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In the paper an attempt has been made to show crucial ideas of mo-
dification theory. This theory, though just in statu nascendi, provides
the flight dynamics engineer with a very valuable design tool, because it
covers the diverse topics that have attracted utmost attention in current
researches. This paper considers the problem of improving the aircraft
dynamic characteristics using feedback control. The starting point is a
linear quadratic problem. Next, several applications of control theory to
aircraft control law developments are described. The applications include
solutions to the artificial stabilization and wing rock control problems.
Finally, some issues to be explored are shown.

Key words: stability and control characteristics, artificial stabilization,
wing rock control

1. Introduction

Whenever a set of specifications has been laid down for the dynamic be-
haviour of an aircraft, and when those specifications cannot be met, a modi-
fication problem arises. If the required dynamic behaviour has to be achieved
then additional equipment must be used with the basic aircraft. Stability and
control are two of the major technical challenges in the aircraft design. The
failure of many aircraft projects in the past resulted from inadequate solutions
to the stability and control problem. New aircraft designs, which typically are
driven at requirements for reduced operating cost, in the case of civil transport
aircraft, and reduced radar signature, in the case of military aircraft, present
strong challenge to the flight dynamics engineer.

The research aims at a more systematic study of the aircraft modification
problem. The paper highlights the important role the feedback control plays
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when solving this problem. The importance of feedback control in furnishing
the required stability and control characteristics for aircraft has been firmly
established. All high-performance aircraft produced today employ some form
of the feedback control, e.g., in the form of an autopilot, a limited authority
command and stability augmentation system, or a full authority fly-by-wire
system.

For most aircraft flying today the control laws were accomplished using
classical techniques, e.g., the root locus technique. However, over the last 25
years new multivariable control law analysis and synthesis techniques have
been proposed. These techniques have their roots in the theories of optimal
control developed by Pontryagin et al. (1962) and Bellman (1957). There has
been a proliferation of extensions and variations, which have kept the acade-
mic community well occupied. The proponents of multivariable control theory
claim that the modern techniques can handle multiloop control problems in a
formal and systematic manner.

The paper partially summaries some of the analytical control design expe-
rience during the last 10 years gaived by the Movable Objects Dynamics Team
at Warsaw University of Technology.

2. Formulation of the problem

2.1. Classical versus modern design techniques

With the rapid development of high-speed computers during the recent de-
cades, a new approach to the control system design has evolved; this approach
is commonly called modern control theory. This theory permits a more syste-
matic approach to the problem of control system design. In modern control
theory, the control system is specified as a system of first-order differential
equations. By formulating the problem in this manner, the control system
designer can fully exploit the digital computer when solving complex control
problems. Another advantage of modern control theory is that optimisation
techniques can be applied to design of optimal control systems. The purpose
of the paper is to expose to some of the concepts of modern control theory
and then apply the procedures to design of aircraft flight control systems.

2.2. Basic concepts of modern control system design

In attempt to improve aircraft designs and to explore the effects and par-
ticularly the benefits of the act, the obvious step is to present philosophy of
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modern control system design. Two concepts are crucial for this design. The
first one: the design is based directly on the state-variable model

T = f(z(t),u(t)) (2.1)

where f is, in general, a nonlinear function of the state vector z(t) of dimen-
sion n, and the control vector u(t) of dimension m.

The second basic concept: the formula for performance specifications in
terms of a mathematically precise scalar functional of the general form

¢
I= | o(z,u)dt (2.2)
/

termed performance index, where (t; — to) is the operation time.
In many practical situations instead of the model (2.1) it is sufficient to
use a little simpler model

z = Az + 9(z) + Bu(t) (2.3)

where A and B are constant n x n and n X m matrices, respectively.
Therefore, it makes sense to apply the index (2.2) in the form

p= %(ZTQ{E + uTRu) (2.4)

where the weighting matrices Q and R are n xn non-negative and m xm po-
sitive definite symmetric matrices, respectively. In the case, when dimz = 2,
and dimu = 1, we have the relations

Q=g 0" R=r>0 (2.5)
often presented in the papers.

2.3. Aircraft modification problem

An important task in aircraft dynamics is modification of the aircraft para-
meters for specified dynamic behaviour to be attained. According to the best
of our knowledge, the term aircraft modification problem has never been used,
although the term modification can be found in the various contexts of air-
craft dynamics. Such terms as alleviation, control, enhancement, improving,
reduction, will be treated as equivalents of one universal word modification.
The objective of the modification is to improve the operational capabilities
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of the aircraft with respect to range, take-off and landing distances, time-to-
climb, etc. Thus, we would term modification (precisely active modification)
the mathematical process by which one realises the act functions within the
framework of modern control theory, not necessary the optimal one (in the
sense of index (2.2)).

The general modification problem can be stated as follows: given a dynamic
system represented by Eq (2.1), the following output equation

y = h(z) (2.6)

and a required output trajectory y4(t), find a control law u(t) such that the
tracking error

e = () - yal?) (2.7)
tends to zero, as the whole state z(t) remains bounded. When we take into
consideration the index (2.2), then we have the optimal modification problem.

2.4. Standard modification technique

As a basis for discussion, consider in the new light, the well-known Kalman-
Letov problem: the linear time-invariant controllable system is described by

& = Az + Bu (2.8)

The system performance is expressed by the functional

I =

DN =

/(a:TQa: + u"Ru) dt (2.9)
0

If we apply the principles of calculus of variations to minimisation of the
performance index (2.9), we obtain the feedback control law in the form

u(t) = Fz(t) F=-R'B'K (2.10)

where the feedback gain F can be obtained after solving the following matrix
algebraic Riccati equation

PBR™'BTP-PA-ATP-Q=0 (2.11)

where P is a positive-definite symmetric matrix. Except for simplest exam-
ples, solution of Eq (2.11) requires sophisticated computer codes. Finally, the
resulting closed-loop system becomes

&=Lz L=A+BF (2.12)
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Kalman showed that for a controllable system this solution yields a stable
closed-loop system, i.e., the eigenvalues of L, denoted as A;(L), 7 =1,...,n,
n = dimg, lie in the open left-half plane of the complex plane. In short

Re)j(L) < 0 (2.13)

The Kalman-Letov problem is often referred to as the Linear Regulator
Problem (LRP). The reason for choosing this problem was as follows: the
systems to be controlled may be unstable without control, and one of the
tasks of the control is to maintain stability in the entire working region of the
process. But there is still a more important reason for this presentation: the
LRP technique provides a prototype of systematic approach to the aircraft
modification problem.

3. Techniques for linear control systems

3.1. General remarks

The design technique presented above is however, suitable only for techni-
cally simple problems. The principal difficulty lies not in the solution, but in
the choice of a suitable performance index. The control law (2.12) is optimal
in the sense that the chosen performance index (2.9) is minimised, but diffe-
rent optimal controls can be obtained by altering the matrices Q and R. A
pilot using a subjective criterion ultimately judges the performance of aircraft
control system. The designer must rely upon his experience and judgement
to indicate the response curves that the pilot will find satisfactory. Since only
a tenuous relationship exists between the performance index and the desired
performance, a certain amount of trials and errors can not be avoided. The-
refore, in the following section we focus on advanced design methods, which
are suitable for use when solving the aircraft modification problem, including
eigenstructure assignment and model-following ones. As we will see, each of
these techniques has its advantages and disadvantages, and therefore each has
its proponents and antagonists.

3.2. Eigenstructure assignment

The eigenstructure assignment (pole placement) technique allows one to
assign the poles in the MIMO (multi-input/multi-output) systems to desired
locations in one step by solving equations for the feedback gains. The required
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pole locations for aircraft design may be found in the military fiying quality
specifications (see Stevens and Lewis, 1992). However, while discussing fly-
ing quality requirements, we have noted that the time response depends not
only on the pole locations; it also depends on the zero value of the indivi-
dual SISO (single-input/single-output) transfer function, or equivalently on
the eigenvectors. Thus, the capability of modern control system to select both
the closed-loop poles and eigenvectors is relevant in aircraft design.

In this design approach, the system to be controlled is represented by Eq
(2.8). For simplicity of the presentation we take into consideration only full
state feedback. Thus, the control law is a linear function of the state vector
(see Eq (2.10))

u=—Gz (3.1)

The feedback gain matrix G selected ensuring that this control law results in

the intended location of closed-loop eigenvalues )\; and shaping of closed-loop

eigenvectors v;; in short, we seek the closed-loop eigenstructure {A;,v;}.
Substituting the control (3.1) into Eq (2.8) yields the closed-loop system

& = (A — BG)z (3.2)

To select G so that a desired eigenstructure is assigned to the closed-loop
system, suppose that we can find a vector w; that satisfies the equation

Md—km[%J:O (3.3)
(3
Now, choose the feedback gain to satisfy
Gy, = w; (3.4)
Using Eqgs (3.3) and (3.4), we may obtain the equation
Al — (A - BGJv; =0 (3.5)

which states that wv; is assigned as a closed-loop eigenvector for a desired
eigenvalue A;.

To complete the presentation, we define the modal matrices V and W
(see Porter and Crossley, 1972), and finally we calculate G from the relation

GV =W (3.6)
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3.3. Model-following design

This technique is an important approach to the control design, where it is
required that the aircraft behave like an ideal (or model) system with required
flying qualities (cf Tomezyk, 1997), a quadratic performance index in which the
difference between the controlled aircraft and model responses are minimised.

In many problems, particularly in the field of flight control, one would like
the closed-loop system (2.12) to be as close as possible to a system given by
the differential equation

z= Adz (3.7)

that represents the model of desirable dynamics; such as, transient behaviour,
handling qualities, etc. Since, in general, dimz # dimz, one compares z
with the output vector y (dimz = dimy) that is related to z by a constant
matrix C

y=Cz (3.8)

There are two fundamentally different sorts of model-following control,
explicit and implicit, which result in the controllers of different structure (Ste-
vens and Lewis, 1992). In the explicit model-following control, index (2.9) is
modified as

t\Jlf—-‘

/ )T Qus(y — 2) +u" Ruj dt (3.9)
0

Index (3.9) can be transformed to the standard index (2.9). In the implicit
model following control, index (2.9) is modified as

t\J(l—‘

&)
= 5 [ 1= Aw) Qunlis ~ A + u"Ru] at (3.10)
0

By substituting Eqs (2.8) and (3.8) into Eq (3.10), this index becomes equiva-
lent to one of the standard type but with some cross-product (see Michalski
and Pietrucha, 1996).

3.4. Illustrative example: artificial stabilization

3.4.1. Stabilization of unstable aeroplane

The design of any aircraft depends on aerodynamic stability requirements.
Artificial stability is obtained essentially by feedback of sensed aircraft motion
to provide suitably phased stabilising control moments as is sometimes referred
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to as relaxed static stability. If the aircraft is "natural” unstable, then the

following relation arises
ReA;(A) >0 (3.11)

The aim of active control is to establish such a control law (2.10), that the
closed-loop system (2.12) is stable, i.e., Eq (2.13) holds for all j = 1,...,m,
m = dimL. More precise definition can be achieved by imposing the require-
ment that the time-to-half~amplitude

(3.12)

take the specified value.

3.4.2. Mathematical model of a short-period motion

Fig. 1. Body system of axes and the sign convention

The linear equations of longitudinal motion that approximate the short-
period mode are used in this example. This mode of motion occurs at almost
constant forward speed; therefore "the X-equation” can be neglected, as it
does not contribute much to the short-period motion. The frame of reference
for the aircraft motion is the system of body axes (see Fig.l). With these
assumptions, the equations of motion are similar to those given by Stevens
and Lewis (1992)

a(t) = Zaa(t) + qu(t) + ZH(SH(t) + Zkék(t) (3 13)
(1) = Moa(t) + Maq(t) + Mpudu(t) + Mydk(t)

where
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a(t) - angle of attack

q(t) —  pitch rate

dp(t) - elevator deflection angle

5 (1) - fap deflection angle

Zo, Mq,... — dimensional aerodynamic coefficients.

The initial condition for Eq (3.7) is

_ T _ wo T
o = [ap,q0] = [arctan 7 0} (3.14)
where
T =[$,p|" u=[6y,0"
(3.15)
| Za 1 | Zu  Zy
Aﬁ[Ma Mq} B_[MH Mk]

3.4.8. Numerical example

Calculations for a model of controlled aeroplane were made for diagonal
weighted matrices with identical constant elements, i.e.

Q = wgl R = w,l we, Wy # 0 (3.16)

were chosen, where | is the unit matrix. In this case only one parameter can

be introduced w
== (3.17)
Wq
which is some kind of measure of economising control as far as constraints
limits imposed on the state of system are concerned. In such a case, the per-
formance index can be presented in the form

I= % / (x7Tz + fu'u) dt (3.18)
0

A decrease in the parameter [ value; i.e., allowance for more expensive control
elements is accompanied by an increase in the absolute values of feedback
matrix F and eigenvalues A. This means obtaining systems with faster and
faster changing transient processes ~ which is confirmed by the monotonic
decreasing time-to-half-amplitude. It is worth noticing that in all cases of
actively controlled plane the eigenvalues are real, so the motion is aperiodic.
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The results of calculations are shown in Table 1 for the models of uncontrol-
led plane (N = 0) and actively controlled plane (remaining N), respectively.
One of the eigenvalues in the case with controls locked is positive. According
to the condition (3.11) this shows instability. The time-to-half-amplitude cor-
responding to this value is negative. The minus has here the physical sense: it
indicates that deviation from equilibrium state is rising, instead of declining

(Fig.2).
Table 1
| No.| B | Elements of P | Elements of F | A | Tip
I _ ~ —41770 | 0.166 |
FO T | 0.1130 | —6.135
1 5.0 0.3108 0.0589 0.2456 0.3578 + —10.4251 0.066
’ 0.0589 0.0888 | —0.05567 —0.1452 —2.0664 0.335
r2 1.0 0.2519 0.0198 0.4354 0.8573 | —22.1304 0.031
' 0.0198 0.0426 0.01656 —0.3549 —~2.2738 0.305
3 0.5 0.4759 0.0255 0.5853 1.2365 | —31.0902 0.022
' 0.0255 0.0615 0.1338 —0.5143 —2.4060 0.288
4 01 1.9605 0.0488 1.2837 2.8437 | —69.1507 0.010
' 0.0488 0.1415J 1.0394 —1.1908 —3.2091 0.216
5 1 0.05 0.3395 0.0065 1.8290 4.0494 | —97.7287 0.007
’ 0.0065 0.0202 1.9703 -1.6994 —3.9843 J 0.17i
(a) (b)
- 0.06 —f
g o.0s . %4
> 0,041 R =
0.03}F 3r
0.02F 2
0.01% . 3
5 12 3 3
0% : /_x/,i_ X /-
-0.01 31 I 0 = 7 =
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 08
1 (s} 1 1s]

Fig. 2. (a) — Histories of the pitch rate during the stabilization; (b) — histories of the
flap deflection during the stabilization

In the table there is also presented the solution P of Eq (2.11) used to
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determine the optimal control (2.10). It can be easily seen that, as it was
required and expected — they are positive determine and symmetric. It is
worthwhile to note that almost all corresponding to each other elements of
matrix F have the same sign. This is accompanied by an identical (in quality)
behaviour of the control surfaces (Fig.2b). An exception to this rule is the
second row of this matrix, in the case of economising control (N = 1). As a
result the flaps should deflect in oposit direction than in other cases.

3.4-4. Conclusions

The figures presented show that the determined control, which we will call
stabilising, achieves the goal (Fig.2a). But we cannot stop on this. The histories
of accelerations (Fig.3) show that it can be harmful to the staff and airplane.
A special attention is paid to a rapid increase in the normal acceleration
Immediately after the plane enters a gust. So a new issue appears: minimisation
of the normal acceleration (see Michalski and Pietrucha, 1996).

) )
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0

: L L
0 0.2 0.4 0.6 (1] 0.8 0.4 0.6 0.8

¢ sl

Fig. 3. (a) - Histories of the pitch acceleration during the stabilization;
(b) - histories of the normal acceleration during the stabilization

4. Design techniques for nonlinear control systems

4.1. General remarks

Many dynamic systems, particularly the aerospace systems, are nonlinear
and/or time-depended, and the techniques for design of linear time-invariant
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control systems are, in general, not applicable to such more complicated sys-
tems.

The linear systems have been investigated in full details because its cha-
racteristics allows a detailed analysis. This is not the case when the nonlinear
systems are considered, for there are no general approaches to the solution
of nonlinear differential equations. Generally, there are two approaches that
may be taken. The first, and most traditional one consists in postulating a
system and analysing its behaviour. Changes are made if the behaviour is not
proper, and the process is repeated. In other words, this is the trial-and-error
method. For example, the phase plane method, and describing method can be
used for this purpose. Experience and intuition are crucial for this process.
For complex systems, however, this approach often fails.

The second possible approach is that of direct synthesis. An objective
is established and an attempt is made to find such a controller that best
attains the objective in the best way when subject to appropriate restrictions.
In this section only the methods for synthesis of control systems to modify
certain characteristics will be considered. The following methods are evaluated:
Pontryagin maximum principle; Lyapunov function method; nonlinear inverse
dynamics.

The features of these methods are analysed on the example of Wing Rock
(WR) motion. Since the wing rock is a nonlinear phenomenon, a method of
control based on overall or local linearization is not aplicable. Indeed, roll-
coupling instabilities first appeared in flight, often with fatal results, because
the linearized equations of motion used for analysis at that time did not con-
tain the instability. The main objective of the section is modification of WR.
characteristics by active control.

4.2. Pontryagin Maximum Principle (PMP)

The PMP can be viewed as an extension of the classical calculus of varia-
tions to cover the optimal control problem (Elbert, 1984). Basically, the PMP
gives a set of local necessary conditions for optimality that in turn provide
a test, which determines whether or not any given control is a candidate for
optimality.

The solution to the optimal problem (see Egs (2.1) and (2.2)) is given in
terms of the Hamiltonian function defined as

H=H(z,u,9)=-p+f'9 (4.1)

where



MODERN TECHNIQUES FOR ACTIVE MODIFICATION... 143

® — loss function in Eq (2.2)
¥(t) - vector of adjoin variables that are defined by the equations
) | T
Lo _op of s
or Or T

According to PMP, the problem described by Eqs (2.1) and (2.2) has a
solution only if the Hamiltonian function has an absolute extremum with re-
spect to u(t) for every fixed value of (z,4). If the control vector u(t) is not
constrained in any way, the necessary condition is

O0H

B =
In practice, this situation is seldom encountered because saturation effects are
almost present to some extent, since all practical controllers can deliver only a
finite amount of energy. In order to consider this important aspect of optimal
control, the problem presented in Section 2 should be reformulated as follows:
it is required to select the control vector u(t) with the additional constraint
(Elbert, 1984)

0 (4.3)

up(t) < Cp p=1,..,P (4.4)

The details of the solution to this important problem are beyond the scope
of the present contribution, and can be found e.g. in Dubiel and Homziuk
(1990). Here, it is sufficient to say: application of the PMP yields the following
result

ZTH =0 if u, <Gy

? (4.5)
O0H )
éu_p g 0 if ’le = Cp

4.3. Lyapunov Function Method (LFM)

The basic Lyapunov theory comprises the two methods introduced by Ly-
apunov, i.e., indirect and direct methods. The direct method is a powerful tool
for nonlinear system analysis, and therefore the so-called Lyapunov analysis
often actually refers to the direct method. The direct method is a generalisa-
tion of the energetic concepts associated with the mechanical system: a motion
of such a system is stable if its total mechanical energy decreases all the time.
When using the direct method to analyse the stability of a nonlinear system,
the idea is to construct a scalar energy-like function (a Lyapunov function)
for the system, and to see whether it decreases.
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Although Lyapunov’s direct method is originally a method of stability ana-
lysis, it can be used for solving other problems in nonlinear control. Design of
nonlinear controllers is one of the important applications. The idea is to formu-
late somehow a scalar positive function of the system states, and then choose
a control law to function decrease. The nonlinear control system designed that
way will ensure the stability.

The methodology presented by Pietrucha and Ztocka (1995) leads to the
set of two algebraic equations
%—‘Z+(gradV)Tf+<p=0 (gradV)Tg—i g%zo (4.6)
If V can only be rendered negative semi-definite, it must be verified that 1%
remains zero at the required final state. The control function we can obtain
from Eq (4.6)2. Introducing the right-hand-side of Egs (2.3) and (2.4) into Eq
(4.6),, we obtain the differential equation

(grad V)TAz%R“l( erad V) TBBT grad V + (grad V) Td(z) + 27Qz = 0 (4.7)

for determination of needed a Lyapunov function.
Of course, the nature of control law depends on the type of V chosen. A
very popular choice is as follows

V(z) =3 Val2) (48)

where V}, is the homogenous form of nth order. Unknown coeflicients of
V;, must be found. To this end, the form (4.8) should be substituted into Eq
(4.7). Then, the resulting algebraic equations are obtained setting the sum of
coefficients of similar terms equal to zero.

4.4. Nonlinear Inverse Dynamics (NID)

The purpose of NID is to develop the feedback control law linearizing the
aircraft response to commands. This technique is based on the construction
of inverse dynamics as presented by Goszczyniski et al. (1997). The basic idea
of the approach is to transform a nonlinear system into a linear system via
decoupling, and then use the well-known linear control techniques to construct
controllers. The class of systems under consideration can be represented as

& =F(z)+ ) G(@)y y5(t) = hj(z) (4.9)
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where dimz = n, dimu = dimy = m.
Assume that our objective is to satisfy the following condition

¥(t) = ya(t) (4.10)

where y,(t) is the required trajectory. So, it is a tracking control problem.
Its solution seems to be simple: each controlled output, y (7 = 1,...,m),
is differentiated until an input term with u appears. The system will be
decoupled using nonlinear state variable feedback of the form

¥"i) = N(z) + D(z) (4.11)
where

N = L7 h;(z)
(4.12)
L LR~ hy oo LenLi ™ 'h

Ll 'hy o LomLiE '

The symbols L with superscripts and subscripts denote the Lie derivative.
The matrix D(z) is called the decoupling matrix (Slotine and Li, 1991)
for the system (4.9). If the decoupling matrix is non-singular, then the input

transformation
u=D""(z)[v - N(z)] (4.13)

yields a linear differential relation between the output g and a new input v
Y\ = (4.14)

Note that wv; affects only the corresponding output y;, but not the others.
Therefore, a control law of the form (4.13) is called decoupling control law.
As a result of the decoupling, one can use single the input-output design to
construct tracking controllers.

4.5. Ilustrative example: wing rock control

4.5.1.  Wing rock phenomenon

There is continuing interest in improving the performance of present and
future fighters and missiles by increasing their high Angle of Attack (AoA)
capability. However, serious lateral directional stability problems have been

10 ~ Mechanika Teoretyczna
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encountered at high AoA. The extension of an aeroplane performance enve-
lope to enter the high AoA region to improve manoeuvrability often carries
the penalty of an undesirable motion. A frequently encountered instability is
the limit-cycle oscillation, wing rock, which is driven by strong, concentrated
vortices originating from the leading edges of highly swept lifting surfaces. The
wing rock is a concern for combat aircraft because it may have opposite ef-
fects on manoeuvrability, tracking accuracy, and operational safety. Typically,
it occurs at a moderate to high AoA and involves mainly the roll degree of
freedom (Fig.4).

center of gravity

NS/
.{“"..m;l"'-; .
s

q:a-

[ ==
&

Fig. 4. Body fixed axes and the related angles

4.5.2.  Mathematical model of the wing rock phenomena

In this study, we consider a nonlinear mathematical model of the wing
rock based on the results (cf Pietrucha and Ztocka, 1995). On the following
assumptions (see also Fig.4): «a = const, V = const, Q = 0, R = 0,
h = const

B~ sina (4.15)

we may obtain the following one degree of freedom differential equation for
the WR motion
d’¢ 1

where
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- mass moment of inertia of the wing about the z-axis
~ roll angle

aerodynamic roll-moment

~ density of air

- wing area

— characteristic length.

TN NS
|

Basing on the test data (Arena and Nelson, 1994) the total rolling moment
coeflicient can be written as

Cr=11¢ + lap + l3¢°p + Lagp® + Isp° (4.17)
where Pb

The values of the [; (i = 1,...,5) appearing in Eq (4.17) depend on the AoA.
The quantity p in Eq (4.18) 18 a dimensionless reduced roll rate. The dot over
¢ implies the derivative with respect to the non-dimentional time

b
ot

After substitution of Eq (4.17) into Eq (4.16), we have finally the WR
equation

T (4.19)

¢ =cid+ cop+ c3d’p + cagp® + csp (4.20)
where 5
1
;= op = 1,...,5
G 9 P I, i ?

The roll angle and roll rates as a function of time are depicted in Fig.5.

4.5.3.  Model of wing rock control

As can be seen from Fig.5, the problem of wing rock suppression becomes of
a present interest. Therefore, the main objective of the example is modification
of WR motion by active control: we apply the active control by means of
aileronsg that induce the control moment

Leontrol = ‘IooSbCléde (4.21)

where Cjs, is the rolling moment derivative, and 4y, is the aileron deflection
(see Fig.4).
Defining

T =¢ To=7p u=dp (4.22)
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o 80 120 60 200
Fig. 5. Wing rock motion (histories of roll angle and roll rate)

we have the standard model of the control theory (see Eq (2.3))

z=Az +9(z)+ bu (4.23)

where

0 1 0 0
= = = . 4
A [ } ? [cm ’ M .
and
1 S8
z=[¢,p]" g= §P—1——Cm

o(z) = c(¢,p) = c3¢°p + cadp® + csp°

4.5.4. Wing rock control using the Pontryagin Maezimum Principle (PMP)
We take the explicit form of Eq (4.23)

¢=cip+cagp+c3d’d + cadd® + c58° + g6y, (4.25)

The Hamiltonian (4.1) for Eq (4.25) with notations (4.22), and the weighting
factors (2.5) reads

H = (1" + @ +78]) + ¢y + [c1d + b + o, §) + gdrlg (4.26)
Thus, the condition (4.3) by virtue of Eq (4.23) with (2.5) gives the formula

_ Loy
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An unknown function ¢ can be determined from Eq (4.2), which for Eq (4.23)

takes the form
$=Qz- (AT + _af)w (4.28)
o '

and from Eq (4.27) we have
1
op = 9y V2 (4.29)

By virtue of Eq (4.28) with Eqs (4.24) and (4.29) we have

7/;1 =—(c+ 2e3¢ + C4¢2)¢2 +q1¢
(4.30)

go = ~p1 — (ca + ca3d® + 2¢capp + 35Xy + a2

Now, the point is to solve the set of nonlinear differential equations (4.25)
and (4.30). To this end we use the Krylov-Bogoliubov (K-B) technique - this a
method of harmonic averaging is well known in nonlinear mechanics (Bogoliu-
bov and Mitropolski, 1958). The K-B approach splits the given equation into
an in-phase part for the frequency, and an out-of-phase one for the amplitude.

To solve the nonlinear differential equations (4.25) and (4.30) using the
K-B approach, it is assumed that

¢ = Acosl P; = A(&;sin 6 + 71; cos 6) i=1,2 (4.31)

where A, 8, &), £&2, m and 79 are functions of time. Differentiating Eqs (4.31),
introducing the following notations

. A 5 r d()
and assuming for the first approximation that
pX = (W) =g =m=§=n=0 (4.33)
we obtain
é&:A(pcosB—wsinG) g?;:A[(Az — w?) cos f — 2 wsin b))
(4.34)
P; = A[(ME; — wii) sin @ + (Mg; + wé;) cos ] i=1,2

Substituting Eqs (4.31) and (4.34) into Eqgs (4.25) and (4.30), and assuming
that the amplitude A and frequency w do not vary greatly over one oscillation
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cycle, the harmonic averaging K-B technique allows one to obtain an implicit
differential equation of the form

fy) =0 (4.35)

where y = [4,w]".

Therefore, the results can be summarised as follows: after specifying the
coefficients in Eqs (4.17) and (2.5), Eq (4.35) should be integrated for A(t) and
6(t). Then, the function »(t) and in turn the control §; can be determined
from Eq (4.29).

4.5.5.  Wing rock control using the Lyapunov Function Method (LFM)

Assume that the Lyapunov function has the homogenous form
V =pui¢” +2p12¢p +paap’ + D1¢* + Dag*p+ D3¢’p? + Dy¢’p+ Dsp® (4.36)

where the coefficients p,y,..., Dj,... must be found. To this end, the form
(4.36) should be substituted into Eq (4.7), which for Eq (4.23) with (4.24)
yields

2
_gT(OV? v W, o,
4r<6p) + [c1¢ + cap + (¢, p)] ap +p6¢ +q "+ qp° =0 (4.37)

Then, the resulting algebraic equations are obtained setting the sum of coefli-
cients of similar terms equal to zero. After the Lyapunov function is determi-
ned, the control law (for Eq (4.23) with (2.5)) is

g v

SRk 4.38
o 4r Op ( )
or in the explicit form
o= -2 Dsd?p + SDagp? + 2Dsp? 4.39
L=-4 pi2¢ +p2ep + Dy¢™p + 5 Dagp” + 2Dsp (4.39)

The WR model is numerically solved for the delta wings data. The follo-
wing values of weight coefficients (2.5) are chosen

The results of the presented WR model are shown in Fig.6 and Fig.7.
In order to compare our results with those obtained by Shue et al. (1996)
in Fig.6 is depicted the control

w = gdp, (4.41)
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Fig. 6. Comparison between the three control laws
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Fig. 7. Histories of roll angles after two different papers

4.5.6. Wing rock control using the Nonlinear Inverse Dynamics (NID)

The NID requires determining the output equation. We assume that the
measured value will be the roll angle. So, the output equation takes the form

y=¢ (4.42)

According to the methodology of NID we differentiale them twice (d = 2).
Thus, the equation necessary for determination of the vector v (see Slotine
and Li, 1991) takes the form

y=Py+Fy=0 (4.43)

as we assume that y, = 0 (in order to compare with the LFM). The cal-
culations were done (cf Goszczynski et al., 1997) for the two sets of data:



152 J.PIETRUCHA

?stronger” control - P =3 Fy=2
?weaker” control - P=4 Fy=1
For Eq (4.43) the following initial conditions were assumed
$(0) = ¢o =04 p(0) =0

The results are depicted in Fig.8.

(a) (®)

0.2 0.5
L] o b |
0 A} N R 0.4 —LFM
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0 0.3 \\ —@— weaker NID
-0. I I | L J

.\
-0.4%— ((: ;Exjger NIDJ‘ O.J \\\ @ﬂﬁ_,hd{t—/f—f
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Fig. 8. (a) — Histories of the synthesised control; (b) — histories of the roll angle
control (acc. to Goszczynski et al., 1997)

4.6.7.  Concluding remarks

e The wing-rock model is numerically solved for the delta wings data.
The results indicate that it is sufficient to use a linear feedback of the
state variables to suppress the wing-rock motion. In this context, the
Lyapunov technique is accurate in analysing the dynamic motion and
determining the optimal control input.

e The Krylov-Bogoliubov harmonic averaging technique is rather com-
plicated in implementation and leads to very complicated expressions,
which are troublesome both to analytically investigate and calculate nu-
merical. Nevertheless, it would be interesting to comparise between the
results obtained by means of the Lyapunov Function Method and Pon-
tryagin Maximum Principle.

e Although the Nonlinear Inverse Dynamics has been used successfully in

solving some practical problems, our experiences in dealing with this ap-
proach are rather unsatisfactory because it does not give a rational base
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to the construction of good procedure, particularly for more complex
models of the wing rock (e.g., for three degrees of freedom).

5. Conclusions

Modern design techniques have affected significantly the aircraft indu-
stry in recent years and the role of feedback control is becoming more
and more important as it is a key to meet the performance objectives
of new aircraft. The era of high-performance aircraft poses many new
challenges to flight dynamics engineers, who must now think in terms
of guidance and control. Many relatively new techniques are required,
including robustness to parameter variations and adaptive techniques.
Furthermore, the engineer can no longer work in isolation; many other
specialists should be closely incorporated into a design.

Aircraft stability, particularly for high-performance aircraft, may be
extremely sensitive to the aircraft dynamics and flight conditions. Robust
stability considers the characteristics of an aircraft model when subject
to perturbations. Those perturbations might represent unmeasured for-
ces acting on the aircraft or errors associated with the model. Some of
the recent efforts on the robust control approach were presented by Ac-
kermann (1993). Probably, the most rational method is to incorporate
the flight data into the model development process.

Modern aircraft have flight envelopes, which are so extensive that the
changes in aircraft dynamics are too big to be handled by the control
laws served in Sections 3 and 4. In such situations, the use of adaptive
control is advocated as effectiveness of the adaptive control systems lies
in its ability to rapidly assess the performance and to make required
modifications in the control gains. Since the dynamic equations of these
systems are nonlinear, the Nonlinear Inverse Dynamics approach might
be applicable here.

The ability to manipulate a flow field to effect a desired change using
feedback we will name the Active Flow Control Technology (AFCT).
The desired goals of external flow modifications are; e.g., drag reduc-
tion, separation/reattachment control, lift enhancement, transition de-
lay /advancement, and noise control. These objectives are not necessarily
mutually exclusive, either. If the boundary layer becomes turbulent, its
resistance to separation is enhanced, and more lift could be obtained at
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increased incidence. Because there are a number of experiments and nu-
merical simultations that validate this approach, the AFCT may become
a new modification methodology (see e.g., Pietrucha and Wojciechowski,
1997).

e The usual approach to the structure-control system synthesis consists in
designing of the structure, with constraints imposed on weight, static and
dynamic displacements and stresses, and natural frequencies, and then
to design a control system for this structure. However, because of the
strong interaction (synergetic effects) between the structure and control
system, simmultaneous optimal design of both systems may be necessary
in order to obtain optimum performance at minimum cost. Some of the
past efforts on the integrated design approach given by Khot (1988).
The modern investigations have shown that the relationship between
the stability robustness and the optimum structural weight is nonlinear.
Therefore, one can use the control techniques presented in Section 4.

e The performance index (2.9) or even (3.10), currently in use in control
system design are far from being complete (Pietrucha, 1999). They con-
sider only the dynamic performance of the close-loop system and do not
account for numerous other factors that affect the control system design.
Since there are a number of aspects to be considered, multiple (or vector)
performance index might be suggested.

e The problem of modelling of aircraft manoeuvres is usually solved using
the control approach. Blajer (1990) applied another approach to the
problem: the requirements imposed on aircraft motion are treated as the
program constraints on the aircraft. Consequently, the resultant motion
of the aircraft is considered as a program motion of the controlled system.
The point now is: what is the relationship between that approach and
the general modification problem, posed in Section 2.37

e Al Azab and Maryniak (1994) proposed a very interesting approach to
the flight dynamics of a self-guided air-to-air missile: the set of control
laws is presented in a form of the nonholonomic constraints. In this
case the question is: is it possible to solve this problem using the Blajer
method, or vice versa?
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Wspélczesne metody modyfikacji dynamicznego zachowania sie statkéw

powietrznych

Streszczenie

W pracy podjeto prébe przedstawienia kluczowych idei teorii modyfikacji. Cho-
ciaz teoria ta znajduje sie jeszcze in statu nascend:, to juz teraz dostarcza inzynie-
rom lotnictwa bardzo wartoéciowego narzedzia projektowania, dzieki temu, ze ”ob-
stuguje” rozmaite zagadnienia, ktére pojawiaja sie w biezacych badaniach. Praca
niniejsza dotyczy zagadnienia poprawiania charakterystyk dynamicznych statkéw po-
wietrznych za pomocg ukladéw sterowania. Punktem wyjécia do prezentacji jest za-
gadnienie liniowo-kwadratowe. Nastepnie opisane s3 malo znane metody dla ukladéw
liniowych. Jadrem pracy sa jednak metody dla ukladéw nieliniowych, a mianowicie:
Zasada Maksimum Pontriagina, Metoda Funkcji Lapunowa i Nieliniowa Dynamika
Odwrotna. Niektére metody zostaly zilustrowane zagadnieniem ustateczniania samo-
lotu niestatecznego oraz zagadnieniem sterownia ruchem ”wing-rock”.
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