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The purpose of this theoretical work is to present a general model of the
response of an annular plate to the excitation by an annular actuator
made of piezoelectric elements. The plate is clamped at the inner edge
and free at the outer edge. Dynamic equations, joint conditions between
sections with and without active layers as well as the boundary conditions
at the two edges of the plate form a boundary value problem. The dynamic
displacement response to the excitation by the applied harmonic voltage
term are determined from the solution to this boundary value problem.
The dynamic extensional strain on the plate surface is calculated by inclu-
ding the free stress conditions at the piezoelectric actuator boundaries, by
considering the dynamic coupling between the actuator and the plate, and
by taking into account a finite bonding layer with finite stiffness. Results
from numerical simulation show influence of the bonding layer stiffness on
the frequency- and space-dependent plate response.
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1. Introduction

In the last decade we all observe strong interest in active systems applied
to, the so-called, intelligent structures, i.e. structures with highly distributed
actuators, sensors, and processor networks. Such systems enable using software
adjustments to modify and tune the closed-loop behavior via distributed sen-
sors and actuators. Due to large number of actuators and sensors it is desirable
that they are inexpensive, small, light-weight, and simple, and that they do
not significantly modify the passive dynamical properties of the host structure.
Piezoelectric materials exhibiting mechanical deformations, when an electric
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field is applied could be used for this purpose. They can not be modeled as
point force excitations, and partial differential equations should be used to de-
scribe the response of the structure driven by them. Piezoelectric sensors and
actuators have been applied successfully in the closed loop control (cf Bailey
and Hubbard, 1985). The beam vibration due to the excitation by a piezoelec-
tric actuator has been modeled by Crawley and de Luis (1987), Jie Pan et al.
(1991). In particular, Crawley and de Luis presented a comprehensive static
model of a piezoelectric actuator glued to a beam. This static approach was
then used to predict the dynamic behavior. A dynamic model for a simply
supported beam with a piezoelectric actuator glued to each of its upper and
lower surfaces was developed by Jie Pan, Hansen and Snyder. In their model
the actuators were assumed to be perfectly bonded. It means that the bonding
layer is sufficiently thin that the shear of the layer can be neglected.

Structure vibrations that propagate from engines or another sources may
be reduced by passive and active isolation, by active control, by passive and
active vibration absorbers. Use of the passive vibration absorbers for the struc-
ture — borne noise/vibration control is of particular interest to this research.
A shunting method has been developed for tuning the natural frequency of a
piezoelectric element glued to the beam surfaces (Davis and Lesieutre, 1998).
The passive vibration absorbers minimize vibration at a specific frequency
related with a lightly damped structure. Large response reduction is only po-
ssible if the absorber is accurately tuned to the considered frequency. Tuning a
mechanical absorber requires a change in either mass or stiffness of the device.
The electromechanical properties of the piezoceramic forcing element with an
external passive electrical shunt circuit are used to alter the natural frequ-
ency. An analytical distributed model of the piezoelectric vibration absorber
was created to predict changes in the natural frequency due to passive electri-
cal shunting. Capacitive shunting alters the natural frequency of the actuators.
A passive vibration absorber generally acts to minimize structural vibration at
a specific frequency associated with the response of lightly damped structural
mode. This frequency is rarely stationary due to changing velocity. Maxi-
mum response reductions, however, are achieved only if the absorber is lightly
damped and accurately tuned to the frequency of concern. The vibration of
two-dimensional structures excited by a piezoelectric actuator has been mo-
deled by Dimitriadis et al. (1991) for rectangular plates, and by Van Niekerk
et al. (1995) for circular plates. Van Niekerk, Tongue and Packard presented a
comprehensive static model of a circular actuator and coupled circular plate.
Their static results were used to predict the dynamic behaviour of the coupled
system, particularly to reduce acoustic transmissions. Piezoelectric transdu-
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cers can be modeled as two-dimensional devices. That approach allows the
distributed transducer shape to be included into control design process for
two-dimensional structures as an additional design parameter. The essence of
the approach involves replacing the piezoactuators with forces and moments
distributed along the piezoelements edges. The analytical basis for damping
structural vibrations with piezoelectric materials and passive electrical circu-
its has been developed by Hagood and von Flotov (1991). A key feature of
the tunable vibration absorber developed by Davis and Lesieutre (1998) is the
use of the piezoelectric ceramic elements as a part of the device stiffness. A
discrete model of the piezoceramic vibration absorber was created to predict
changes in natural frequency and damping due to passive electrical shunting.
A comparison of passive and active damping of thermally induced vibrations
of beams with piezolayers was given by Tylikowski and Hetnarski (1999). In-
fluence of actuator shape on stabilization of plate parametric vibrations was
studied by Tylikowski and Hetnarski (1998). Their approach was also used
(Tylikowski, 1993) to derive parametric stabilization control especially useful
in collocated sensor-actuator systems.

The goal of this research is to describe response of an annular piezoelectric
plate to the excitation by annular piezoelectric actuators. The consistent di-
stributed model based on partial differential equations of the system motion is
used. The Kirchhoff annular plate of the inner radius R, and external radius
Ry is divided into three annular sections and the dynamic behavior of each
section is analyzed separately (cf Fig.1). The analysis is confined to axially
symmetric modes. The absorbers are glued to the plate in the second section
a < r < b. The dynamic extensional strain on the plate surface is calculated
by considering the dynamic coupling between the actuator and the plate, and
by taking into account perfect bonding with a finite shear stiffness. The plate
motion is described by partial differential equations in terms of the plate trans-
verse displacement. The piezoelement is described by constitutive equations
relating stress and electric displacement with strain and electric field. The equ-
ations are coupled with the equations of the plate motion by the surface strain
term. Along the circles of connection between the sections the continuity of
plate deflection, slope and curvature is considered. The condition of free nor-
mal stress for the piezoelectric element at r = a and r = b constraints the
strain values at these two locations. The plate is excited by a harmonic vol-
tage applied to the actuators. The displacement is harmonically varying with
a constant frequency. The boundary conditions at the clamped and free edges,
the joint conditions form a boundary value problem. For a single frequency
excitation the equations of motion become the fourth-order homogeneous ordi-
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nary differential equations, with solutions in the form of traveling waves in the
plate. Results obtained by analytical analysis and numerical simulation show
influence of the bonding layer stiffness on the frequency- and space-dependent
plate response.

2. Dynamics equation of axisymmetrical plate motion

Fig.1 shows a Kirchhoff’s thin annular plate with identical piezoceramic
elements mounted on opposite sides of the plate. The annular piezolayers are
polarized perpendicularly to the plate surface, which can be used to excite or
suppress the given motion of the continuous structure. The transverse piezo-
electric effect is assumed axisymmetric with respect to the axis perpendicular
to the plate, what implies that the transverse piezolectric constants are equal
d3, = dg32. The piezolayers are perfectly bonded-to the plate and the elastic pro-
perties of the intermediate layers are taken into account. Due to the geometry
and the axisymmetric motion the plate is divided into three annular sections
as shown in Fig.1, and the behavior of each part is analyzed separately.

piezoelectric elements
7 annular plate
7 7 /
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Fig. 1. Geometry of the annular plate with annular piezolayers

Equations of motion are expressed in terms of the plate transverse displa-
cement w due to bending and in terms of the membrane in-plane displacement
u of the piezoactuators. The inertia forces of the finite-thickness bonding lay-
ers are neglected and the pure one-dimensional shear in the bonding layer is
assumed. The thickness of the plate, bonding layer and piezoelectric actuator
is denoted by iy, ts, o, respectively.

Consider a finite element of the radial length dr in the second section.
The radial stresses in the piezolayers are assumed to be uniformly distributed
in the direction perpendicular to the plate due to the small thickness. For the
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radial actuator motion the dynamics equation has the following form

2
(r 6;: + oy — ort) te — 71T = patar% (2.1)
where
o — radial stress
o¢ — circumferential stress
7 — shear stress on the interface surface
u — radial displacement
pa — density of the actuator
— radial coordinate
t — time.

We express the strains in actuators by the radial displacement

o
- or

€r € = ke (2.2)
T

Using Hook’s law we eliminate the normal stresses and write the dynamics
equation in terms of the in-plane displacement as

)] — 7T = patar%i; (2.3)

Et, [ 0 (13ru

1-y2 Ta_r r Or

Equation of the transverse plate motion in the second section w9 is

oTr T
_a'r_ = pptpTW (24)
where
T - shear force
pp — modified plate density calculated according to the rule of mi-
xture, pp = pp + 2pata/tp
E, - Young modulus of actuator
v, — Poisson ratio of actuator.
The balance of moments has the form
oM,
o My~ Tr+ 1ty =0 (2.5)
or
where
M, - radial moment

M; - circumferential moment.
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Using the Hook’s law we express the moments by the plate transverse
displacement in the following form

0wy vp Ows
M = —D( Or? TW) (2.6)
_ 1 dws 8%ws
M= -D( 52+ )
where \
D= Epty,
12(1 — v?)

is the plate cylindrical stiffness. Eliminating the transverse force we rewrite
Eq (2.4) in the form

1 0rt,r 0w

DV, ~ -t p;,tp—atT =0 (2.7)

where the V? operator stands for V? = %Z‘%{r%% [Z?? (r%%)] }
The shear stress is expressed by the in-plane displacement of the piezo-
electric layer and the plate transverse displacement

T = ts (u + —2_6—7‘) (28)

where G denotes the shear modulus of the bonding layer. Using Eqs (2.5) and
(2.6) and we express the transverse force in displacements

ts

BPwy  10%w; 10w\ | Gt tp Ow
T, =-D( = =) + 2 (ut+ 252 2.9
2 or3 +r or? 1?2 or u+267‘ (29)
The dynamic extensional strain on the plate surface is calculated by conside-
ring the dynamic coupling between the piezolayer and the plate.
Substituting the shear stress from Eq (2.8) the following equations are
obtained for Section 2, a <1 < b

Palemm = 71— v2or\r or ts 2, Or
(2.10)

o*w, Gty Gtp19ru
4 * 2 P72 14
DV w2+pptp—at2 +2—t5V ’LU2+?;W
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The plate displacement equations for the plate Section 1 and 3 have the
classical form

2
DViw, + pptp%£ =0 R <r<a
(2.11)
2
DV4wg + pptp%%s— =0 b<r <Ry

Eqs (2.10); and (2.11) are the fourth-order linear homogeneous partial diffe-
rential equations and Eq (2.10), is the second-order one. Thus, we have to
determine fourteen constants Cj, ..., C14 from boundary conditions. Similarly,
as for piezoactuators bonded to beams (Crawley and de Luis, 1987), the piezo-
electric strains do not appear explicitly in Egs (2.10) and (2.11), but enter into
the solution through boundary conditions. Solving Eq (2.10); we can obtain
the formula for calculating the in-plane displacement of the piezoactuator.

3. Boundary and joint conditions

The boundary conditions at r = R} and r = R of the plate correspond
to the clamped and free edge, respectively

ow, (R
wi(Ry) =10 ———wg(r ) =0
0%ws vy Ows
M,(Rz) = -D (55 + 222) 0 (3.1)
8 (0%ws 10w
T(Rs) = -Dy (50 + 1 5) a0

At the circular lines (joints) between Sections 1 and 2 and between Sec-
tions 2 and 3 the continuity of the plate deflection, slope, radial moment and
transverse force have to be satisfied

w1 (a) = wa(a) 3w61:a) _ 3wagr(a)

wa(b) = ws(b) augr(b) - 811;;:b) (3.2)

Trl(a) = T.,-g(a,) Tr2(b) = Tr3(b)

It should be noted that the transverse force T3 in the second section depends
not only on the transverse displacement 1w, but also on the shear stress and is
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calculated from Eq (2.5). The free stress condition for the piezoelectric annular
element at 7 = a and r = b constraints the strains at these circles

UT:—%E[Z—:—AT_*_V“(%—A‘)] (3.3)

where A, and A; denote the piezoelectric strains A = d3;V/t, in the radial
and circumnferential direction, respectively. For the axisymmetric pieezoelectric
effect the stress-free boundary conditions are nonhomogeneus and have the

following form
ou vy,
(3 +7v)
ou v,
(5 7%)
where the in-plane radial displacement of the actuator is calculated from FEq

(2.10)5. Egs (2.10) and (2.11) with boundary conditions (3.1), joint conditions
(3.2), and the stress free conditions (3.4) form a boundary value problem.

= A1+ v,)
= (3.4)

= A(1 + v,)
r=b

4. Analytical solution

The steady state is analyzed for a harmonic voltage with a single frequency
excitation w and amplitude V and the piezoelectric strain of the form

dsV
A= 11 exp iwt (4.1)

Q

The steady state responses of Eqs (2.10) and (2.11) are sought as harmonics
with the same angular velocity

wi (7, 1) Wi(r)
wa(r,t) | ; Wa(r)
w;(T, H = exp iwt W; ") (4.2)
u(r, t) U(r)

where Wi, Wy, W3, U are spatial terms of the solutions. Functions Wi, Wj
are the solutions to the classical Bessel differential equations

(vi- n")W =0 (4.3)
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where the wavenumber k is calculated from the following formula

K4 = Pyt
D

W, = Ci Jo(kr) + CoYo(kr) + Cslg(kr) + C4Ko(kT) (4.4)
W3 = Cy1Jo{kr) + CroYo(kr) + Cialo(kr) + CraKo(kr)

where the zeroth order Bessel functions of the first and the second kind are
denoted by Jy, Yy and Iy, Ky, respectively.

Eliminating the actuator in-plane displacement wu from Eqs (2.10) we
obtain the sixth order differential equation with respect to the transverse di-

splacement ws
(V2 + ) (V2= B) (V> =W =0 (4.5)

The wavenumbers o2, 8%, v? are calculated from the cubic algebraic equation
2 +é x4+ (=0 (4.6)

where the coefficients are given by

4 1-v2G
=e— n=—K - —+elf
¢ f (Eata te )
2 G
w/)ata_—
4 ts 2
= - :——1—
C €K € Eata ( Va)
2
G
2t,D

The spatial term of the transverse displacement in the second section is

W, = CsJo(ar) + CeYolar) + C11y(Br) + CsKo(Br) + (@7)

+Colo(7yr) + CroKo(yr)

The fourteen unknown constants in Eqs (4.4)s3 and (4.7) are deter-
mined by making use of the boundary conditions at the plate edges and
the joint conditions. For a given excitation frequency w the constants
C = |[C1,Cy,...,Ch4]" can be calculated from nonhomogeneous linear al-
gebraic equations.
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5. Results

Numerical calculations based on the formulas presented in the previous
sections have been carried out for a wide range of the angular frequency and
for A = 0.00014m and e3, = e3;. To include the damping effect complex
Young’s modulus Ej, with the retardation time A =5 x 107%s has been used.
The parameters of the plate and piezoelectric elements used in the calculations
are listed in Table 1.

Table 1. Material parameters used in calculations

| Material ~ | Plate-Steel | Actuator-PZTG-1195 |
density [kg/m?] 7800 7275
modulus [N/m?] 21.6 x 100 63 x 10°
thickness [m] 0.002 0.0002
piezoelectric const. [m/V) - 1.9 x 10710
inner radius [m)] 0.02 0.03
outer radius [m] 0.15 0.07

As there is no data available relating the mechanical properties (G,ts) of
the bonding layer the calculations have been done for the following values of
the G/t, ratio: 10°, 101, 5 x 10'2.
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Fig. 2. Far field plate transversal response w at r =0.15m

Figure 2 shows the response of the plate outer edge in logarithmic scale
(far field) to the electrical excitation of the annular piezoelectric layers.
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Fig. 3. Near field plate transversal response w at » =0.05m

Fig.3 demonstrates the response in the second section (near field). A dy-
namic distributed model has been developed on the grounds of which one can
predict behavior of the piezoelectric vibration absorber. The derived dynamics
equations can be reduced to the particular cases from the past studies, which
were based on the assumption of static coupling between the actuator and
the beam or assuming the perfect bonding in dynamical analysis. Calculations
show that if the bonding layer parameter increases then the plate displacement
will increase as well.
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Fig. 4. Shear stress distribution at w = 0.1s7!

Fig.4 and Fig.5 show distributions of the shear stress along the second
section as functions of 7 and the bonding layer parameter. It is seen that for

10 - Mechanika Teoretyczna
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Fig. 5. Shear stress distribution at w = 800s™1

w = 0.1s"! both the present dynamic analysis and the static one are in good
agreement. The shear stresses are similar antisymmetric with respect to the
center of the piezoelectric actuator. The absolute values of the dynamic shear
stresses are larger for larger bonding parameters.
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Fig. 6. In-plane actuator dispalcement at w = 0.1s7!

A comparison between the in-plane displacements u of the actuator is
shown in Fig.6 and Fig.7. It is clearly seen that the static results are completely
erroneous both qualitatively and quantatively.
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Fig. 7. In-plane actuator dispalcement at w = 800s~!

6. Conclusions

A dynamic model has been developed on the grounds of which it is po-
ssible to predict the response of the annular plate driven by the piezoelectric
actuators glued to its lower and upper surface. The actuators were driven by
a pair of electric fields with the same amplitute and in opposite phase. The
actuators were used to excite steady-state harmonic vibrations in the plate.
Spatial distributions of the plate displacements, and shear stresses for different
driving frequencies have been shown. The results obtained from the analysis
have been compared with particular cases from the past studies, which were
based on the assumption of static coupling between the actuator and the plate
or assumed the perfect bonding in dynamical analysis.

Results are in good agreement with the previous results concerning the
static coupling analysis for a slow excitation w = 0.1s71.

At the first resonance of the beam the dynamic behavior strongly depends
on the bonding layer parameter G/t;. Therefore, detailed information regar-
ding the bonding layer parameter is of paramount importance. The omitting
of the bonding layer leads to erroneous distributions of the displacements and
shear stresses.
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Wplyw warstwy kleju na dzialanie piezoelektrycznego aktuatora plyty
pierécienjiowej

Streszczenie

Celem tej analitycznej pracy jest przedstawienie ogélnego modelu odpowiedzi
plyty piericieniowej na wymuszenie pochodzace od piezoelektrycznych pierdcienio-
wych aktuatoréw. Plyta jest sztywno zamocowana na brzegu wewnetrznym i swo-
bodna na brzegu zewnetrznym. Warunki wspélpracy aktuatora z ptyta uwzgledniaja
wladciwosci sprezyste bezmasowej warstwy kleju poddawanej $cinaniu. Problem brze-
gowy opisano réwnaniami dynamiki plyty i piezoaktuatora, warunkami brzegowymi
oraz warunkami zgodno$ci na brzegach pierScieniowych obszaréw rozgraniczajacych
swobodne i poddane dzialaniu aktuatora czesci plyty. Ten kolowosymetryczny pro-
blem brzegowy rozwiazano dla harmonicznego wymuszenia napieciowego elementéw
piezoelektrycznych. Wyniki pokazuja wplyw obecnodci warstwy kleju o skonczonej
sztywno$ci na §cinanie, na charakterystyki czestotliwo§ciowe przemieszczen poprzecz-
nych plyty, naprezen stycznych w warstwie kleju i przemieszczen radialnych piezo-
aktuatora.
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