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The paper discusses the problem of Green’s functions application to
stress calculations in the case of a discontinuous temperature field ac-
ting in a 2D domain. It is proved that the double integral of the Green
function for the stresses does not exist. A new method of finding iterrated
integrals of Green’s functions which enables obtaining correct functions
for the stress o, is presented as well.
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1. Introduction

Consider an infinite space with a discontinuous temperature field

Oo(x1,22) for (x1,xe,23) € 2 X (—00,+00)

0 for (x1,xe,23) & 2 X (—00, +00) (L)

0(z1, 22, 73) = {
where {2 is the temperature domain, 2 =< —a,a > x < —b,b > (Fig.1).
We seek for displacement and stress fields in the space. Solution to the

above problem can be reduced to solving the Poisson equation in the form
given by Nowacki (1986)

T2p — { mby for (x1,22) € 12 (1.2)

for (z1,22) & 2

where @ represents the potential of the thermoelastic displacement, while the
displacements can be represented as follows

Ueq = @,a (13)
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Fig. 1.
and
v
m = 1.4
20+ A (14)
where
u, A — Lame’s constants
v — constant to be determined by thermal and mechanical pro-
perties of the material
V2 — 2D Laplace’s operator.

In Eq (1.3) the coma stands for differentiation with respect to z, (o =1,2).
The stresses can be found from the formulae

Oaf = Q,u(@’aﬁ — V2€p5aﬁ)
(1.5)
—2pmby for (xzq) € 2
788 = { 0 for (z4) & 2

where 0,3 is the Kronecker delta.

The approach presented below, based on the application of Green’s func-
tions, is widely used in the literature (cf Nowacki, 1970a,b, 1986).

Consider the infinite space with the unit temperature kernel acting along
the line {L: z1 = (1,22 = (2,23 € R}, i.e.

0 =0(z1 — C1)0(z2 — (2) (1.6)
A solution to the differential equation

V20 = md(z1 — (1)d(z2 — (o) (1.7)
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has the following Green’s function form
m
G(zq; () = P = o InR (1.8)

where
R = (21— Q1)* + (22 — () (1.9)

Employing Eq (1.8), we can represent the potential of the thermoelastic
displacement (according to the theory of potential it is called the logarithmic
potential) as follows

D) = - / 6(Cs)In R de; (1.10)
02

The following theorems are to be proved when making use of the potential
theory approach (see Giunter, 1957):

I. If the function 0((,) is integrable in the domain (region) {2, then the
logarithmic potential ®(x4) is of C' class in the entire space, and its
partial derivatives result directly from differentiation of the integrand,
1.€.

b, = %/e(gﬁ)(lnma a0 = o /a(gﬂ)%R;zC‘l Qe (1L11)
2 2

II. Poisson theorem

If the function 0(Ca) integrable in the domain (2 is of C' class in a
certain neighbourhood of the point (x,) € (2, then the potential P(xy)
is of C? class at the point (xo) and Eq (1.2) is true.

It should be noted, however, that the second order derivatives of the po-
tential @, i.e. P ,5 cannot be calculated in the way used for the first order
derivative @ ,, i.e. by differentiating the integrand.

By virtue of Eqgs (1.5) and (1.8) Green’s functions for the stresses 7,3 can
be written in the form

_ 2 o 2
711(Ta;Cp) = =G 22 = _% (1 — 1) R4($2 ©)

822 = —6'\11 (1.12)

2pm (x1 — C1)(z2 — C2)
Ri

012(Ta; (g) = —G 12 = —
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If the temperature domain is represented by Eq (1.1) the stresses o, have
the following form (see Nowacki, 1970a,b, 1986)

O-Otﬂ(xa) = /H(Cﬂ)gaﬂ(xod C’y) dQC (1.13)
2

When one uses the above approach the following questions arise:

e Does double integral (1.13) exist for every (x)?
e For which (z,) is Eq (1.13) true?

e What way should o, be calculated from Eq (1.13) for the results to be
correct?

The present paper aims at answering the above questions. We will consider
the case of a constant temperature field acting upon the thermally insulated
domain (2.

2. Displacements
Consider a 2D problem in a space with the temperature field

) f ,29) € 2
0:{ 0 or (.Tl .’EQ) (21)

0 for (x1,x9) & 12

where 6y = const.
From Egs (1.3), (1.11) the following formulae for the displacements wuq
yield

0 —-b b
u1(zq) = %{(m —a) (arctan ;Cf — arctan ;Cf —'_— a) -
—(z +a)<arctan r2=b arctan — i b) + (z2 — b) L (xg +0)In T_3}
! r1+a r1t+a 2 T2 2 T4
(2.2)
0 _
uz(rq) = %{(:ﬂg —b) (arctan Z; — 2 _ arctan Z; i a) —

—(x9 + b) (arctan i;;g — arctan i;ig) + (x1 —a) 1n:—; —(z1+a)ln :—j}
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= (21— a)* + (22— b)? ri = (21 +a)’ + (z2 - b)? (2.3)
73 = (v1 — a)? + (v2 + b)? r2 = (z1 +a)?® + (z2 + b)? .

Eqgs (2.2) are true at each point of the space and it can be easily shown
that the functions wu, are continuous in the entire space.

3. Stresses

We can rewrite the formula for the thermoelastic potential @ in the follo-
wing, more suitable form

B(ra) = 1= / 6(Cs)In R? de; (3.1)
(9}

In can be noted that the integrand in Eq (1.11) for (z,) ¢ {2 does not reveal
any singular points and the second order derivatives @ ,g can be calculated
directly by differentiation of the integrand

Doy = 1 ! 6(¢,)(In R?) 45 A2 (3:2)

Slight obstacles can be encountered, however, when one wants to prove
that for (z,) € {2 the second order derivatives @ .3 can be determined from
the formula

Doy = o | [ 0GB s cos(n, o) dTe — [ 0G,) altn B, 42| (33)
r (9]

where ' = 0f2 denotes the boundary of (2.
Substituting Eq (3.3) into Eq (1.5), the following formulae for the stresses
oqp in {2 yield

Ull(xa) =
mub T —a T a T —a x a
= — 1Yo (arctan ! -+ arctan Lt — arctan ! — arctan Lt )
™ €r2 — To + xro + Tr9 —
Jgg(xa) = (3.4)
muo To —b x b T b To—b
= — #% (arctan 2 + arctan 2+ — arctan 2+ — arctan 2 )
™ T —a xr1+a Tl —a r1+a

~ mpuby r%ri
7izla) = S e
273
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It can be seen that the stresses o, calculated from Eq (3.2) for (z,) & {2 are
the same as those represented by Eqgs (3.4), therefore the following conclusion
can be drawn: the formulae for stresses (3.4) are true at each point of the
space.

Upon analysing the stresses in the vicinity of I it can be easily seen that
the stress o171 reveals discontinuity for xo = 4b, o099 reveals discontinuity for
x1 = +a, while the stress o192 = 091 tends to infinity when approaching the
corners of 2 (Fig.1). The same conclusion for the first time was formulated
by Goodier (1937). He also determined the jump, which in our case equals (see
Fig. 2)

Ao =0 — ol = —2um (0D — 6y = —2,mb, (3.5)
while ‘
i = o) (3.6)
where A
ngs), UST)L — stresses on the domain boundary, when approaching the
discontinuity from the inside of {2
agi), 055’2 — stresses on the domain boundary, when approaching the

discontinuity from the outside.

Fig. 2.

Let (zq) € £2, we can calculate then the following iterated integrals
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b a b a
An(aa) =00 [ ([0 dc) de = ~2u00 [( [ Gan dcr) déa =

—b —a —-b —a
0 —b b b —b
= — mHYo (arctan 2 + arctan T2t — arctan T2+ — arctan 2 )
s r1—a xr1 +a T —a T +a
(3.7)
a b a b
Buiwa) =00 [ ([ a1 dc) dei = ~2u00 [ ([ G dca) s =
—a —b —a —b
0 — _
= _mevo (arctan na + arctan T1ta — arctan n-a + arctan o1t a)
s To—b To + To+ b To—b

It can be seen from the above formulae that for (x,) € 2, A(zs) # B(za),
on the grounds of the Fubini theorem of the double integral existence, the
double integral does not exist V x, € 2. Therefore, Eqs (1.13) are not true.

To find the reason why for (z,) € £2 Eq (1.13) does not hold let us notice
that by virtue of Eqs (1.5) and (1.13) we have

o11(wa) = [ 0I5 (wai ) A% = =21 [ 0(C)G i Go) d2% (3.5)
) )

however, from Eqgs (1.5) and (1.10) it results

o11(w0) = ~2p2 = ~2p( [ 0(G)G i ) d0) (3.9)
2

Having two equations at our disposal (Eqs(3.8) and (3.9)) we can conclu-
de that the latter one is true since in Eq (3.8) the second derivative of the
thermoelastic potential is calculated by differentiating directly the integrand,
which can be done only for (z,) & (2.

Comparing the stresses o1 calculated from Eq (3.4); with the stresses
B11 yields

a b a b
o11(xa) = Bii(za) = 6o /(/ o11 dC2) d¢1 = —2pby /(/ G 22 dC2> d¢y
o o (3.10)
In an analogous way
b a b a
022(xq) = A11(xa) = 6’0/(/ 0922 dCl) dGs = _2M90/(/ G dCl) d¢s
—b —a —b —a

(3.11)
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It can be proved that the following equations are true

b a a b
o12(w0) = 021 (wa) = 200 [ ( [ Gaa ds) da =208y [ ([ Gn da) dca
—b —a —a —b

(3.12)

4. Conclusions

The considerations presented in Section 3 supply answers to the questions
posed in the introduction. In the considered case of constant temperature we
have proved that:

e Double integral (1.13) does not exist for (z,) € 2
e Eq (1.13) yields correct results for (z,) & 2

e Eq (1.13) can be employed only in the case when the double integral is
iterated, with the integration performed over the variable with respect to
which the potential G(zq;(g) is differentiated, and then over the second
variable, i.e. if the potential G(z;(g) is differentiated with respect to
r1 we integrate it over (7, and then over (.

The question whether all the above conclusions are true for an arbitrary
function 6(z,) remains unanswered.
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O caltkowaniu funkcji Greena przy dzialaniu nieciaglego pola temperatury

Streszczenie

W pracy rozpatrzono problem zastosowania funkcji Greena dla naprezen w przy-
padku dzialania nieciagltego pola temperatury w 2-wymiarowym obszarze 2. Wyka-
zano, ze calka podwdjna z funkcji Greena dla naprezen nie istnieje. Podano sposob
obliczania calek iterowanych z funkcji Greena taki, za pomoca ktérego uzyskujemy
poprawne wzory na naprezenia o0qg.
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