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ON APPLICATION OF DYNAMICAL SYSTEMS THEORY
INTO INVESTIGATION OF CRITICAL FLIGHT REGIMES OF
FLYING VEHICLES
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Non-linear dynamics phenomena have become important for various aircraft
motions. Manoeuvrability of an aircraft in critical flight regimes involves
non-linear aerodynamics and inertial coupling. Dynamical systems theory
provides a methodology for studying non-linear systems of ordinary differen-
tial equations. Bifurcation theory is a part of that theory which is conside-
ring changes in the stability, which lead to qualitatively different responses
of the system. These changes are called bifurcations. The mathematical mo-
dels used in the paper assume a rigid aircraft with movable control surfaces,
and ”individual blade” rotorcraft model. Aerodynamic model includes also
a region of higher angles-of-attack including deep stall phenomena. In the
present paper, the wing-rock oscillations, and helicopter spin (i.e. intensive
spiral glide motion) was studied by means of checking the stability cha-
racteristics related to unstable equilibria. Numerical simulations were used
to verify the predictions. Wing-rock oscillations were studied to observe
the chaos phenomenon in post-stall manoeuvres. Unsteady aerodynamics
for prediction of the airfoil loads was included, and the ONERA-type stall
model was used.
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1. Introduction

Aircraft is an inherently non-linear and time-depending system. Non-linear
dynamics is crucial for several important aircraft motions, including roll-
coupling and stall/spin phenomena. Linearized equations of motion can not be
used to analyze these phenomena. Indeed, roll-coupling instabilities were first
discovered in flight, often with fatal results, because the linearized equations
of motion used for analysis at that time did not account for the instability
(Jahnke and Culick, 1994).
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There are many problems associated with flight dynamics for modern and
advanced aircraft, which have not been solved (or solved rather unsatisfacto-
rily) with traditional tools. A list of such problems includes, among others,
flight control for agile and post-stall aircraft. The post-stall maneuverability
has become one of the important aspects of military aircraft development. Such
maneuvers are connected with a number of singularities, including ”unexpec-
ted” aircraft motion. As the result, there is a danger of faulty pilot’s actions.
Therefore, it is necessary to investigate the aircraft flight phenomena at high
and very high angles of attack.

The appearance of a highly augmented aircraft requires a study of its high
angle of attack dynamics. The main aim of the paper is to discuss capabilities
of the dynamical system theory methods as the tools for the analysis of such
phenomena.

Dynamical system theory has provided a powerful tool for analysis of non-
linear phenomena of the aircraft behaviour. In application of this theory, nu-
merical continuation methods (wiggins, 1990) and bifurcation theory (Ioos and
Joseph, 1980) have been used to study roll-coupling instabilities and stall/spin
phenomens of a number of aircraft models. Results of great interest have been
reported in several papers (let us mention the papers by Jahnke and Culick,
1994: Avanzini and de Matteis, 1998; Carroll and Mehra, 1982; Guicheteau,
1990). Continuation methods are the numerical techniques for calculating the
steady states of systems of ordinary differential equations and can be used to
study the roll-coupling instabilities and high-angle of attack instabilities.

2. Non-linear equations of motion

For the study, the following aircraft model is used in the state space for-
mulation (Sibilski, 1998b)

z = f(z(t),u(t)) z(0) = zy (2.1)
with the state vector for a fixed wing aircraft
= [KaaﬁapaQ)Taéagiwawgayg,zg]—r (22)

or, with the state vector for a rotorcraft

z = [uavawapvan:aﬁ.la--"ﬁ.n’él)'"aéﬂ.a‘(za"pla"'a’wnaﬂl)‘-'aﬁna (2 3)
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the control vector for a fixed wing aircraft
4= [ozH, 01,04, 07] " (2.4)
or, the control vector for a rotorcraft

u= [90’ K, 7, ¢T]T (25)

where: V' — velocity of the aircraft; a — angle of attack; [ - slip angle;
p,¢,7 - roll, pitch and yaw rate, respectively; @,0,¥,z,,yq, 2y — the parame-
ters describing the aircraft position; wu,v,w - linear velocities of the centre
of fuselage mass in the co-ordinate system fixed with the fuselage; 8; — flap
angle of the ith blade; (; — lead angle of the ith blade; a,y - longitudinal
decalage; dp,d4,0y,dr — control surfaces deflections; 6y — angle of collective
pitch of the main rotor; k — control angle in the longitudinal motion, 7 -
control angle in the lateral motion, and ¢r - angle of collective pitch of the
tail rotor. Equations of motion are completed with equation of engine rotation
and equation of thrust (Sibilski, 1998b). The engine model should be adapted
to the code, data, and flow charts provided by the engine manufacturer. The
aerodynamic characteristics and derivatives, both for steady and unsteady ae-
rodynamic models (including deep stall conditions), are calculated using the
modified wing section theory (Sibilski, 1998b). Non-linear airfoil characteri-
stics, which were used, were calculated using the ONERA deep stall model.
More exact and particular description of the methods and algorithms used is
numerical algorithms and computer codes predicted for calculations of aircraft
aerodynamics loads are found by Sibilski (1998b), Narkiewicz (1994).

3. Theoretical background

Dynamical systems theory (DST) provides a methodology for studying
systems of ordinary differential equations (2.1). More information on DST can
be found in the book of Wiggins (1990). The most important ideas of DST
used in the paper will be introduced in the following sections.

The first step in the DST approach is to calculate the steady states of the
system and their stability. Steady states can be found by setting all time deri-
vatives equal to zero and solving the resulting system of algebraic equations.
The Hartman-Grobman theorem (Wiggins, 1990) proves that the local stabi-
lity of a steady state can be determined by linearizing the equations of motion
about the steady state and calculating the eigenvalues.
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The implicit function theorem (Ioos and Joseph, 1980) proves that the
steady states of a system are continuous functions of the parameters of the
system at all steady states in which the linearized system is non-singular. A
singular linearized system is characterised by a zero eigenvalue. Thus, the ste-
ady states of the equations of motion for the aircraft are continuous functions
of the control surface deflections. Stability changes can occur as the parame-
ters of the system are varied in such a way that the real parts of one or more
eigenvalues of the linearized system change sign. Changes in the stability of
a steady state lead to qualitatively different responses for the system and are
called bifurcations. Stability boundaries can be determined by searching for
steady states, which have one or more eigenvalues with zero real parts. There
are many types of bifurcations and all they have different effects on the aircraft
response. Qualitative changes in the response of the aircraft can be predicted
by determining how many and what types of eigenvalues have zero real parts
at the bifurcations point. Bifurcations for which one real eigenvalue is zero
lead to the creation or destruction of two or more steady states. Bifurcations
for which one pair of complex eigenvalues has zero real parts, can lead to the
creation or destruction of a periodic motion. Bifurcations for which more than
one real eigenvalue or more than one pair of complex eigenvalues have zero
real parts, lead to a very complicated behaviour.

3.1. Continuation technique and methodology scheme

Continuation methods are a direct result of the implicit function theorem,
which proves that the steady states of a system are continuous functions of
the parameters of the system at all steady states except for such steady states
at which the linearized system is singular. The general technique consists in
fixing all parameters except one and analysing the steady states of the system
as functions of this parameter. If one steady state of the system is known, a
new steady state can be approximated by linear extrapolation from the known
steady state (Guckenheimer and Holmes, 1983; Troger and Steindl, 1991).
The slope of the curve at the steady state can be determined by taking the
derivative of the equation given by setting all the time derivatives equal to zero.
If two steady states are known, a new steady state can be approximated by
linear extrapolation through the two known steady states. The stability of each
steady state can be determined by calculating the eigenvalues of the linearized
gystem. Any changes in stability from one steady state to the next one will
signify a bifurcation. Taking into account the experience of many researchers,
one can formulate the following three-step methodology scheme (based on



ON APPLICATION OF DYNAMICAL SYSTEMS THEORY... 897

the bifurcation analysis and continuation technique) for the investigation of
nonlinear aircraft behaviour:

e During the first step it is supposed that all parameters are fixed. The
main aim is to search for all possible equilibria and closed orbits, and to
analyze their local stability. This study should be as thorough as possible.
The global structure of the state space (or phase portrait) can be revealed
after determining the asymptotic stability regions for all the discovered
attractors (stable equilibria and closed orbits). An approximate graphic
representation plays an important role in the analysis of the calculated
results.

e During the second, step the system behaviour is predicted by using the
information about the evolution of the portrait with the parameter va-
riations. The knowledge of the type of the encountered bifurcation and
current position with respect to the stability regions of other steady
motions is helpful for the prediction of further motion of the aircraft.
The rates of parameters variations are also important for such a fore-
cast. The faster the parameter change, the better the difference between
steady state solution and transient motion can be observed.

e Finally, the numerical simulation is used for checking the obtained pre-
dictions and obtaining the transient characteristics of the system dy-
namics for large amplitude state variable disturbances and parameter
variations.

The set of ODE (2.1) was solved using the continuation and bifurcation
software AUTQ97 (available at ftp://ftp.cs.concordia.ca/pub/doedel/auto).
This very useful free software gives all the necessary bifurcation points for
different values of control vector components.

4. Results

Fig.1 show the steady states of advanced jet trainer aircraft at the medium
and high angles of attack.

The steady states represented in those figures show longitudinal trim con-
ditions and spirally divergent motions. These figures show that for elevator
deflections greater than —10.1deg, the trim conditions of the aircraft are sta-
ble. The trim conditions for a given elevator deflection can be determined by
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Fig. 1. Steady states at medium and high angles of attack

drawing the vertical line representing the desired elevator deflection on each
plot; each intersection of this line with the curve of steady states gives a possi-
ble steady state of the aircraft. For the elevator deflection between —10.1 deg
and —13.7deg, the steady state trimm conditions of the aircraft are unstable
as a result of two Hopf bifurcations. Hopf bifurcations can lead to periodic
motions, so it is possible that for elevator deflections between —13.7° and
—10.1°, the aircraft will undergo periodic motion.

The rotor blade stall affects the limiting condition of operation of the
helicopter. Stall on the rotor blades limits the high-speed possibilities of the
helicopter. This is understandable, when one considers that the retreating
blade of the helicopter rotor encounters lower velocities as the forward speed
is increased. The retreating blade must produce its portion of the lift, therefore,
as the velocity decreases with forward speed, the blade angle of attack must
be increased. It follows that at some forward speed, the retreating blade will
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stall. In forward flight, the angle of attack distribution along the blade is far
from uniform, so it must be expected that some portion of the blade will stall

before the rest.
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Fig. 2. Steady states for longitudinal manoeuvres
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Fig. 3. Steady states for lateral manoeuvres

Fig.2 and Fig.3 show the steady states for the PZL "SOKOL” utility heli-
copter as a function of the swash plate deflection. Three variants of calculations
were considered. The first and the second one are for longitudinal manoeuvres,
and the third one is for the lateral manoeuvre. For the first variant of calcula-
tions it is assumed that the collective pitch of main rotor blades equals 18°,
the collective pitch of tail rotor equals 17°, and lateral swash plate deflec-
tion equals zero. For the second variant of calculations it is assumed that the
collective pitch of main rotor blades is 23°, the collective pitch of tail rotor
is 19°, and lateral swash plate deflection is equal to zero. And for the 3rd
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variant of calculations it is assumed that collective pitch of main rotor bla-
des @ = 24° collective pitch of tail rotor Gr = 21°, and swash plate is
deflected backwards (angle of deflection x = —2.5°). These figures show that
multiple steady states exist for most swash plate deflections. For example, the
segment of unstable steady states contains the trim conditions between the
lateral swash plate deflections at —1.9° and —2.1°; 1.9° and 3.2°; —9.1°
and —10.3° because of six Hopf or saddle-node bifurcations. For example, one
recalls that Hopf bifurcation can lead to periodic motions, so it is possible that
for swash plate deflections between 1.9° and 3.2° the helicopter will undergo
periodic motion.
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Fig. 4. Poincaré map — wing-rock instability

Fig.5 shows Poincaré maps and time simulation in which the elevator de-
flection is changed from —9° to —10.5°, putting the aircraft in a region of
unstable steady states. These figures show that slowly developing wing oscilla-
tions grow slowly and have a period of approximately 3s. Note that magnitude
and frequency of those oscillations are irregular and have a chaotic character.
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Fig. 5. Simulation of wing rock instability, variation of selected flight parameters

Fig.6 and Fig.7 show an attempted spin entry using only the lateral swash
plate deflection. A small perturbation of swash plate deflection (near the initial
value at 7y = —9.1°) causes the rotorcraft to enter spin with a negative roll
rate. During the spin, all flight parameters increase their values. In terms of
the continuation methods, the spin is unstable because of the Hopf bifurcation
that occurred at 7 = —9.1°. The Poincaré maps of selected state parameters
are shown in Fig.6. It can be stated that taking into consideration unsteady
rotor-blade aerodynamic model and hysteresis of aerodynamic coefficients, one
encounters significant irregularities in solution of the equations of motion, that
are characteristic for chaotic motion. When the condition for the onset of
chaotic motion is satisfied, both the flapping and pitching motions appear to
have chaotic oscillations.
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Fig. 6. Poincaré map — helicopter spin

5. Conclusions

The main aim of the study was to apply modern methods to investigation
of non-linear problems in flight dynamics. Based on the investigation described
above, the following conclusions can be drawn:

e The present results show the advantages which follow from using the con-
tinuation and bifurcation methods for analyzing the equations of aircraft
motion;

o The efficiency of the methods makes it possible to analyze complicated
aerodynamic models, using the complete equations of motions for the
whole range of control surface deflections;

e Knowledge of such deflections which cause bifurcation, allows us to select
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Fig. 7. Helicopter spin (intensive spiral-glide motion) variation of selected flight
parameters

the most probable scenario of occurrences before the accident, and to
avoid from risky motions;

e The need for a precise description of aerodynamic loads is a fundamental

cause of difficulties;

e The presented approach can be applied to the prediction of space beha-
viour of an aircraft. Therefore, it can be also applied to modification of

the aircraft dynamic characteristics.
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Zastosowanie teorii systeméw dynamicznych do badania krytycznych
stanéw lotu statkéw powietrznych

Streszczenie

Ruch statku powietrznego jest opisywany za pomoca ukladu silnie nieliniowych
réwnan rézniczkowych zwyczajnych. Zlinearyzowane réwnania ruchu nie moga by¢
zastosowane do opisu wielu zagadnied dypamiki lotu. Teoria systeméw dynamicz-
nych pozwala na efektywne badania nieliniowych réwnan rézniczkowych. Teoria bi-
furkacji, bedaca czeécia teorii systeméw dynamicznych, umozliwia badanie zmian sta-
teczno$ci, ktére prowadza do jakodciowo réznych odpowiedzi systemu. Zalozono, ze
statek powietrzny jest nieodksztalcalny. Uwzgledniono stopnie swobody ruchomych
powierzchni sterowych oraz lopat wirnika noénego. Przyjety model aerodynamiczny
umozliwia uwzglednienie zjawiska glebokiego przeciagniecia dynamicznego oraz nie-
stacjonarnogci optywu (histereza wspélezynnikéw aerodynamicznych). Za pomocg me-
todyki teorii systeméw dynamicznych rozpatrzono osobliwoéci niestatecznosci typu
wing-rock 1 tzw. "korkocigu” $miglowca. W celu zweryfikowania przewidzianych nie-
stabilnoéci przeprowadzono cyfrowa symulacje tych ruchéw. Zaobserwowano nieregu-
larno$¢ rozwigzan charakterystycznych dla ruchéw chaotycznych.
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