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The paper gives an overview of about recent developments in modeling,
numerical analysis and design of piezoelectric controlled smart structures.
Then, the theoretical basis of a general purpose finite element simulation
tool developed by the authors is presented. This tool contains a number
of coupled thermo-electro-mechanical 1D, 2D, 3D as well as layered plate
and shell finite elements for simulating controlled structures in static and
dynamic applications, where also optimization algorithms (e.g. for actuator
location) can be included. Finally, three examples; i.e., actively controlled
beam, vibration isolation of a box, and vibration isolation of a plate as part
of an excited cylinder structure, are presented to demonstrate the capability
and efficiency of the simulation and design tool.
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1. Introduction

Over the past few years the smart structures concept has been given in-
creasing attention in many branches of engineering and several novel engine-
ering applications have been developed. Smart structures or to be more precise
structronic (structure + electronic) systems are characterized by synergistic
integration of active materials into a passive structure connected by a control
system to enable automatic adaptation to changing environmental conditions.
Piezoelectric materials (e.g. PZT, PVDF) as wafers and fibers are widely used
as distributed sensors and actuators in smart structures, where especially hy-
brid composites (combination of fiber-reinforced angle-ply and piezoelectric
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laminae) are very powerful smart material systems. Such hybrid composites
are characterized by high structural conformity preventing major disturbances
of mechanical behavior as a result of integration of the actuator and sensor
materials into a structure. The active material forms an integral part of the
load-bearing structure itself and does not cause any significant change in the
passive behavior of the structure. On the other hand it offers a great poten-
tial for altering the structural response such that the structural behavior can
adapt to new environment conditions or performance requirements, e.g. ac-
tive shape control and active vibration damping. In comparison to the passive
structures, new challenging tasks arise from the integration of smart mate-
rials as actuators or sensors into the base elastic structure. Today, possible
fields of application of the structronic concept include mechanical engineering,
aerospace engineering and civil engineering, manufacturing, transportation,
robotics, information technology, medicine and many other branches.

The increasing engineering activities in the development and industrial
applications of piezoelectric smart structures require effective and reliable si-
mulation and design tools. Although the piezoelectric effect has been known
for a long time (J. and P. Currie, 1880), its application to control systems is
rather new (e.g. Tzou and Anderson, 1992). A number of classical textbooks
describe the theoretical foundations of the piezoelectric effect as a coupled
field problem (Voigt, 1910; Mason, 1954; Mindlin, 1961; Parkus, 1979; Nye,
1985) and analytical solutions have been developed to solve engineering pro-
blems (e.g. Tiersten, 1969; Tzou, 1993). However, more powerful calculation
tools are required for the analysis and design process of complex engineering
smart structures with integrated piezoelectric wafers and fibers as the actu-
ators/sensors. Here, the Finite Element Method (FEM) provides an effective
technique. Due to its wide-spread use it has become a theoretically and prac-
tically established method for a wide range of applications. It has also proved
to be a suitable means for solving coupled piezoelectric field problems. Over
the past few years significant progress has been made in the development of fi-
nite elements for coupled electromechanical fields (for an overview see Chee et
al. (1998)), but most software developments and applications are still limited
to simple‘cases, special element types and special numerical solution techni-
ques (e.g. Ha et al., 1992; Hwang and Hyun, 1993; Tzou, 1993, 1994). Also in
general purpose finite element codes, such as ABAQUS and ANSYS, only qu-
adrilateral and hexahedron elements are available for the solution of coupled
electromechanical fields (Lin et al., 1994). Therefore, our research group has
concentrated on extending the existing finite element software, i.e. COSAR
general purpose code, by adding a number of coupled electromechanical finite
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elements which cover 1D, 2D, 3D and layered composite shell problems. An
essentially new theoretical aspect was to include coupling between the electric,
thermal and mechanical fields in the finite element software. In several appli-
cations of smart structures the influence exerted by temperature is important
and has to be taken into account, e.g. in aerospace structures. Although some
special finite element developments include the thermal effect, most frequently
only temperature-induced deformations are taken into consideration (e.g. Tzou
and Ye, 1994; Rao and Sunar, 1993; etc.). Our software comprises the fully
coupled three field equations; however, the piezocaloric effect is rather small
and can be neglected in most cases (Gornandt and Gabbert, 2000). Hence, the
basic equations in this paper are given in a general manner, i.e. not considering
a special finite element type, and do not include the direct coupling between
the electromechanical and temperature fields. If required, this coupling can
be taken into account iteratively. When applying our simulation software the
parameters of the material tensors serve as input data and need to be establi-
shed. In particular, in active composites controlled by thin piezoelectric fibers
(Sporn and Schonecker, 1999), it is time-consuming and expensive to measure
these macroscopic (homogenized) material data which are non-linear functions
of the properties, arrangement and volume fraction of the constituents in the
composite. Alternatively, analytical methods (e.g. based on the Mori-Tanaka-
type mean field approach) as well as numerical methods (e.g. based on the
finite element analysis of a representative volume element) can be employed
to calculate homogenized material tensors of a heterogeneous material system
(Gabbert et al., 1999b).

The smart structures finite element code developed is suited for solving
problems in electroelasticity (static and dynamic), heat transfer and nonlinear
mechanics on the basis of a large library of finite element types, a collection
of numerical solution techniques, and of course comprehensive pre- and post-
processing procedures. The code provides the option to use finite elements
with a variable number of degrees of freedom (DOF) at nodes. The coupled
electromechanical finite elements were developed by adding the electric po-
tential as new DOFs to the nodes. Also graphical features, e.g. description of
the material properties, application of electric loads, graphical representation
of electric field values, etc., were added to provide a user-friendly simulation
and design software. In addition, some modifications to the numerical solution
algorithms were required as, for instance, the stiffness matrices for coupled
electromechanical fields are generally not positive definite. Furthermore, the
finite element code also includes a substructure technique. It contains sim-
ple control algorithms, but also a specialised data interface to special control
design tools, such as Matlab/Simulink.
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2. Basic equations of piezoelasticity

The coupled electromechanical behavior of a polarizable (but not magneti-
zable) piezoelectric smart material can be modeled with a sufficient accuracy
by means of linearized constitutive equations. These linear equations can be
derived from the energy expression (Tiersten, 1969) in a quadratic form of the
primary field variables, i.e. mechanical strain € and electric field E, on the
assumption that the temperature distribution 6 is a priori known or can be
calculated independently of the electromechanical fields. After Tiersten (1969)
and Parkus (1970) the potential function can be written in the form

1 — _
H(e,E) = %ETCE —¢'eE - EETK,E —e"¢G+E"nd (2.1)

from which the dependent variables; i.e., the mechanical stress o, and the
electric displacement D are derived by partial differentiation as

o= %vH:CE—eE—@
¢ (2.2)
_ 0H ¢ -
D—'—a—E—e E+K'E+7r0
In matrix notation these equations can be written as
T=Jy-0 (2.3)
with
o C e
-[5] e[ ]
(2.4)
[ e = [ ¢o
T )

and the stress vector o' = (011, 092,033,012, 093, 031], the symmetric 6 x 6
elasticity matrix C, the strain vector &' = [e11, €99, €33, €12, €23, €31, the 6x3
piezoelectric matrix e, the electric field vector E' = [En, By, E3), the vec-
tor of thermal stress coefficients ¢, the temperature variation @ of the body
with respect to the initial temperature, the vector of electric displacements
DT = [Dy1,Ds, D3], , the symmetric 3 x 3 dielectric matrix &, and the vec-
tor of pyroelectric coefficients . In general there are 21 independent elastic



FINITE ELEMENT ANALYSIS AND DESIGN... 479

constants, 18 piezoelectric constants, 6 dielectric constants, 6 thermal stress
constants and 3 pyroelectric constants. In order to solve piezoelastic problems,
it is essential to know these material coefficients (Nye, 1985; Tiersten, 1969).
In a preliminary polarized ferroelectric ceramic, poled in direction 3 of a Carte-
sian coordinate system, the material behavior is transversal- isotropic and the
number of material data is reduced to 5 elastic constants, 3 electric constants
and 2 dielectric constants, which can be written as

- =

Cl1 Ci2 C13

Ci1 C13

€33
C
C44
symmetric Ca4
L

L 5(011 - 012) J

[ . e31 |

. . 633 ,ill'
e = K= . K11

K33

where the five independent elastic constants are measured under constant (or
vanishing) electric field, while the three piezoelectric constants and the two
dielectric constants are measured under constant (or vanishing) deformation.
Materials of this type of symmetry are important due to their high piezoelectric
coupling factor.

The linear constitutive relations of Eqs (2.3) are an approximation of the
real non-linear behavior, which is quite accurate in low electric field appli-
cations, and gives sufficient results in most design processes of engineering
smart structures. It should be mentioned here that in engineering applications
a small non-linearity can be compensated for by a robust control algorithm,
or by including an inverse model of the hysteresis loop in order to linearize the
behavior, e.g. in the form of Preisach model or Buoc model (Kolsch, 1993).
There are also non-linear models facilitating simulation of the poling process.
However, due to the paper limitation this will not be discussed here.

The constitutive equations (2.3) together with the mechanical and electric
balance equations as well as the mechanical and electric boundary conditions
constitute a unique set of equations for the coupled electromechanical problem.
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These are the three equations of motion written in matrix notation as
Lic+5—pit=0 in vV (2.6)

and the charge equation of electrostatics resulting from Maxwell’s equations
(Tiersten, 1969)
L,D=0 in V (2.7)

where B' = [B),D,,P5] is the body force vector, u' = [uj,us,us] is the

vector of mechanical displacements described in a Cartesian coordinate system
' = [z1,T2,23], p is the mass density, and the two differentiation matrices
L, and Ly are

[ 0 9 9 ] [ 9 ]
oz, 0 0 Ozo 0 03 0z
T 0 0 0 0
- - - Ly = | =— .
L 0 0z 0 dz1 Oz 0 ¢ Oz (28)
0 0 0 0

With L, and L, the balance equations (2.6) and (2.7) can be written in a
compact form as

L'® +b—pg=0 (2.9)
where L, p, p and q are
| Ly O 7 | P [ pl 0 .| u
S KR B Y R R T B Y
(2.10)

In the following we use the linear strain-displacement relation & = L,u and
the relation between the electric field vector E and electric potential ¢ in
form of E = —Lg¢. These two equations can be written as

£
With Eq (2.11) the constitutive relation (2.3) can be rewritten as
¥=Jlg-0=0 (2.12)

With Eq (2.12) the balance equations (2.9) can be written as

L'Ig—L"®+b-pg=0 (2.13)
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or in the extended form

LiCL, LlelL, [u]_ Li¢o +[5}_[,0|0}[‘i%]_0
Loe'L, —Ljxly || ¢ ~L, 70 0 0 0|¢]

(2.14)
The mechanical stress and electric charge boundary conditions are
_ t
T—-T= 0 —n¥ =0 on Oy (2.15)

where ¢ is the prescribed traction vector, @ is the surface charge, and n
is a matrix of direction cosines which transforms the stresses and electric
displacements to the coordinate system normal to the surface. Overbar means
prescribed values at a particular part of the surface. The boundary conditions
of mechanical displacements and electric potential are

g—q=0 on O (2.16)

In terms of the weighted residual method, a coupled electromechanical
functional is provided by multiplying the balance Eqs (14) with the vector
6q" = [6u',d4| containing the virtual displacement éu and virtual electric

potential d¢, respectively, and integrating over the entire domain. This results
in

ix = /JqT(LTJLq ~LT®+b—pi)dV + /(SqT(? —7)do=0 (2.17)

14 O
It is assumed that the virtual quantities are admissible, and consequently, fulfil
the boundary conditions (2.16). Using partial integration and the Gaussian

integral theorem, the following form of the functional can be derived from Eqs
(2.17)

ox = —/5qu41 dV—/(L(Sq)TJLq dv+/aqT5dV+
Ve Ve

Ve
(2.18)

+ /(Laq)Té dv + / 6qg'7dO =0
Ve Oy

This formulation creates a suitable basis for the development of any type of
finite element for coupled electromechanical field problems.
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3. Finite element analysis of piezomechanical problems

In each finite element the unknown field variables, mechanical displace-
ments wu; and electric potential ¢, are approximated by shape functions

N™(z) and N?(z) as

ui(z,t) = Y N (z)ug(t) p(z,t) =S NP (@)ge(t)  (3.1)
(k) (k)

where wu; and ¢ are the time-dependent unknown nodal values of the
elemment approximate function. In the matrix form these equations can be

written as
9(z,t) = N(z)g.(?) (3-2)

(w)
N(z) = [ No N?¢) } fe = [ Py ] 43

where N and N are the mechanical and electric shape function matrices,
and the vector g, contains the mechanical and electric element nodal degrees
of freedom wu, and ¢, respectively. Application of the differentiation matrix
L to ¢ results in

with

Lq = Lqu = qu (34)
with w
L, N\“ 0
B=LN= v D
[ 0 L¢N(¢) } (3.5)

Introducing the approximate function appearing in Eq (3.2) into Eq (2.18)
and taking into account Eq (3.4) as well as Lég = LNég, = Bdgq, we get

dq, (Meg, + Keg, —Fe) =0 (3.6)

If, in addition the velocity proportional damping R.g, is taken into account,
from Eq (3.6) follows the semi-discrete form of equation of motion of a coupled
electromechanical problem as

Meée + Reqe + Keqe = Fe (37)

The mass matrix M., generalized stiffness matrix K, and generalized force
vector F, of an element (e) are
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M, = /NTpNT dv K, = /BTJBT dv
Ve Ve
(3.8)

Fe:/NTl—)dVJr/BT@dVJr/NT?dO
Ve Ve Oe

Based on the above theoretical background, a library of piezoelectric finite
elements was developed. In the following the paper presents some of these
developments and describes the status of the finite element software developed
for electromechanical problems.

4. Simulation and design software

4.1. Finite element library

The finite element library for piezoelectric controlled smart structures (see
Fig.1) developed on the basis of the above given equations, includes solid ele-
ments, plane elements, axisymmetric elements, rod elements as well as special
multilayer composite shell elements (see Berger et al., 1998). The shape func-
tions of the finite elements can be linear or quadratic and the isoparametric
element concept was used to approximate the element geometry. The solid ele-
ment family consists of a basic brick-type element (hexahedron) and some spe-
cial degenerated elements derived by collapsing nodes. The quadrilateral and
triangular multilayered shell elements shown in Fig.1 were developed basing
on the triangular piezoelectric shell element presented by Tzou and Ye (1994).
The element presented by Tzou and Ye is based on a discrete layer theory in
orthogonal curvilinear co-ordinates. However, this restricts application of the
element to structures with uniform curvature (planes, cylinders, cones, hemi-
spheres, etc.). We added a quadrilateral element and extended the geometry
approximation by an isoparametric description. These new elements permit
modelling of laminated structures. The electromechanical behavior of each
layer is separately approximated by shape functions of different polynomial
degrees in each direction, and each layer can be either active or passive (see
Koppe et al., 1998). A linear approximation of the displacements in normal di-
rection to each layer is used, and consequently, the element corresponds to the
classical discrete layer theory. The element family is more efficient compared to
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Fig. 1. Piezoelectric finite elemnt library of COSAR



FINITE ELEMENT ANALYSIS AND DESIGN... 485

the conventional isoparametric hexahedron elements. Thin shell assumptions
can be included for the shell as a whole or several layers, and consequently the
number of degrees of freedom can be reduced by constraints. These elements
also facilitate effective investigations into the global and local effects, such as
the transition behavior of active to passive parts of a structure or delamination
propagation (Cao et al., 1998). Recently, we extended the finite element library
by quadrilateral and triangular curved thin shell composite elements based on
the classical Kirchhoff-Love hypothesis, where different approximations of the
electromechanical coupling are included:

e FElectric influence is taken into account in terms of distributed forces and
moments

o Difference of the electric potential of each active layer is taken into acco-
unt as an additional degree of freedom of the element (poling in normal
direction)

o Each element node has as many additional electric degrees of freedom
as there are active layers in the composite (in-plane electric poling).

These elements were developed on the basis of classical SemiLoof shell-type
elements (Irons, 1976). The test results demonstrate that in thin shell structu-
res these elements provide sufficient accuracy in modeling the global structural
behavior at a drastically reduced number of degrees of freedom.

4.2. Numerical solution

For static solutions a special optimized submatrix-oriented Cholesky solver
was developed taking into consideration that, in general, the stiffness matrix K
assembled from the element contributions is not positive definite. Only minor
modifications to the original algorithm are required to decomposed K as
K = RTIR with | = diag(+1) depending on the sign of the diagonal term
during decomposition. The solution is then calculated by forward substitution
R"Z = F and backward substitution Rgq = 1Z, which results in the solution g.

For solving eigenvalue problems the subspace iteration method in the form
proposed by McCormick and Noe is used. In transient problems modal ba-
sed techniques as well as time integration schemes, such as Newmark-Method,
Wilson-Method, or Central-Difference-Method, can be applied. It should be
mentioned here that it is important to scale the matrix J in Eq (2.3) when
using standard SI units in order to avoid extremely large differences in the coef-
ficients of the generalized stiffness matrix K, which cause numerical problems
due to a very high condition number of the matrix. If a scaling parameter «
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is introduced (e.g. « = 10%0), the vector of nodal degrees of freedom, the
material matrix J and the temperature vector © change to

Ue C ae — ¢o
Qe = lqbe 1= { ae’ —o’k } 0= [ —anh J (4.1)
a

which also has to be taken into account by prescribing electrical boundary
conditions or during the simulation of controlled structures.

The finite element code is also capable of using a substructure technique
facilitating the separation of mechanical and piezoelectric structural parts into
different substructures to reduce the number of DOFs.

4.3. Sensing and control

Sensing and control of smart structures have become challenging tasks
over the past decade and a great many papers have been published on this
subject. Our finite element software is provided with a data interface to control
design tools, such as Matlab/Simulink, to support the controller design for
engineering applications and facilitate both the use of model reduction and
model updating techniques. For directly incorporating of controllers into the
finite element simulation tool some simple approaches have been implemented.
If for instance the required actuator output voltage g, is expressed by the
sensor input signals gg, g5 as

a4 = Qrgs + Qpgs (4.2)

where the matrices Qp and Qp can be calculated by minimizing the quadratic
cost functional of optimal control, Eq (4.2) can be simply incorporated into
the equation of motion. In general, the result are non-symmetric generalized
stiffness and damping matrices, which can be avoided by taking into account
the influence of the actuators as a control force vector F¢ on the right hand
side of the equation of motion, which results in

Mg+Cqg+Kg=F+ F¢ (4.3)

From a numerical point of view this is more effective for the step by step
time integration of the equation for which an iterative scheme can be used to
ensure sufficient accuracy. In several cases more simple control laws with collo-
cated actuator/sensor design, such as direct proportional feedback control or
negative velocity feedback control, result in a good overall damping behavior.
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5. Examples

5.1. Actively controlled beam

e %
a7 30mm

e
e T Juy=0.4mm

|
dlmm

Fig. 2. Actively controlled beam

In Fig.2 the geometry of the beam is given, which is attached (glued) with
a sensor and an actuator patch at the top and bottom surfaces, respectively,
to actively control the beam. The material of the base beam structure is steel.
The actuator and the sensor material is PIC151 (made by PI Ceramic Ginbh,
Germany) with a thickness of 0.2 mm. In this example the time response was
estimated, where as the initial condition a static deflection of the beam was
used. This initial deformation of the beam is caused by a single load F at
the tip of the beam (initial deformation of u4 = 0.4mm at point A). The
control by means of a simple feedback algorithm was realised, where the me-
asured sensor signal (voltage) was amplified and fed back to the actuator. The
finite element simulation was carried out using the electromechanical coupled
hexahedron elements (see Fig.1). In Fig.3 the time displacement response of a
point on the free end of beam is shown, and in Fig.4 the frequency response
function of the beam tip is given. Fig.3 and I'ig.4 demonstrate a good damping
behavior if using this simple feedback control algorithm.

5.2. Vibration isolation of a box

A typical application in the field of vibration suppression is the protection
of highly sensitive electronic devices against environmental disturbances. A
numerical experiment was performed aiming at protecting a box containing
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Fig. 4. Frequency response function of the beam tip

such electronic devices against any vibration by providing it with an active
damping system. The box comprising two fairly stiff borders was fixed to a
base frame by means of eight rods. The base frame was mounted to four rigid
supports (Fig.5).

This structural system was designed in the way that it could be excited by
different environmental disturbances (e.g. force excitation at any point, displa-
cement excitation of the supports, etc.). To this end, four actively controllable
rods (rods with integrated piezoelectric stack actuators) were mounted be-
tween the box and the supporting frame. The box, borders and base frame
were modelled by means of eight-node thin SemiLoof shell elements (Fig.1) of
different thicknesses. The chosen coarse finite element mesh reflects sufficiently
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box (contains
sensitive devices)

borders

active rods
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active rod
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base frame . L
force impulse rigid force

Fig. 5. Complete model of the box

the dynamic behavior of the system (Fig.6). The base frame, box and borders
were made of aluminium. The passive rods were made of steel, and for the
active rods commercially available piezoceramic stack actuators were used.

To study the principal dynamic behavior of the whole system the natural
frequencies and corresponding natural modes were calculated. The first, third
and fifth mode were nodding modes. The second mode was the vertical vi-
bration and the fourth mode was the transversal vibration. Table 1 gives the
natural frequencies for the first five modes.

Table 1. Natural frequencies of the box

Mode 1 | Mode 2 | Mode 3 | Mode 4 | Mode 5
253 Hz | 290 Hz | 306 Hz | 422 Hz | 513 Hz

The first and the second natural modes are depicted in Fig.6 where the
deformed and undeformed meshes are plotted. In all the investigated modes
main deformation occurred in the base frame, whereas the box including the
borders appeared to be almost rigid. For controlling the structure, the displa-
cements at the upper end of the stack actuators were used as sensor signals. In
order to damp the box vibration, the vertical displacements at four measuring
points were amplified by a gain factor to obtain the actuator output voltage of

2 - Mechanika Teoretyczna
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Fig. 6. Natural modes 1 and 2 of the box

active rods. As a control algorithm the collocated direct proportional feedback
control method mentioned in Section 4.3 was used.

To study the principal damping behavior of the box with the active control
mechanism, the system was subjected to an initial deflection corresponding to
natural mode 1. The diagrams in Fig.7 show the uncontrolled and controlled
deflections at the two representative points A and D (see Fig.5) on the upper
surface of the box at a time interval of 0.1s using two different gain factors
(0.008 and 0.01) for control. The damping behavior observed was very good.
In the further course of our investigation the base frame was excited by a
force impulse shown in Fig.8 at a single point (see Fig.5). For estimating the
damping behavior of the box the deflections at the four corner points A to D
of the upper surface were considered. The diagrams in Fig.9 show the results
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Fig. 8. Force impulse function (see Fig.5)

over a time interval of 0.1s calculated with the gain factor of 0.01. Also in
this case a good overall damping behavior can be seen. In Fig.10 the results
obtained at the point A are transformed in the frequency domain, where
the good damping behavior of the first two natural modes can be seen more
clearly.

5.3. Vibration isolation of a plate as part of excited cylinder structure

The structure under consideration (Fig.11) consists of a composite cylinder
with stringers and a base plate. The cylinder has a diameter and a length of
1000 mm. Actuators and sensors are placed at the bottom and top surfaces of
the base plate in order to actively damp the plate structure. The cylinder and
the stringers consist of CFK (Tenax HTA/LY 556, ¢ = 60%) with 8 layers
of symmetric stacking sequence of [90, —45,45,0,0,45, —45,90] and a layer
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Fig. 10. Frequency response function of the point A (box excited by a force impulse)
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thickness of 0.25 mm. Hence, the total thickness is 2 mm. The plate was built
up with the same stacking sequence but with thin layers of 0.125 mm thickness.
During the first numerical simulations the edge of the cylinder, the edge of the
stringers and the edge of the base plate were clamped on the rear side (see
Fig.11). The finite element model of the structure consists of 8-node active
and passive SemiLoof shell elements, where each active element layer has an
additional electric DOF.

. clamped edge
disturbance

stringer
Disturbance function
1.0 T T
! |
0.8 R

|
171 | MERPRRSE S NS SIS S—

Force

B
|

S
[§
T

%
|
|
0 T

-0.8 L -
ol 1
0 0.1 0.2 0.3 0.4 0.5
Time [s]

actuator/
Sensor
panel with 3x3

acluator/sensor array
Fig. 11. Complete model of the cylinder structure, and force impulse function

This composite cylinder structure is used as a generic structure, which
represents the complexity of, e.g., section of an aeroplane, train or car. Several
experimental and numerical investigations are in progress to develop and to
verify simulation and design tools, control and optimization strategies as well
as experimental techniques to design real size structures.

In the first numerical study the vertical displacements of the panel should
be damped actively by means of a collocated actuator and sensor design.
Nine pairs of piezoelectric patches (wafers of PIC151 with the dimensions
of 100 x 100 x 0.2 mm) were arranged at the bottom and the top of the plate
in a 3 x 3 array (Fig.11), where each of the nine pairs form a collocated
actuator/sensor pair.

First, the voltage of each sensor patch at the top of the plate was amplified
by a gain factor and simply fed back to the actuator patch. The structure was
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Fig. 12. Deformation of the cylinder the instant ¢ = 0.0135s

exited by a force impulse (position see Fig.11). Fig.12 shows the response
of the structure after a time of ¢ = 0.0135s, in Fig.13 the response at the
point A of the plate is given in the time domain, and in Fig.14 the frequency
response function at the point A is shown. These results demonstrate that
even with a very simple control strategy and the arrangement of actuators
and sensors, which is of course not optimal for this case, a good damping
behavior can be achieved. Of course, a better performance is possible with a
better controller design as well as with an optimized actuator/sensor location
(Weber et al., 1998).
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Fig. 13. Controlled and uncontrolled time responses of the point A
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6. Conclusion

The paper presents a general concept for a finite element based simulation
and design tool of piezoelectric controlled smart structures. This tool enables
the user to simulate both static and dynamic structural problems, including
control as well as optimization of the actuator and sensor locations. Several
benchmark examples were investigated to demonstrate the efficiency and ac-
curacy of the simulation tool, and both analytical and experimental solutions
were used to validate the results. The coupled electromechanical elements pre-
sented are also suitable to model local effects in adaptive materials, such as
fracture, delamination, etc. Three examples; namely, actively controlled beam,
vibration isolation of a box and vibration isolation of a plate as part of the
excited cylinder structure — are presented to demonstrate the capability of the
developed simulation and design tool.
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Zastosowanie metody elementdéw skonczonych do analizy i projektowania
piezoelektrycznie sterowanych konstrukeji inteligentnych

Streszczenie

Praca daje przeglad nowych osiagnieé¢ z zakresu modelowania, analizy numerycz-
nej i projektowania konstrukceji inteligentnych z piezoelektrycznymi elementami wy-
konawczymi. Omdéwiono teoretyczne podstawy opracowanych przez autoréw narze-
dzi symulacyjnych korzystajacych z metody elementéw skonczonych. Narzedzie to
zawiera zaréwno jedno-, dwu- i tréjwymiarowe sprzezone elementy termo-elektro-
mechaniczne, jak 1 elementy skoficzone nadajace sig do symulacji statyki i dynamiki
plyt i powlok warstwowych ze sterowaniem. Mozliwe jest réwniez wlaczenie algoryt-
méw optymalizacyjnych, np. stuzacych do optymalnego wyznaczania potozenia aktu-
atora. Aktywnie sterowana belka, zagadnienie wibroizolacji pojemnika oraz wibroizo-
lacji plyty jako czesci pobudzanej konstrukcji walcowej sa przyktadami pokazujacymi
mozliwosci i efektywnosé opracowanego narzedzia.
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