated with remodeling. To do so Hook’s law for linear iso-
tropic elastic material is assumed. To perform an effective optimization a set
of constraints for the design variables or/and the state of the considered body
should be defined. Let us put the constraints for the maximal and minimal
values of the Young modulus. In the normal situation they follow from the
assumed micro-structure of the material and can be determined using the geo-
metrical parameters defining this micro-structure. As the material is porous
the bounds depend on minimal and maximal porosity admissible. They should
be also validated in experimental investigations. Here we simply set the local
constraints and state that

E(:L') 2 Enin E(:L‘) < Ermax (2'2)

In addition, the global constraint is defined. Assuming that the Young modulus
is related to the porosity this equation constraints the total amount of the
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available material
/E(a:) iV = E, (2.3)
1%

To this end the classical problem often considered in structural optimiza-
tion was defined (except maybe for the choice of the design variable, what is
not typical for structure optimization). This formulation is very convenient
for the reason of its simplicity — the minimum of the objective functional with
respect to the variation of displacement field is associated with the equilibrium
equations (after application of geometric relation between strain and displa-
cement fields). The condition for maximum of the objective with respect to
design variables deliver the optimality criteria. But until now no adaptation
phenomenon has been modeled. To do so let us extend the previous formu-
lation and assume that the external loading can vary in time. Accordingly,
the displacement, strain and stress fields are also time-dependent. Moreover,
we also let the local Young modulus to change its values F(z,t) during the
process. So now, the variations of mechanical state of the body under conside-
ration, caused by variable external conditions and, in addition, modifications
of control variables are examined. This point of the discussion is crucial. Actu-
ally, no more the final state of the body is considered (what was the goal of the
classical formulation). Instead, the reaction of the material to variable loading
and resulting displacements, strains and stresses is the subject of interest. Let
us assume the hypothesis that the material reacts in optimal way according
to the available information concerning:

e Objective functional
e Actual mechanical state

e Present constraints.

Since the primary goal is to ensure the objective maximization within possible
bounds, and the material does not know anything about the future, the actual
change of the control variables should result in associated maximal growth of
the objective functional. But the control variable is assumed to be continuous,
80 no instantaneous jump is admissible. Therefore, instead of control variables
(in this formulation — the Young modulus FE(z,t)) their velocities are taken
now to be modified and represent new control variables. It means that velocity
of Young modulus is to be determined in order to maximize the velocity of
the objective, or (if impossible due to existing constraints) minimization of its
loss. To perform this the previous formulation has to be modified.

Instead of the objective functional its velocity is considered and undergoes
maximization. The design variables, as was argued above, are represented now
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by the velocities of Young modulus. In addition to the constraints already
defined the new ones should be considered. First, let us impose inequality
constraints for the admissible velocities of Young modulus. These constraints
have grounds in biological observations which confirm that velocity changes
can not exceed some given values. In the present model the limiting values can
be "tuned” according to the phenomenon modeled and the results of biological
investigations

E(z,t) 2 Ernin(t) E(z,t) € Emaz(t) (2.4)

Let us also define the two global constraints, one defining the total velocity
of changes, and other — the "power” of changes. As before the Poisson ratio
does not undergo modifications

/E(:c,t) dvV = B (1) /EQ(z, £) dV = Ey(t) (2.5)
\4 |4

These two constraints are crucial and to great extent determine the form
of adaptation law following from the stationarity condition of the objective
functional. The first of the constraints is responsible indirectly for the amount
of material. So, for E)(t) = 0 the remodeling with a given amount of mass
can be modeled. For negative values of F,(t) the decrease of total mass,
e.g. osteoporosis effect can be observed. For positive values the process with
production of mass is described. The second constraint defines the total ability
of the considered system to perform changes. In fact, if this equality constraint
is replaced by the inequality constraint defining the maximum efficiency of
the system the situation is more reasonable and very interesting cases occur.
Then there exist more then one adaptation law, or to say more precisely, the
adaptation law switches from one to the other according to the distance of
actual material configuration from the optimal one. But this case requires
detailed discussion which will be postponed to the subsequent paper.

The defined above constraints can be attached to the objective functio-
nal by means of Lagrange multipliers and slack variables (used for inequality
constraints)

o - 17+#1(/E‘dV—E1)+;L2(/E2 av - By) +
1% v (2.6)

[ 1B = Bin = D) 4V + [ 1o(Biaz — B = a3) @V
\4 \4
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The variation in the extended functional G* with respect to the variation of
the displacement field and its velocity vanishes because the equilibrium equ-
ation and rate equilibrium equation have to be satisfied. Variation with respect
to the Lagrange multipliers and slack variables provides a set of constraints
and the triggers necessary to switch the control variables from intermediate
values to the assumed extremal values. Finally, from the vanishing variation
requirement of the objective functional with respect to the variation of F the
adaptation law follows
oU :
5T p1(t) + 2pu2() E(z,t) + m(z,t) — n2(z,t) =0 (2.7)
In derivation of this law an assumption was made that no body forces
are present. It does not restrict the consideration performed, the appropriate
term can be easily included if necessary. In Eq (2.6) 1, p2, 71, 172 denote
the Lagrange multipliers and a;, a2 are slack variables. The adaptation law
derived here is similar to the relations discussed in the works originating from
the theory of adaptive elasticity. In the present approach the variational for-
mulation has been applied as it brings significant advantages. Besides the fact
that such a formulation, if successful and validated in biological tests, enables
better understanding of the problem under consideration, it also makes possi-
ble to use well established computational methods of structural optimization
in analysis of the adaptation process. In the next section this adaptation law
is used in two-dimensional numerical examples in order to illustrate selected
applications.

3. Numerical examples

In this section four numerical examples are shortly discussed. The choice
wag determined by the will of presentation of selected applications. Since the
applied model of adaptation have never been validated in medical investiga-
tions these examples can not have practical importance. On the other hand,
the results of calculations show great similarity to the natural solutions, i.e.,
what really happens with bones. Therefore one can expect that after more
profound investigations and after validation of this or similar model in clinical
observations it could possibly be used in future to predict bone remodeling.

The general relations discussed in the previous section are applied to the
specific case of two-dimensional ”structures”. A simple model of trabecular
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bone material composed of beams is selected in order to examine the effect of
adaptation process for the evolution of internal bone structure.

3.1. Example 1: Sample of material under variable loading — shear test
followed by tension

This example is selected to show how the sample of material changes its in-
ternal structure under variable in time external conditions. The square sample
of material is considered.

The initial material was assumed to have homogeneous trabecular micro-
structure. First the shear forces were applied at the four edges of the sample,
see Fig.2a. After some period of time the loading was changed. The horizon-
tal tension was applied, Fig.2b and the same period of time considered. The
adaptation process of the sample, with constant mass, according to the law
discussed in the previous section can be observed and the successive steps of
adaptation in equal time intervals are presented in Fig.2.

3.2. Example 2: Growth of bone internal structure under external con-
stant loads

No external remodeling is considered in this example despite the fact that it
also plays important role in total rebuilding of bone. Simple trabecular micro-
structure of the material is assumed. In the initial situation, on the macro
scale the material is homogeneous (see Fig.3 the topmost figure). The bone
presented in Fig.3 is clamped at the left end and subject to distributed surface
loads on the parts of the right-hand end. After adequate long period of time the
material is transported from some subdomains into another regions resulting
in a growth of bone total stiffness (the time scale depends of the applied
constraints and can be ”tuned” according to clinical observations). The total
mass is assumed to keep a constant value during the process. The intermediate
result of this adaptation process — the bone internal structure - is displayed in
the middle picture in Fig.1. The final result, i.e., the effect of adaptation after
a long period of time, is shown in the lowest picture. As can be observed, the
investigated process results in strong non-homogeneity and anisotropy. The
comparison of the obtained scheme with the internal structure of real bone
indicates close similarity. The results of another computation shows that the
internal structure is very sensitive to the applied loads. This is confirmed by
medical observations.
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stage VI

Fig. 2. Sample of material under shear followed by tension test — successive steps in
equal time intervals; (a) internal remodeling due to shear, (b) internal remodeling
due to tension

14 — Mechanika Teoretyczna
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Fig. 3. The growth of bone internal structure due to physiological constant load —
successive steps in equal time intervals
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3.3. Example 3: Remodeling of material in a cantilever beam after appli-
cation of rigid inclusion

A non-homogeneous cantilever beam, clamped at the left end, displayed
in Fig.4 (topmost picture) in tension and bending state was analyzed. The
analysis of adaptation process starts after application of a rigid inclusion at
the left end (gray region). The intention of this example was the observation
of the remodeling process resulting in the a loosening of the prosthesis, what
is sometimes observed in reality. It seems that even such a simple model of
the adaptation phenomenon can reflect the characteristic changes in bone.
Of course, in order to analyze the real situations much additional research
is required, e.g., the tuning of a system in order to express reasonably the
amount of changes in time (this depends on the extremal values defined in
the constraints). More investigations are planned in order to include more
realistic description of a connection between the inclusion and bone material
(here the rigid connection was assumed), as well as more realistic modeling of
bone geometry (2 and 3-dimensional models).

3.4. Example 4: Remodeling in the vicinity of crack and healing process

In the last example a very simple model of a healing process in the vicinity
of a crack is considered. No biological effects are taken into consideration and
only mechanical remodeling effects the "healing” of the bone.

The cantilever beam clamped at the left end and subject to the vertical
force applied at the right-hand end is considered. The initial crack at the
distance of one-fourth of the length of the beam from the clamped edge is
introduced. We also assume that some initial time is needed to activate the
growth of a new tissue in a crack and enable it to bear the load. In Fig.5
the subsequent stages of remodeling are presented. In the first three figures
the growth of reinforcement passing by the crack can be observed. The next
three figures show the situation when the growth of new tissue in the crack
was initiated and then this tissue is able to bear the load. Finally the crack
vanishes.

4. Conclusions

In the present work selected preliminary results concerning application of
a new approach to the problem of modeling of bone adaptation process are
presented. It follows from the initial investigations that the proposed approach
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(a)

Fig. 4. Internal remodeling in the vicinity of rigid inclusion: (a) initial beam,
(b), (c), (d) successive steps of remodeling in equal time intervals
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LICER T

stage II

Fig. 5. Remodeling of material in the vicinity of crack — successive stages in equal
time intervals; (a) stages I-III - reinforcement around the crack grows,
(b) stages IV-VI - healing process predominate and the crack vanishes

can be possibly used to model the phenomenon of bone remodeling due to the
adaptation process. More research is planned to examine different objective
functions and constraints, and resulting adaptation laws. The validation of
theoretical results in medical tests would also be necessary. There are many
possible applications of the method discussed here, for instance the analysis
of interaction of bone and prosthesis and their optimization, the effects of
osteoporosis and possible methods of their reduction, the process of healing
after surgery or bone damage and its possible optimization.
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Zastosowanie warunkéw optymalnos$ci w modelowaniu zjawiska adaptacji

kosci

Streszczenie

Na przebudowe kosci maja zasadniczy wplyw dwa procesy: resorpcja tkanek oraz
synteza nowej matrycy. W stanie ustalonym sg one w réwnowadze, lecz gdy na sku-
tek zmiennych warunkéw zewnetrznych ktéryé z nich zaczyna przewazaé moze na-
stapié nawet znaczna zmiana struktury wewnetrznej i zewnetrznego ksztaltu kosci.
W literaturze po$wieconej problemowi modelowania zjawiska adaptacji kodci mozna
wyrézni¢ dwa charakterystyczne podejscia, jedno oparte na teorii adaptacyjnej spre-
zystosci i drugie wykorzystujace matematyczne metody optymalizacji. W niniejszej
pracy zaproponowano nowe sformutowanie wykorzystujace hipoteze optymalnej reak-
cji uktadu. £aczy ono w sobie wiele zalet obu wspomnianych metod. W celu zilustro-
wania ogélnej idei wyprowadzono konkretne, proste prawo adaptacji. Przedstawiono
tez kilka przykladéw numerycznych ilustrujacych niektére z mozliwych zastosowan
omawianych zwigzkéw teoretycznych.

Manuscript received February 22, 1999; accepted for print March 22, 1999





