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This paper presents an analysis of numerical solutions for multi-layer
composite girders under static loading. In the algorithms of presented
solutions the hybrid-stress model of the finite element method based
on Reissner’s modified variational functional was used. Two versions of
numerical programs were developed for an N -layer finite element. The
programs were tested on the example of a three-layer laminated beam
of carbon fibre-reinforced epoxy composite, as well as on the example
of numerical solution for a cantilevered plate. In addition, numerical
examples concerning laminated glued timber beams and a retaining wall
of reinforced soil were analysed.
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1. Introduction

Multi-layer composite girders are characteristic by large transverse defor-
mability (warping) of cross section due to variable mechanical properties of
individual layers. It is, therefore, necessary to take into account the effect of
transverse shear in the strength analysis of these girders and, often, the influ-
ence of elongation of normal elements as well, see Lo et al. (1977), Mau et al.
(1972), Pagano (1969), Pian and Chen (1982, 1983), Rikards (1988), Spilker
et al. (1977), Spilker (1980). This is particularly necessary in cases of deep
girders of the depth/span ratio h/L > 0.25. This can, however, also apply
to more slender girders, in which the ratios of the corresponding moduli of
elasticity are large, i.e. Eix/E

i+1
x > 100 (see Gołaś, 1995, 1997). Thus correct
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determination of stresses and displacements in multi-layer girders becomes po-
ssible only when it is based on the strength analysis, which takes into account
the effect of the transverse shear and elongation of the normal elements.

What is presented below is the algorithm, on the basis of which a statical
computation program of multi-layer cylindrically bent girders was developed.
This is followed by examples of actual solutions. The hybrid stress model of the
finite element method, based on the modified Reissner’s variational functional
was used to formulate algebraic equations. Such a model was proposed and
analysed by several authors, namely: Mau et al. (1972), Pian and Chen (1982,
1983), Rikards (1988), Spilker et al. (1977), Spilker (1980).

2. Formulation of the problem

The subject of the following analysis are thick, multi-layer composite gir-
ders composed of N layers of diversified stiffness, bent to a cylindrical surface
in plane x, z. The stiffness of individual layers across their thickness is con-
stant, but can vary along the girder span – in the direction of the x axis. The
material of each layer is ortothropic and linear-elastic. The girder is subjec-
ted to known static loading, applied to the external surfaces z = ±h/2 and
mass loading inside the volume. In addition, suitable geometrical boundary
conditions are imposed on the parts of girder edges.

The girder is subdivided into an arbitrary number ne of laminar elements
by cross-sections perpendicular to the longitudinal axis x. Typical laminar
finite element is shown in Fig.1.

At the edges of the elements contact at x = 0, l the displacement boundary
conditions u = ũ are satisfied. The modified Reissner variational functional
assumes the following form (see Spilker et al., 1977; Spilker, 1980; Rikards,
1988)

ΠmR(u,σ) =
∑

ne

{ N∑

i=1

[
−
1

2

∫

Vni

σi
⊤
Siσi dV +

(2.1)

+

∫

Vni

σi
⊤
ei(ui) dV −

∫

Vni

f̃
⊤

i u
i dV −

∫

Sσni

t̃
⊤
ui dS

]}

where

σi,ei,ui – stress, strain and displacement vectors, respectively
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Fig. 1. Multi-layer finite element. Geometry and numeration of layers

Si – flexibility coefficient matrix of the ortothropic material in
the ith layer

Vni – volume of the ith layer in nth element

Sσni – surface on which the external loadings t̃ are imposed

f̃ i – mass force vector.

The stress field σi
⊤
= [σix, σ

i
z, σ
i
xz], displacement field u

i⊤ = [ui, wi]

and strain field ei
⊤
= [εix, ε

i
z , γ
i
xz] are approximated by following functions

(Spilker, 1980)

σi = Pi




β
i

βi

β
i+1


 = P

iβi

ui = Nidi

ei = Bidi
(2.2)

in which Pi, Ni, Bi are appropriate matrices of the approximation functions,
di is the nodal displacements vector and βi – vector containing nodal stress
parameters βi assigned to the inside of a given layer, as well as the parameters

β
i
and β

i+1
connected with its bottom and top surfaces. The stress conditions

of continuity at the contact surfaces of the ith and (i+ 1)th layers

σiz(zi+1) = σ
i+1
z (zi+1) σixz(zi+1) = σ

i+1
xz (zi+1) (2.3)

are carried out by the equality of the corresponding parameters β
i
and β

i+1
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of the surfaces in contact. If, at the external surfaces of the extreme layers 1
and N , the static conditions are imposed in the form

σ1xz(z1) = σ
1
z(z1) = 0 σNxz(zN+1) = 0 (2.4)

then
β
1
= 0 β

N+1
σxz
= 0 (2.5)

where the lower index in (2.5)2 denotes the choice of these parameters β
N+1

only, which are connected with the shear stress components.
Substituting relationships (2.2) into functional (2.1), after suitable sum-

mation across all layers i = 1, 2, ..., N , we obtain

Πmc(de,β) =
∑

ne

Πemc =
∑

ne

(
−
1

2
β⊤Hβ + β⊤Qde − d

⊤

e F e

)
(2.6)

where the matrices H, Q and F e correspond to the given layered element
and are appropriately composed of the following sub-matrices

H
i =

∫

Vni

P
i⊤
S
i
P
i dV

Qi =

∫

Vni

Pi
⊤
Bi dV (2.7)

F
i =

∫

Vni

N
i⊤f̃
i
dV +

∫

Sσni

N
i⊤t̃
i
dS

and the vectors β and de the components of which correspond to parameters
of individual layers of the element. The nodes for the description of displace-
ments are located only at the contacting edges of the elements x = const .
From the condition of stationariness of functional (2.6) with respect to the

mutually independent parameters β and de, we obtain

β = H−1Qde (2.8)

and ∑

ne

(kde − F e) = 0 or Kd = F (2.9)

where
k = Q⊤H−1Q (2.10)

denotes the stiffness matrix of the layered element.
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The displacements are determined from displacement algebraic equations
of equilibrium (2.9) referring to the global system, following by stresses com-
puted in individual layers of the system using relationships (2.8) and (2.2)1.
Two versions of the computer program for the finite element of N layers are

presented in the paper. The first having the number of stress approximation
parameters nβ = 14N − 5 and the number of displacement approximation
parameters nu = 8N +4, and the second 14N − 5 and 4N +4, respectively.
In both versions of the program the two-dimensional stress field in each

layer of the element is approximated by the relationship

σi(x, z)︸ ︷︷ ︸
(3×1)

= Pi(x, z)︸ ︷︷ ︸
(3×19)

βi︸︷︷︸
(19×1)

(2.11)

where the polynomial functions matrix Pi(x, z) contains – relevantly for the
components: σix – a third degree approximation in the two directions of the x
and z coordinates; σiz – a linear approximation in the x direction and a fifth
degree approximation in the z direction; σixz – a quadratic approximation
in the x direction and a fourth degree approximation in the z direction. For
example, P i1,14, P

i
2,14 and P

i
3,14 elements of the P

i(x, z) matrix are as follows

P i1,14 = Fi(z)x
3 P i2,14 =

3

10
Ki(z)x P i3,14 =

3

20
Ri(z)x

2 (2.12)

where

Fi(z) =
1

5
(z3i + 4z

2
i zi+1 + 4ziz

2
i+1 + z

3
i+1)−

3

10
(3z2i + 4zizi+1 + 3z

2
i+1)z + z

3

Ki(z) = 2(z
3
i z
2
i+1 + z

2
i z
3
i+1)− z(4z

3
i zi+1 + 7z

2
i z
2
i+1 + 4ziz

3
i+1) +

+2z2(z3i + 4z
2
i zi+1 + 4ziz

2
i+1 + z

3
i+1)− z

3(3z2i + 4zizi+1 + 3z
2
i+1) + z

5 (2.13)

Ri(z) = (4z
3
i zi+1 + 7z

2
i z
2
i+1 + 4ziz

3
i+1)− 4z(z

3
i + 4z

2
i zi+1 + 4ziz

2
i+1 + z

3
i+1) +

+3z2(3z2i + 4zizi+1 + 3z
2
i+1)− 5z

4

On the other hand the parameter vector βi has the form

βi = [β
i

1, β
i

2, ..., β
i

5;β
i
1, β
i
2, ..., β

i
9;β
i+1
1 , β

i+1
2 , ..., β

i+1
5 ]
⊤

In addition, the adopted description of stresses (2.11) satisfies homogeneous
equilibrium conditions in the area of the layer and static conditions on the
external surfaces of the extreme layers.
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In order to describe the displacement field ui(x, z) = [ui, wi]⊤ in a typical
layer element, three nodes were assumed in the first version of the program
along the edges x = 0, l and two nodes in the second version. At each node two
translational degrees of freedom were assumed. Thus, in each of the versions
we have nβ = 9, nu = 12 and nβ = 9, nu = 8 independent stress parameters
and displacement degrees of freedom per layer, respectively.

3. Numerical analysis and concluding remarks

The developed program was tested on the example of a three-layer plate
strip considered in papers by Lo et al. (1977), Spilker (1980), Rikards (1988),
bent to a cylindrical surface, for which exact analytical solutions, obtained
on the basis of the theory of elasticity, are known (see Pagano, 1969). For
a strip of h/L ratio equal 0.25, divided into 12 finite elements in both
versions of the developed program, the relative error of the deflections reduced
to dimensionless values w(L/2, 0) did not exceed 1.3%. On the other hand, the
greatest deviations of the reduced values of the stress field in the cross-sections
σx(L/2, z), σz(L/2, z), σxz(0, z) were: for the first version of the program,
correspondingly 4.8, 2.1 and 8.2% – with subdivision into 12 elements, and
3.9, 1.6 and 5.6% – with subdivision into 24 elements. For the second version
of the program the deviations were 5 up to 8% greater than in the first version.
In view of higher precision of the solutions, further numerical analysis shall be
carried out using the first version of the program.

Fig. 2. Cantilever plate. Statical scheme and grid of elements

The program was also verified on the example of a FEM displacement
model of cantilever plate, presented by Kleiber (1989). In this case the homo-
geneous cantilever plate of dimensions 2.0m × 10.5m, was supported on the
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edge x = 0 and loaded by a concentrated force P at the point (10.5, 0) on
the free edge x = L (Fig.2). The values of the vertical displacements w(L, 0)
at the point of application of the force P with subdivision into 10 and 14
four-layer elements differed from the solutions in Kleiber (1989) by 6.0 and
5.9%, respectively. The greatest differences in the stresses σx and σxz in the
cross-section x = 0.375m (in order to compare the solutions of both FEM
models) did not exceed 5.8%. Full picture of the obtained stress field u(x, z)
and σx stress component are shown in Fig.3. The displacements presented
there are magnified ten-fold with respect to the geometric dimensions of the
plate. Intensity of shading of the surface corresponds to the increase of the
stress values.

wmax = 0.14192m; umax = 0.01968m; σxmax = 7634.591 kPa

Fig. 3. Displacement field u(x, z) and normal stress component σx(x, z) for
isotropic cantilever plate loaded by force P = 500kN (Fig.2). Material constants:

E = 2.1 · 106 kPa, ν = 0.25

Using the developed program, bending of a glued timber laminated beam
was analysed, where mechanical properties of individual layers were subjected
to degradation during operation. Results of the numerical computations of
the simply supported and fixed-end beam, both composed of seven layers, the
properties of which changed in time from the state I to state III (according to
Table 1) are presented below. The beam span was L = 12m, depth h = 1.0m
and the uniformly distributed load qz = 0.100MN/m was applied to the upper
surface z = 0.5m. The beam was subdivided along the span into 40 laminar
elements. The results of computations for beams: (a) simply supported and
(b) fixed at both ends are presented in Fig.4 and Fig.5, respectively. They
present the deflection of the beam axis and distribution of the normal stresses
σx for each of the examined states I, II, and III. It was assumed that the
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(a) State I

(b) State II

(c) State III

Fig. 4. Simply supported inhomogeneous beam of glued laminated wood, composed
of seven layers, with stress constants changing over the operation period, according
to Table 1. Deflection line of neutral axis of the beam and displacement field
σx(x, z) in: (a) state I, (b) state II, (c) state III – over the beam segment

3.0 ¬ x ¬ 3.6m. For the remaining length – according to state II. Note: relation
between the horizontal and vertical scales is x : z = 1 : 5
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(a) State I

(b) State II

(c) State III

Fig. 5. Double-sided encastered beam of glued laminated wood. Description as for
Fig.4, but in case (c) state III occurs over the beam segment 0 ¬ x ¬ 0.6m



292 J.Gołaś

state III occurs locally, i.e. between x = 3.0m and 3.6m in beam (a) and
between x = 0 and 0.6m in beam (b). The intensity of shading of the beam
surfaces in these figures corresponds to the increase of stress. In both cases an
increase of deflection and redistribution of the stress field can be noticed.

Table 1

Material constants
State I State II State III

Number Thickness
of layer of layer Ex Gxz Ex Gxz Ex Gxz

[m] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa]

1 0.096 11500 700 9200 560 920 56

2 0.048 9500 600 7600 520 7600 520

3 0.156 9000 550 7200 440 7200 440

4 0.400 8000 500 6400 400 6400 400

5 0.156 9000 550 7200 440 7200 440

6 0.048 9500 600 7600 520 7600 520

7 0.096 11500 700 9200 560 920 56

Fig. 6. Diagram of reinforced soil retaining wall structure with backfill reaction

An engineering application of the program to a statical analysis of a re-
inforced earth structure is given below. Theoretical bases and applications of
structures of this type are presented among others by Sawicki and Kulczy-
kowski (1986), Sawicki and Leśniewska (1993). A retaining wall of reinforced
ground, loaded at its upper surface by surcharge qz = 60 kN/m and by side
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pressure of the backfill is shown in Fig.6. Own weight is also taken into acco-
unt in the calculations. The structural reinforcement in the form of aluminium
0.6 × 2.8 × 800 cm flat bars is placed unidirectionally in eight layers. The di-
stance between the reinforcement in a layer is 0.5m, the same as the distance
between the layers. The following properties were assumed in the calculations:
– for the ground

γg = 18 kN/m3 Eg = 1.2 · 105 kPa

νg = 0.20 Gg = 0.5 · 105 kPa

– for the reinforcement

Er = 0.72 · 108 kPa νr = 0.34 µr = 0.00067

where γα, Eα, να, Gα, µα, denote correspondingly the bulk density, Young’s
modulus, Poisson’s ratio, shear modulus, volumetric proportion of the com-
ponent α. The technical moduli of elasticity of a single composite layer are
assumed to be the following (Sawicki and Kulczykowski, 1986; Sawicki and
Leśniewska, 1993)

Ex = 1.682 · 10
5 kPa Ez = 1.215 · 10

5 kPa νzx = 0.145

νxz = 0.201 Gxz = 0.68 · 10
5 kPa

It was assumed in the considerations that in a block of soil, measuring L×h =
12.00 × 5.00m zero displacement state u = 0, w = 0 occurs in the plane
z = −h/2. The computations were carried out for two alternatives:

Alternative I: Block of soil is homogeneous and without reinforcement, lo-
aded by surcharge qz and own weight.

Alternative II: Retaining wall is reinforced in the above-described way, lo-
aded by surcharge qz, own weight and triangular backfill side load ac-
cording to the formula (see Sawicki and Kulczkowski, 1986)

qx =
1

2
ξ tan2

(
45◦ −

Φ

2

)
γh

where Φ = 37◦ is the angle of internal friction of the ground, γ =
18 kN/m3, and ξ = 0.618 is the coefficient of interaction of the backfill
and retaining wall.

The computed displacement state for both alternatives is presented in Fig.7
and Fig.8.
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wmax = 0.00477m; umax = 0.00128m; σzmax = 148.061 kPa

Fig. 7. Displacement field u(x, z) and distribution of stress component σz(x, z) for
the first loading alternative. Displacements in the diagram are 250 times enlarged

with respect to dimensions of the structure

wmax = 0.00462m; umax = 0.00117m; σzmax = 145.841 kPa

Fig. 8. Displacement field u(x, z) and distribution of stress component σz(x, z) for
the second loading alternative
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On the grounds of the numerical analyses of the above-mentioned exam-
ples, both versions of the developed program can be recommended for deter-
mination of the displacement and stress states in thick, multi-layer ortothropic
composite girders having the h/L ratio less than 1/2. The above programs can
also be used for computation of miscellaneous multi-layer engineering struc-
tures operating in a state of plane strain.
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Analiza numeryczna grubych wielowarstwowych dźwigarów

kompozytowych z wykorzystaniem hybrydowo-naprężeniowych

elementów skończonych

Streszczenie

W pracy przedstawiono analizę rozwiązań numerycznych dla grubych wielowar-
stwowych dźwigarów kompozytowych obciążonych statycznie. W algorytmach rozwią-
zań wykorzystano hybrydowy model naprężeniowy metody elementów skończonych
bazujący na zmodyfikowanym funkcjonale wariacyjnym Reissnera. Opracowano dwie
wersje programu numerycznego dla elementu skończonego o N warstwach. Progra-
my przetestowano na przykładzie trójwarstwowej belki z laminatu kompozytowego
(z epoksydu wzmocnionego włóknami węglowymi) oraz na przykładzie rozwiązania
numerycznego dla tarczy wspornikowej. Analizowano ponadto konkretne przykłady
liczbowe dotyczące belek z drewna klejonego warstwowo oraz konstrukcji muru opo-
rowego z gruntu zbrojonego.
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