JOURNAL OF THEORETICAL
AND APPLIED MECHANICS
4, 37, 1999

THERMODYNAMICS OF SOLIDS WITH A STATE EQUATION

RySZARD WOJINAR

Institute of Fundamental Technological Research of Polish Academy of Sciences

e-mail: rwojnar@ippt.gov.pl

The thermodynamic relations describing equilibrium of a multi-phase
thermoelastic solid are obtained in a way similar to that used in the
multiphase fluid theory. The phase transitions of the first order are de-
fined and equilibrium equations of the Clapeyron-Clausius type are de-
rived. Also, the phase transitions of the the second order are introduced
and equilibrium equations of the Ehrenfest type are obtained. A general
theory is illustrated by examples.
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1. Introduction

The paper aims at giving description of a solid within the frame of classical
thermodynamics based on the asumption that a state equation describing be-
haviour of the solid exists; in particular, a thermoelastic solid may be described
in this way.

It is well known that the laws of thermodynamics based on such concepts as
the temperature, internal energy and entropy are generally accepted. Albert
Einstein in his scientific autobiography in 1949 wrote A theory is the more
impressive the greater the simplicity of its premises, the more different kinds
of things it relates, and the more extended its area of applicability. Hence the
deep impression that classical thermodynamics made upon me. It is the only
physical theory of universal content concerning which I am convinced that,
within the framework of the applicability of its basic concepts, it will never be
overthrown (for the special attention of those who are skeptics on principle).

In the present paper we discuss an analogy between classical thermodyna-
mics of fluids and solids, and derive

e Relations of Maxwell type
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e Constitutive consequences of these relations for a thermoelastic body

e Relations of the Clapeyron-Clausius type for the phase transitions of the
first order

e Ehrenfest relations for the phase transitions of the second order

e Formulae for the stress-temperature tensor of a nonlinear solid.

These results have not been included in previously published works; e.g.,

— Landau and Lifszic (1959) discussed phase transitions of the second order
for a body subject to the hydrostatic pressure only, ¢f also Lubarski
(1961)

— Born and Huang (1956), and Khachaturyan (1974) dealt with the phase
transitions on an atomic level only; see also works by Likhachev and Ma-
linin (1993), Roytburd (1974), Roytburd and Slutsker (1995), Raniecki
and Tanaka (1994), and Raniecki (1996), in which the phase transforma-
tions of solids on a macroscopic level are discussed. The author (Wojnar,
1995) obtained only the Maxwell relations and thermodynamic functions
describing the phase transitions in a solid with a state equation.

A multi-phase one-component thermoelastic solid discussed in the present
paper can be considered as a generalization of a one-phase thermoelastic solid
proposed by Landau and Lifszic (1958). For such a solid equilibrium equations
of the Clapeyron-Clausius type for the phase transitions of the first order
(when the temperature is constant) and equilibrium equations of the Ehrenfest
type for the phase transitions of the second order (when the temperature
changes) are obtained in a way similar to the multi-phase fluid theory by
Landau and Lifszic (1959), and Werle (1957).

2. Constitutive equations

Let ¢;; and oy; denote the strain and stress tensor fields. If z and ¢
denote the space variable and time, respectively, we have e.g. &; = €;5(z, ).
Let T be the absolute temperature of a thermoelastic solid. The strain ¢;; is
related to the displacement u; by a relation which is to be specified later. Let
the fields &;5, 0;; and T be related by a constitutive law

O35 = O’ij(Eij,T) (2.1)
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Thus, €;; and T are independent state variables i.e. Je;;/0T = 0. By taking
the total derivative of Eq (2.1) we get

ol

= dT + 2.2
dO’U 8T 8677”1 Tdfmn ( )
and if O35 = const
O0i; 00;;
0= 11 dT Y\ d 2.
8T € Bsmn T mn ( 3)
Therefore
6(71'1' _ 6(7@' 6Emn (2 4)
oT € afmn T oT - )
Now, let us define the tensor fields
9oij ey Boi;
Cijmn Bemn |7 Qg aT . Yij aT |, ( 5)

For a linear body cCijmn, 0; and y;; are known as the elasticity, thermal
expansion and stress-temperature tensor fields, respectively.
The inverse relation of Eq (2.5), reads

Oeyj

Qijmn = 7—— (2.6)
where a;jmn are compliances.
Using the above notation we rewrite Eq (2.4) in the form
Yij = Cijmn®mn (2'7)

3. Specific heats

Let u be the internal energy per unit volume of a thermoelastic body. The
first law of thermodynamics reads, Landau and Lifszic (1958), cf also Werle
(1957)

0Q = du — oyjdey; (3.1)

where d() is the heat increment per unit volume of the body and § denotes
a differential (not total in general). Taking u as a function of T and e¢;; we

have o
dl’ + —
O T

ou

d
Y= ar.

de;; (3.2)
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So, by virtue of Eq (3.1)

_ Ou
A

ou
6£ij

0Q

EdT—F(

- O'ij)d&‘ij (3.3)
T
Hence the specific heat for a process characterized by an index r is given by

. (5Q _ Q’li aé‘ij

Ou
= — e - — P C .4
Cr dT |, aT|, (anT‘ ””)aT . (3-4)
The specific heat at a constant deformation reads
ou
Ce = — 3.5
0T, (3:5)
while the specific heat at a constant stress is given by
6Q ou Ou O0€;5
Co=—=| =— — 04 ) 3.
°=ar|, aTE'*(anT‘ %) a7 ., (36)

To simplify the last expression, the first law of thermodynamics is written in
terms of the enthalpy or heat function (per unit volume)

h = u— 03565 (3.7)
and we obtain
6Q = dh + €;5do; (3.8)
and
¢, =2 a (3.9)

From Eqs (3.5), (3.6) and (2.5) it follows that

ou
Oe ij

@—Q:(

- aij)aij (3.10)
T

Thus, to obtain C,, C¢ and (C, —C,) it is necessary to know both the internal
energy and state equation. It will be shown in Section 4 that to obtain the
difference (C, — C;) a state equation can be used only, cf Eq (4.20).
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4. Entropy and Maxwell relations for a thermoelastic solid

The differential §¢, in general not the total differential, can be expressed

by the total differential of entropy s as
0Q =Tds

and by Eq (3.1) we get
du =Tds + oi;ide;;
or
1(0u ou
ds:f{ﬁ @T'—Uz’j)d(iij}
where T and ¢;; are assumed to be the independent variables.
On the other hand

6dT+(

Os Os

ds = —| dT + —| dey;
s oT € + 8eij T €ij
Hence
0s _lau _Ce 0s _1<8u _U__)
BTE_TGTE_T 862']'T_T 861']'7_" “
Comparing the mixed derivatives we get
k- o5 = =T 94
861']' T oT €

The first law of thermodynamics can be also written as, cf (3.8)

1
ds = T(dh + Eideij)

or
1 (0h oh
ds = T{ﬁ adT-i— <80'ij , +6i]‘)d0’i]’}
Since 3 5
s s
ds = —| dT + ——| dojy;
8 BT o t Baij T 0'1]
(T and o;; are considered as independent variables) we get
Os 1 oh Cs Os 1/ 0h
oT o T orT o T 6Uij T T 60’11 T

(4.1)

(4.2)

(4.3)

(4.4)

(4.7)
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Comparing the mixed derivatives we get

oh Oeij
+ey = T% (4.8)
2

601']' T
Now, introduce the Helmholtz potential (or free energy) by
f=u—-Ts (4.9)

Then the first law of thermodynamics takes the form

df = 04jdeq; — sdT (4.10)

and we obtain of o1
— . | =_ 411
862']' T UU BT < 5 ( )

Comparing the mixed derivatives we receive the first set of Mazwell equations

8Uij _ Js
oT P 8Eij T
or 5 5
8 T34
=— = ;i 4.12
Deijlr  OT | 9 (412)

Finally, if the first law of thermodynamics is written in terms of the free
enthalpy or Gibbs function in the form

g=u—- Ts — O35€i5 (4.13)
then the first law reads
dg = —€;5dog; — sdT (4.14)
and we obtain 5 5
g g
. 991 _ _ 4.15
801']' T EZ] (9T o s ( )

Comparing the mixed derivatives we receive the second set of Mazwell equ-
ations

861']' _ Os
6T o 8Uij T
or 5 5
S Eij
= = ;; 4.16
80’1']‘ T 6T o az] ( )
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Eqs (4.4) and (4.8) imply the relations
oC; _ T(?Qoij
361']' T oT?
in which the derivatives of the specific heats are expressed by a state equation

only. Using the definitions (2.5)3 and (2.5)y we simplify Eqs (4.4), (4.8), and
(4.17) to the form

oc,

£ 30','_]'

_ 0
r = OT?

(4.17)

o

8‘9;;_ _— o =T % ey =Toy (4.18)
N S A
Also, using Eq (4.18); we reduce Eq (3.10) to the form
Co — Cp = Tyj50u5 (4.20)
or by Eq (2.7)
Co ~ Ce = TCijmntijmn (4.21)

Thus to compute the difference (C, — C.) only a state equation is needed.
If ¢ijmn is positive definite, the difference (C, — C,) is positive; i.e.

C, > C, (4.22)

A similar relation was obtained for fluids (cf Werle, 1957).
Finally, note that from Eqgs (4.9) and (4.11); we get

3}
f =u+Tﬁf . (4.23)
and by virtue of Eqs (4.13), (3.7) and (4.15) we receive
dg
g=h+Tg (4.24)

Eqs (4.23) and (4.24) are known as the Helmholtz-Gibbs equations.

5. Differentials of entropy, internal energy and enthalpy

The differentials
Jds
Oe ij

ou

Beij

Ou
dar d deij + =
and U T6]+6T

[

dT

[

s}
dEij + 5

ds = —
T oT




816 R.WOJNAR

according to Eqs (4.12), (4.3), and (4.18); can be rewritten as

ds = v;;de;; + %dT du = (035 + Tyi5)dei; + CedT (56.1)
Egs (5.1) comply with the first law (4.2) and they are valid for every solid for
which the state equation (2.1) is postulated. For a homogeneous thermoelastic
body the constants C¢ and 7;; appear e.g. in a monograph by Witold Nowacki
(1966).
If o;; and T are considered to be independent variables; by virtue of Egs
(3.7) and (4.2) we have
dh = —Eide'ij + Tds
or
ds
T)dazj + Ta—T-
By comparing the mixed derivatives we get the Maxwell-type results, Eq
(4.16). Next, by comparing the last equation with

g

dh = (—Eij +T

doij

Oh Oh
dh Bo5; Tda]+aTad
we find that
oh| 08
ar|, ~ OT|,

and by virtue of Eq (3.9) we arrive at the result (4.7);. On the other hand,
the total differential of entropy s given by Eqs (4.6), (4.16) and (4.18)5 reads

C
ds = aijdaij + ?odT dh = (—Eij + aijT)dO'ij + C,dT (5.2)

6. Joule Thomson type processes

Joule Thomson process is understood as a process in which the enthalpy
(heat function) is kept constant at every point of the solid. Thus for such a
process

oh oh
dh = —| dT + —| do;; dh =
h T, + Jog |7 O and h=0
and by Eq (3.9)
oo,
Ooijlp,  Ooijlr
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Hence
or | _i oh
adij h Co’ adij T
and by Eq (4.18),
oT 1
—| = (€45 — To; 1
doij|n _ Co (€35 a;ij) (6.1)
On the other hand, cf (4.5) with dh = 0, we get
Os €ij
22 =24 6.2
aUz'j h T ( )

In a similar way we obtain the relations describing a processes in which internal
energy is kept constant at every point of the solid. From Eq (3.2) for du =0,
by virtue of Eq (3.5) we get

T 0
0=c 9L 4
asij u aEij T
Hence, and by Eq (4.18);, we obtain
oT 1
= —— (04 + T 6.3
35:‘;’ u CE (UU + ’YZJ) ( )
In addition from Eq (4.2) for u = const, we get
0s 0ij
=—-— 6.4
af;‘ij u T ( )

Egs (6.1) and (6.3), and Eqgs (6.2) and (6.4) are valid for a process in which
the enthalpy and internal energy are kept constant at every point of the solid,
respectively.

Let us discuss the entropy in a Joule-Thomson process in which an arbitary
reversible path is closed. Taking /& and o;; as the independent variables we
obtain )

ds = T(dh + 5ijdaij)

Integrating this along a curve of constant enthalpy on which dh = 0 we get
b
1
S(b) — s(a) = / —T—Eij dUij
Q
and by an average value theorem we obtain

() = () = (i) (03(6) = 035(a)

av

The extension of a thermoelastic sample under adiabatic conditions is dis-
cussed in Section 13.

5 — Mechanika Teoretyczna
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7. Necessary equilibrium conditions

The conditions of a minimum of the Gibbs function in a state of equlibrium
at T = const and ¢;; = const read

du — Tds — 045de;; > 0 (7.1)
and 5 5
u U
as c 361']‘ T U]

The inequality (7.1) may be also written in the quadratic form

d*u 0%y A%
S ds® + s dsde;; +
4 361']'36mn

deyd
852 T Bsdes; ijdemn > 0

Adopting the notation in which g),€99,€33,€93,€13,€192,€32,€3, and €9) are
denoted by ¢€),€9,€3,€4,€5,€6,€7,€8 and €y, respectively, (and similarly for
o;;) the above condition may be rewritten in terms of ten positive Jacobians
of the order k from 1 to 10.
The positiveness of the first order Jacobian means that
oT T

bl B
0s |¢ C€>

and the positiveness of the second order Jacobian reads

or

For the higher orders Jacobians, 7 =1,2,...,9, we obtain

T 9(o1,09,...,07)

— >0
C. 0(er,€9,...,6r)

These are the necessary stability conditions of a body.
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8. Clapeyron-Clausius equations of phase transitions of the first
order

An equilibrium condition between the phases I and K of the same body

takes the form
9" (0i,T) = g% (045, T) (8.1)

where ¢’ and g¢¥ denote the Gibbs potentials for the phases I and K,
respectively. It means that passing from the phase I to the phase K the
Gibbs function changes in a continuous manner. Its partial derivatives however,

of (4.15)

dg dg

| = s = —E&4 8.2

aT o 301'_7' T + ( )
do not have to be continuous. In the case of phase transitions of the first order,
the jumps of entropy and strains are observed at a temperature of transition,

ie.
st # sK Eilj # 51-1](- (8.3)
Because the quantity T(s’ — sK) = ¢/ is equal to a heat released during the
transition from phase I to phase K therefore the phase transitions of the
first order are associated with a heat absorption or emission.
At a point of equlibrium, Eq (8.1) holds true. At an adjacent point to the
point of equilibrium we have

9" (0ij + doy;, T + dT) = ¢" (0y; + doyj, T + dT) (8.4)
or
9" (035, T) + dg" = g% (04;, T) + dg¥ (8.5)
and substracting Eq (8.1) from Eq (8.4) we get
dg" = —s'dT - el;dof; = dg™ = —s"dT — ef{do (8.6)
or 7 K
do!. do’t
(ehigp — el ) = (s =) (8.7)
Hence

I K
g T ) T T 88)
and this is the Clapeyron-Clausius equation for a solid with two phases: the
heat of a transition and the difference of deformations are related to the slopes

of an equilibrium curve at both sides of the phase boundary.
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9. Ehrenfest equations for the second order phase transition

The second order phase transitions are far more rare than the first order
ones. For example, the second order phase transitions occur in ferromagnetics
at the Curie point when a ferromagnetic becomes a paramagnetic, and in some
metals when a superconductive metal transforms to a normal one.

Let us derive the equilibrium differential equation describing the second
order phase transition. According to the definition of these transitions the
first partial derivative of the Gibbs function must be continuous and only
the second derivatives can suffer a jump at a phase change surface. Let us
examine the physical meaning of the three partial second order derivatives of
the function g. We find that

Pg _ 009 __0s| _ _Co
aT? 9T 3T o 74 - -
82‘(] 0 69 65ij
00mn00i;  O0pmp 00ijl7  Oomnly @ijmn (9.1)
82.9 _ 88 . —-65# o
aO’ijaT B 6Uij T T aT ” = —Qij

cf Eq (4.15) and Egs (4.7)), (2.5)1, (4.16), respectively.
If we take as a starting point the entropy continuity condition

ds! = ds (9.2)
or I I K K
0s 0s 0s 0s
| dT dol. = = | 4T K .
aT |, * doij |1 75 = a1 ad * 0oy; TdUU (6:3)

then multiplying both sides of Eq (9.3) by T and subsituting for the values
of partial derivatives from Eqgs (9.1); 3; we get

CldT + Taf;do; = CFXdT + Tofidofy (9.4)
Hence
—(effdofy ~ ofido)T = (CF - C])dT (9.5)
or P ;
do’§ dol; 1
(adf - —aly—7) = ~7(CX = C)) (9.6)
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However, if we take as a starting point the equality of deformations of both
phases we obtain another expression for do;;/dT. To this end we postulate
that

del = el o)
> Eilj Befj Eg d Z’J(
ng+ B0 Tdamn =37 JdT+ o Tdamn
and from Egs (9.1)2 3 we receive
ol dT + af;pndol, = offdT + of, dok | (9.8)
. doK dof
(ffmn 7 = afimn o) = off — o, (9.9)

Egs (9.6) and (9.9) form a set of equations of the Ehrenfest type for the second
order phase transition for a solid. If the compliances and thermal expansions
of both phases, treated as functions of the temperature, are known, Eq (9.9)
may be integrated to obtain a curve of equilibrium. If the right-hand-sides of
the Ehrenfest equations for a temperature are known, the stress in a small
neighborhood of the temperature may be obtained.

10. Example 1 - linear homogeneous thermoelastic body

For a linear homogeneous body the functions aijmn, Cijmn, Qsj, ¥;; and
C: (cf Eqgs (2.5) and (2.6)) are constant and Egs (5.1) can be integrated.

Since in a natural state =0 and s=0, for ¢;; =0 and T = Ty, after
integration we get

u= %Qjmnemnfi]’ + 7i5To€ij + Ce(T ~ To)
(10.1)
T
§ =€ + Ce In T
For the enthalpy we obtain
. T
h= — 5 %ijmnOmn 0ij + a3 Toos5 + /C’a daT (10.2)

To
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We can also write

T
1

h=hy+ / Cy, dT ho = —Eaijmnaijamn + aijTOUij (10.3)

To

and expressing the entropy by stresses we get

T

1
§$ =38y + / TCU dr Sg = Q45045 (10.4)
To
The equilibrium condition
RE —pl =T(sK — Ty (10.5)

can be expressed with use of (10.3) and (10.4) written for the phases 7 and K.

11. Example 2 — nonlinear thermoelastic body of the Kovalenko
type

Kovalenko (1970) cousidered a thermoelastic body described by the free
energy density

T X
1 Ce=
f= 5 Cijmn€ijEmn gij€ij (T — Ty) — / dX/ }0 dT (11.1)
o To

where
Cijmn = /\5ij5mn + ,U'((siméjn + 5jm5in)
9ij = 90;; g=(3\+ 2u)ar

and A and p are the Lamé temperature dependent moduli, ar is the mean
thermal coeflicient of linear expansion, while C,—g denotes the specific heat
at a zero strain. All these coefficients are assumed to depend on the tempera-
ture T but not on the strain ¢;;. For a discussion of nonlinear thermoelasticity
in which the material properties of a solid are temperature-dependent, see also
Nowacki (1986), Noda (1986).
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The stress oy; is derived from the relation o;; = 0f/0¢;j, cf Eq (4.11),
and the entropy density of the body is found from the relation s = —90f/dT,
cf Eq (4.11)9. Hence

0ij = CGijmnEmn — gij(T - TD)

(11.2)
1 dc¢;;
s=-5 ;nel]gmn + = 57 [gz](T To)les; dT
To
From Egs (4.3); and (4.12)2 we find

C. Os 10%¢;; 82

T = ﬁ = —§ﬁ ij€mn * F79 T2 [gu T T())]E” + O(E 0)
(11.3)

_Os Otijran d
Yiy BEz‘j = ar +ﬁ[gu(T TO)]

and 5
Yij (e=0) = 9i5 T 89723 (T - Tp)

The result (11.3)2 may be also obtained by using Eqs (2.5)3 and (11.2),.

Therefore, in this nonlinear body two different stress-temperature tensors
occur: the first is to be identified with g;; that appears in the material law
(11.2)1, while the second, derived via the entropy relation (11.3)2, is equal
to ;. Clearly, 1;; is consistent with the thermodynamical restrictions, so it
complies with the Maxwell type equation (4.19),. Note that a complete system
of nonlinear field equations of thermoelasticity include both tensors g;; and
7v;- It follows from Eq (11.3), that a linearization of the model in which g;;
is independent of temperature leads to the identity v;; = gs;.

12. Example 3 — special case of a nonlinear thermoelastic body

We assume the following form of free energy

1 1
~2 2

To To

where ¢ijmn = Cijmn(T), while g;;, C and A;; are constants.
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The entropy of the body is found from the relation s = —9f /0T, cf (4.11),
and we have

o _lacijmn
2 T

C
€i5€mn T 9ij€ij + / T dT + Aijsij(T —Ty) (12.2)
To

The thermoelastic coefficient -y;; and the reduced specific heat C./T are
given by

Os 0c;
Y el T (;%memn + 915 + Aij(T — To)
(12.3)
C 0s 10%¢;
T ol = T3 are et tAus
€

and a relation between the stress o;;, the strain ¢;; and the absolute tempe-
rature T, cf (4.11);, takes the form

of

1
Gog |y = G~ 935 + 5.45(T — T)|(T - T) (12.4)

0i5 =

Applying the definition (2.5)3 to this equation we arrive at the relation (12.3);.

13. Example 4 — adiabatic extension

Let a thermoelastic body be subject to an adiabatic process. Consider the
relation

O(T,s) ( Os )

or| _ ,o0TN _ O0T,s) 8(511, T) N0y /T Os
% s - (aé‘ij)s - 3(8i]',3) 8(52], ) N (83) - _a(asi]’)T
9(ei5,T) T /¢

(13.1)
where the properties of a Jacobian and relation (4.3); were used. From Eq
(4.12) we get

ds 80’2']'
Y =y 13.2
68i]' T (9T € Vg ( )
Hence o7 T
T 13.
afij s CE’YU ( 33)
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Next, using (4.7); we obtain

O(T,s) ( Os )
E _ ( aT) _ 6(T,3) (O’z], ) aO'i]' T _z( Os )
Boijls ~ \Boi; /s~ B(aij5)  O(oiys) (@) ~ G, \doy
a(au, T) orT
(13.4)
Since, by Eq (4.16)
33| __aEij| o .
8oy, ‘T =37 {0 = Qjj (13.5)
hence or -
0035 |4 N _C_aaij (13.6)

As a result we arrive to the following conclusion: if component «;; is positive,
and o0;; has only one component oy, > 0, then the temperature of a body
subject to an adiabatic extension decreases.

14. Example 5 — adiabatic and isothermal elastic coefficients

Consider the adiabatic elastic coefficients defined by

0oy

bijmn = Be, (14.1)
or
a(O'U,S)
aO'ij = a(gij’s) (O'ab) )a(O'ab, ):
aEmn S N a(emnas) (6777.71)3) a(epq, )
B(epg, T)
(14.2)
0s
_ (Bidjp 5ib5ja)(ﬁ)a 80,4
- ds\ O
(5mp(5nq + (5mq(5ns)(ﬁ)e “palT

Hence, by virtue of Eq (2.5),

C
bijmn - E:cijmn (14'3)
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Eq (14.3) provides a relation between the adiabatic and isothermal elastic
moduli for a thermoelastic solid.
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Termodynamika ciata stalego z réwnpnaniem stanu

Streszczenie

Analizujemy zwiazki termodynamiczne opisujace réwnowage ciala termosprezy-
stego zlozonego z wielu faz. Czynimy to w sposéb podobny do stosowanego w teorii
plynéw wielofazowych. Po okre§leniu przejéé {fazowych pierwszego i drugiego rodzaju
wyprowadzamy zwigzki typu Clapeyrona-Clausiusza i Ehrenfesta. Ogélng, teorie uzu-
pelniamy przykladami.
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