
JOURNAL OF THEORETICAL

AND APPLIED MECHANICS

39, 3, pp. 475-505, Warsaw 2001

MODELLING CONTACT PROBLEMS WITH FRICTION
IN FAULT MECHANICS

Włodzimierz R. Bielski

Institute of Geophysics, Polish Academy of Sciences

e-mail: wbielski@igf.edu.pl

Józef Joachim Telega

Institute of Fundamental Technological Research, Polish Academy of Sciences

e-mail: jtelega@ippt.gov.pl

The aim of this contribution is two-fold. First, we review the friction mo-
dels applied in geophysics. These models cover: state- and rate-dependent
friction, rate-dependent friction and slip-dependent friction.
Second, we propose a new description of friction in the spirit of mo-
dern contact mechanics, introducing sliding rules which interrelate the
contact stresses with the slip velocity. Sliding rules are formulated in a
subdifferential form. Initial-boundary value problems are formulated in
the strong and variational forms. By applying Green’s function, the va-
riational formulation for finding normal and tangential contact stresses
is proposed.
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1. Introduction

Frictional behaviour of rocks plays an important role in earthquake pro-
cesses and their prediction. Once a fault has been formed, its further motion
is controlled by friction, which has a contact property rather than the bulk
property. In rock friction studies two aspects are crucial: the stability of engi-
neering structures and the mechanics of earthquakes.

The modern seismology claims that the earthquakes are processes of cre-
ation of discontinuity of displacement fields in upper mantle of the Earth at
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different depths. These processes take place on old and new systems of tectonic
faults.
As a rule, many factors play an essential role during processes occuring

on tectonic faults: friction, temperature, chemical reactions, phase transitions,
porosity, etc., cf Teisseyre (1985, 1995) and Teisseyre and Majewski (2001).
Though each of these factors is important, the frictional behaviour of rocks

has been investigated in many papers. A program of such investigations can
be summarized as follows, cf Rice (1983):

(i) characterization of complete behaviour of the slip surface, i.e., finding the
distribution of contact (tangent) stresses as a function of normal stress,
temperature, slip rate, slip distance and history of slip;

(ii) description of mechanical interaction between contact surfaces and the
surrounding elastic bodies.

Friction is an important phenomenon which has obviously to be taken
into account in seismological modelling of material behaviour in a neighbor-
hood of tectonic faults, see Ben-Zion and Rice (1995), Dieterich and Kilgore
(1994), Rice (1993), Zheng and Rice (1998), Sleep (1997, 1998), Segal and
Rice (1995), Rudnicki and Wu (1995), Ranjith and Rice (1999), Senatorski
(2000a,b). Contact problems with friction, including unilateral problems, have
been frequently studied in the contact mechanics, cf Bielski and Telega (1994),
Brogliato (1999), Telega (1988) and the references cited therein.
The investigation of friction laws on geological faults emerges as a key is-

sue for earthquake modelling. Two types of processes have to be taken into
account: quasi-static one as a long term process of slow loading and duration
of about a few scores of years, and the second one, the rapid unloading, i.e. a
dynamic process occuring during a few seconds. Both the dynamic and quasi-
static processes are necessary to complete the description of the phenomenon
of friction on tectonic faults.
It is convenient to distinguish three models of frictional sliding studied in

geophysical literature. The first one is the model of rate- and state-dependent
friction. In this theory, the so-called state variables are applied and the idea
is due to Rabinowicz (1965). Next it has been developed by Dieterich (1978,
1979), Ruina (1980, 1983), Rice (1983), Scholz (1994, 1996, 1998), cf also the
references therein.
The second model is the rate-dependent friction, cf Madariaga et al. (1998),

Cochard and Madariaga (1994).
The third model considered in seismology is the slip-dependent friction,

cf Favreau et al. (1999), Campillo and Ionescu (1997), Descalu et al. (2000),
Ionescu and Campillo (1999), Ionescu and Paumier (1997).
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In this contribution we shall first briefly describe general aspects of tecto-
nic plates and provide classification of tectonic faults sufficient for this study.
Next, we review the role of state variables in modelling the friction on tectonic
faults. Following our earlier contribution (Bielski and Telega, 2000), a more
elaborate description of the sliding process with friction which includes not
only the friction condition but also the sliding rule is introduced. The sliding
rules are formulated in the subdifferential form, convenient for variational for-
mulations. In the general case both the friction condition and the sliding rule
depend on state variables. Finally, variational formulation will be proposed for
a quasi-static problem modelling geological faults. For the sake of simplicity,
it is assumed that contacting tectonic plates are made of anisotropic, linear
elastic materials. Physically more involved material behaviour can likewise be
considered; for instance, in Rowshandel and Nemat-Nasser (1986), the founda-
tion is viscoelastic. The problem of anisotropic fault region was also considered
by Rybicki (1992).

This paper is confined to quasi-static problems for contacting tectonic pla-
tes. However, a more general than the usually used rate- and state-dependent
model of friction is taken into account. Also, anisotropy and inhomogeneity of
tectonic plates are included in our approach in a natural manner.

2. General aspects of tectonic plates

Plate tectonics is a model in which the outer shell of the earth is divided
into a number of thin, rigid plates that are in relative motion with respect
to one another. The relative velocities of the plates are of the order of a few
scores of milimeters per year, for instance for the San Andreas fault the ave-
rage velocity is 0.5-4.5 mm/year. A large number of all earthquakes, volcanic
eruptions, and mountain forming occurs at plate boundaries. Figure 1 sketches
the distribution of the major surface plates. The plates are made up of relati-
vely cool rocks and have an average thickness of about 100 km. The plates are
being continually created and absorbed.

At ocean ridges, the adjacent plates diverge from each other in a process
known as seafloor spreading. As the adjacent plates diverge, hot mantle rock
ascends to fill the gap. The hot, solid mantle rock behaves like a fluid because
of solid-state creep process. As the hot mantle rock cools, it becomes rigid and
accretes to the plates, creating new plate area. For this reason, ocean ridges
are also known as accreting plate boundaries.
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Fig. 1. The map of main tectonic plates and their boundaries, after Turcotte and
Schubert (1982)
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Fig. 2. Schematic presentation of subduction processes, after Press and Siever (1986)

The main oceanic ridges are depicted in Fig. 1. Because the surface area
of the earth is essentially constant, there must be a complementary process
of plate consumption. This occurs at ocean trenches. The surface plates bend
and descend into the interior of the earth in a process known as subduction. At
an ocean trench, the two adjacent plates converge, and one descends beneath
the other. For this reason ocean trenches are also known as convergent plate
boundaries. The distribution of the trenches is depicted in Fig. 1 by triangular
symbols, which indicate the direction of subduction. A cross-sectional view of
the creation and consumption of a typical plate is illustrated in Fig. 2. The
part of earth’s interior that comprises the plates is referred to as the litho-
sphere. The rocks that make up the lithosphere are relatively cool and rigid;
as a result, the interiors of the plates do not deform significantly as they move
about the surface of the earth. When the plates move away from ocean ridges,
they cool and thicken. The solid rocks beneath the lithosphere are sufficiently
hot to be able to deform freely; these rocks comprise the asthenosphere, which
lies below the lithosphere. The lithosphere slides over the asthenosphere with
relatively little resistance. As the rocks of the lithosphere becomes cooler, their
density increases because of thermal contraction. As a result, the lithosphere
becomes gravitationally unstable with respect to the hot asthenosphere be-
neath. At the ocean trench the lithosphere bends and sinks into the interior
of the earth because of this negative buoyancy. Major faults separate the de-
scending lithospheres from the adjacent overlying lithospheres. These faults
are the sites of a large number of the great earthquakes. Examples are the
Chilean, Alaskian, San Francisco (San Andreas Fault), Anatolian Fault ear-
thquakes, as well as Chinese and Japan faults. The location of the descending
lithospheres can be accurately determined by the earthquakes occuring in the
cold, brittle rocks of the lithosphere. Earthquake source dynamics provides the
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key elements for the prediction of strong ground motion and to understand
the physics of earthquake initiation, propagation and healing. Recent studies
indicate the fundamental role of friction in earthquakes, cf Cotton and Cam-
pillo (1995), Beroza and Mikumo (1996), Ide and Takeo (1997), Fukuyama and
Madariaga (1998), Iio (1997), Lockner (1998), King and Cocco (2001), Lapu-
sta et al. (2000), Ben-Zion and Rice (1997), Cochard and Rice (2000), Brown
(1998), Beeler et al. (1996), Boatwright and Cocco (1996), Place and Mora
(1999), Oglesby et al. (2000), Nielsen et al. (2000), Richardson and Marone
(1999), Roy and Marone (1996), Sleep (1995, 1999).

3. Classification of faults

Threre is an abundant classification of tectonic faults from the geological
point of view. For our purposes are sufficient the following classifications of
faults, followed by Turcotte and Schubert (1982).

One may distinguish three main types of faults. Every other fault can
be treated as a combination of the three main types. In general, a certain
characteristic type dominates in each fault.

(i) As the first type consider the thrust faulting. Thrust faultings occur
when the oceanic lithosphere is thrust under the adjacent continental (or oce-
anic) lithosphere at an oceanic trench. Thrust faults also play an important
role in the compression of the lithosphere during continental collisions. Ide-
alized thrust fault is depicted in Fig. 3. The elevating block is known as the
hanging wall, and the depressed block is called the foot wall. The upward
movement of the hanging wall is also referred to as reverse faulting.

Let the stresses in the x, y, and z directions be the principal stresses (x,
z are the horizontal coordinates, y is the vertical coordinate). The vertical
component of the stress σyy is the overburden or lithostatic pressure σyy =
̺gy. The vertical deviatoric stress σDyy is zero. To produce the thrust faults,

a compressive deviatoric stress applied in the x direction σDxx is required,
σDxx > 0. The horizontal compressive stress is σxx = ̺gy + σ

D
xx, therefore it

exceeds the vertical lithostatic stress or σxx > σyy. For the fault geometry
shown in Fig. 3 it is appropriate to assume that there is no strain in the z
direction. In this particular situation we can write σDzz = νσ

D
xx. The deviatoric

stress in the z direction is also compressive, but its magnitude is a factor
of ν times less than the deviatoric applied stress. Therefore the horizontal
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Fig. 3. Schemat of three main types of tectonic faults, after Press and Siever (1986)

compressive stress σzz = ̺gy + σ
D
zz = ̺gy + νσ

D
xx exceeds the vertical stress

σyy, but it is smaller than the horizontal stress σxx. Thrust faults satisfy the
condition σxx > σzz > σyy. The vertical stress is the least compressive stress.

(ii) Normal faulting accommodates horizontal extensional strain. It occurs
on the flanks of oceanic ridges where new lithosphere is being created. Normal
fault also occurs in continental rift valleys where the lithosphere is being stret-
ched. Applied tensile stresses can produce normal faults as shown in Fig. 3.
The displacements on the fault planes dipping at an angle to the horizontal
lead to horizontal tensile strain. Normal faulting is associated with a state
of stress in which the vertical component of stress is the lithostatic pressure
σyy = ̺gy and the applied deviatoric horizontal stress σ

D
xx is tensile σ

D
xx < 0.

The horizontal stress σxx = ̺gy + νσ
D
xx is therefore smaller than the vertical

stress σyy
σyy > σxx

Consequently, deviatoric stress in the z direction σDzz is also tensile, but its
magnitude is a factor of ν smaller than the deviatoric stresses applied. The
total stress σzz = ̺gy + νσ

D
xx is smaller than σyy but is larger than σxx.

Normal faults satisfy the condition σyy > σzz > σxx, thus the vertical stress
is the maximum compressive stress. Both thrust faults and normal faults are
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also known as dip-slip faults because the displacement along the fault takes
place on a dipping plane.

(iii) A strike-slip fault is a fault along which the displacement is strictly
horizontal. Thus there is no strain in the y direction.

The state of stress in the strike-slip faulting consists of a vertical litho-
static stress σyy = ̺gy and horizontal deviatoric principal stress that are
compressive in one direction and tensile in the other.

One horizontal stress will thus be larger than σyy while the other will be
smaller, so we have

σxx > σyy > σzz or σzz > σyy > σxx

For the strike-slip faulting the vertical stress is always the intermediate stress.

4. Friction laws involving internal parameters

Brace and Byerlee (1966) hypothesized that stick-slip instabilities in the
observed laboratory friction experiments might stand for a good model to ear-
thquake rupture. Consequently, laboratory experiments are thought as models
of possible fault motion in the earth.

Experiments have been performed with many rock types, with and wi-
thout various fault gouge layers, at a range of slip rates, confining pressure,
pore pressures, temperatures, and in machines with different geometry and
compliances, cf Blanpied et al. (1998), Dieterich (1978, 1979), Dieterich and
Conrad (1984), Jaeger and Cook (1976), Mair and Marone (1999), Morrow et
al. (2000), Olsen et al. (1998), Savage et al. (1996), Sleep (1999), Weeks and
Tullis (1985).

A different approach to friction experiments consists in postulating a con-
stitutive description of a surface slip from which earthquake or laboratory
experiments can be predicted through modelling, cf Ruina (1980, 1983), Rice
(1983,1993), Scholz (1994, 1996, 1998), Segal and Rice (1995), Sleep (1995,
1997, 1998), Zheng and Rice (1998), Ben-Zion and Rice (1995, 1997), Cao
and Aki (1986). Such modeling of elastic systems reveals that instabilities in
frictional slip depend on a reduction of the friction force during some part of
the sliding, i.e. on slip weakening. For this reason, the role of slip weakening
has been investigated in many papers. Particularly, Byerlee (1970) suggested
that the friction coefficient varies from point to point on slip surfaces and that
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instabilities are associated with decrease in the friction force from its peak
values as sliding proceeds.

Dieterich (1972) claims that slip weakening occurs after a time-dependent
healing during stationary contact. Similar mechanisms have been earlier pro-
posed as a basis for slip instabilities, primarily in metals, Rabinowicz (1965).
Basing on the ideas of Rabinowicz (1965), Dieterich (1978,1979) and Ruina
(1980) studied and developed a class of friction laws based on using the state
variables.

Ruina (1983) exploited the experimental data by Dieterich (1979) and
proposed a model of friction involving state variables. This author provided
examples to characterize the state variables and to study the stability of steady
sliding, neglecting the inertia forces. Also a friction law based on one state
variable was used.

Let us pass to a brief presentation of the Ruina (1983) model. This model
comprises basic experimentally observed features, especially the following ones:
fading memory and steady-state, positive instantaneous slip rate-dependence,
and negative dependence on the recent slip rates.

These ideas and observations led to the following description of friction.
Let τ be the shear stress and σ let denote the normal stress. After Ruina
(1983) we write

τ = σF (ϑ, V ) (4.1)

where ϑ is a state variable (or a collection of such variables, ϑ = (ϑi),
i = 1, . . . , n), V is the rate of the slip. The evolution equation for ϑ has the
form

dϑi
dt
= Gi(σ, V, ϑi) (4.2)

From the practical viewpoint, the number of state variables ϑi should be
small. The variables ϑi then represent some kind of average of an undoubtedly
complicated surface state. The temperature of the surface can be taken as a
single state variable if the heat flow is idealized as being dependent only on
the temperature of the surface and the temperature of an external constant
temperature reservoir.

Detailed analysis of experiments made on different types of rocks lead to
the following description of friction provided that one state variable is used

τ = σ
(
µ0 + ϑ+A ln

V

Vc

)

(4.3)

ϑ̇ = −
V

dc

(
ϑ+B ln

V

Vc

)
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Here µ0 is the coefficient of static friction, A and B are constitutive pa-
rameters to be determined by experiments, and dc is the characteristic slip
distance depending on the surface. This law is valid for a large range of slip
rates and shares the apparent defect of no-healing (no change of ϑ) for a zero
slip rate. This law can be illustrated graphically as in Fig. 4.

Fig. 4. Friction stress at constant normal stress versus slip rate (of ln), after Ruina
(1983)

In Figure 4 the lines of constant state, ϑ, are light solid lines and show the
instantaneous positive dependence of τ on the slip rate V . The heavy line is
the steady state friction law and is a decreasing function of the slip rate in the
example of Fig. 4 (B > A). As governed by Eq. (4.3)2, ϑ decreases above the
steady state line, below it ϑ increases. Any slip corresponds to a pen motion
on the plot of Fig. 4 and is the simultaneous solution of the friction law and
any constraints imposed by the loading mechanism. The arrows indicate the
component of this motion perpendicular to the lines of constant ϑ.
Ruina (1980) derived an experiment which cannot be described by a single

state variable law of the form (4.1), because of violation of condition (4.2). He
showed that his experiment is well described by a friction law involving two
state variables

τ = σ
(
µ0 + ϑ1 + ϑ2 +A ln

V

Vc

)

(4.4)

ϑi = −
V

di

(
ϑi +B ln

V

Vc

)
i = 1, 2

This model is also called the Ruina-Dieterich model, cf Perrin et al. (1995).
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The model is referred to as the slip model since the state evolves only when
there V 6= 0. As previously, V is the one-dimensional slip velocity.
The quantities A, B, Vc, and di (i = 1, 2) are constants to be determined

by experiment, di is the slip length scale for state evolution; A and B, both
positive, account for the short-time velocity strengthening and for the steady-
state velocity weakening, respectively. The model specified by Eqs (4.4) can
be extended to arbitrary number of state variables, ϑi, i = 1, 2, . . . , n, each
of them having specific weakening constant Bi and length scale di. However,
due to its simplicity, most frequently used is the model with one or two state
variables, cf Ruina (1980, 1983), Weeks and Tullis (1985).
Now we describe the Dieterich-Ruina slowness model, cf Perrin et al.

(1995). This model has the following form

τ(t) = σ
[
µ0 −A ln

(
1 +
V∞
V (t)

)
+B ln

(
1 +
ϑ(t)

ϑ0

)]

(4.5)

dϑ(t)

dt
= 1− ϑ

V (t)

L

One might think of the state variable ϑ here in an abstract way, cf Ruina
(1980, 1983) and (4.1). Dieterich (1979) and Dieterich and Conrad (1984)
interpret it as the average age of the load supporting the contacts between
the sliding surface. In that case the constitutive law of the form (4.5) is more
sensible than the one of the form (4.3)2, since it yields

dϑ

dt
= 1 for V = 0

That contact time interpretation led Dieterich to use extensively equations
(4.5), although equation (4.5)2 seems to have been written first by Ruina
(1980). The quantities τ0, A, B, V∞, and ϑ0 are cut-offs for high velocity and
short contact duration.
Perrin et al. (1995) used a regularized version of Dieterich-Ruina model

(4.5) to study the self-healing slip pulse on a frictional surface. Dieterich
(1992) pointed out that the model presented by (4.3) leads to non-physical
behaviour for extremely low slip velocities. The same happens for long ”con-
tact times” ϑ. To remedy these drawbacks, Perrin et al. (1995) introduced
two cut-off velocities V0 and V1 and modified the model (4.5) as follows

τ(t) = σ
[
µ0 +A ln

( V0 + V (t)
V∞ + V (t)

)
+B ln

(
1 +
ϑ(t)

ϑ0

)]

(4.6)

dϑ(t)

dt
= 1− ϑ

V1 + V (t)

L



486 W.R.Bielski, J.J.Telega

Notice that the state variable ϑ is contained in [0, L/V1]. This might be
illogical if ϑ had to be interpreted as the contact time. However, considering
a cut-off precisely means that we are getting outside the measurable range and
it is by nature artificial.
Chester (1994) extended Ruina’s friction law and included the temperatu-

re. In the case of one state variable, the friction coefficient µ is then expressed
by

µ = µ0 +A
[
ln
V

Vc
+
QA
R

( 1
T
−
1

T∗

)]
+Bϑ (4.7)

Here QA is the apparent activation enthalpy, T is the absolute temperature,
and R denotes the gas constant. Obviously T∗ is a reference temperature,
such that µ evolves toward µ0 when V = Vc and T = T∗. The evolution
equation for the state variable is modified to the form

ϑ̇ = −
V

dc

[
ϑ+ ln

( V
Vc
) +
QB
R

( 1
T
−
1

T∗

)]
(4.8)

The apparent activation enthalpies, QA and QB, presumably reflect the
rate-limiting steps in processes responsible for the direct and evolution effects,
respectively. For the steady state, i.e. if ϑ̇ = 0, then

µss = µ0 + (A−B) ln
V

Vc
+
AQA −BQB

R

( 1
T
−
1

T∗

)
(4.9)

Here µss denotes the coefficient of friction for the steady state. We observe
that for T∗ = T , Eqs (4.7) and (4.8) reduce to Ruina’s equations Eqs (4.3).
Some results concerning the temperature-dependent friction are depicted in
Fig. 5-Fig. 8.

4.1. Slip-dependent friction

Up to now we dealt with sliding in one direction only. Let us pass to the
general case.
Let Ω ⊂ R

3 be a sufficiently regular domain and Γ = ∂Ω its boundary.
Γ consists of three nonoverlapping parts: Γ0, Γ1, and Γc, such that Γ =
Γ 0 ∪ Γ 1 ∪ Γ c and the surface measure of Γc is positive. The bar over a set
denotes its closure. Γc is the surface of possible contact, for instance the fault
surface. By N = (Ni) we denote a unit exterior vector normal to Γc. Latin
indices run from 1 to 3 and the summation convention is used throughout
the paper. A vector v = (vi) defined on Γ may be decomposed as follows

v = vNN + vT (4.10)
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Fig. 5. Systematic of the friction parameters (A-B). (a) Dependence of (A-B) on
temperature for granite. (b) Dependence of (A-B) on pressure for granular granite.
This effect, due tu lithification, should be augmented with temperature, after

Scholz (1998)

Fig. 6. Friction of graphite powder along the inclined interface at a constant
confining pressure of 60ṀPa during velocity and temperature stopping. Velocity and

temperature stepping sequence is shown, simplified after Chester (1994)
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Fig. 7. Representative results of velocity and temperature stepping experiment on
quartz gouge. Velocity and temperature stepping is shown, simplified after Chester

(1994)

where vN = viNi denotes the normal component of v, while vT i = vi−vNNi
are its tangential components. If σ = (σij) is the stress tensor, a similar
decomposition holds for the stress vector (σijNj) defined on the boundary Γ .
Thus we write

σijNj = σNNi + σT i (4.11)

where σN = σijNiNj and σT i = σijNj − σNNi.

The slip-dependent friction in quasi-static and dynamic cases was conside-
red in a series of papers by Ionescu and Paumier (1997), Ionescu and Campillo
(1996), Favreau et al. (1999), Campillo et al. (1996). These authors considered
the contact problems with friction between a linear elastic body and a rigid fo-
undation. The elastic body is an infinite elastic strip bounded by two planes.
Such a strip is in contact with the rigid foundation and submitted to she-
aring, or the half-spaces being in contact. Quasi-static and dynamic stick-slip
motions are related to the earthquake instabilities. On the contact interface
the friction, the Coulomb law with a slip-dependent friction coefficient was
used provided that normal pressure was prescribed, see Ionescu and Paumier
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Fig. 8. Comparison of model simulations and detrended friction records from
velocity and temperature stepping experiments on quartz gouge under (a) dry and
(b) water saturated conditions. Friction versus shear displacement fromsimulations
shown by heavy line is superposedwith friction recordf from experiment. The
velocity and temperature stepping sequence is shown, after Chester (1994)

(1997). Only the anti-plane problem was studied, both the static and dynamic
cases.
Let us consider the shearing of an infinite elastic slab bounded by two

planes: x1 = l, x1 = 0, and x2 = h, x2 = 0.
On the contact surface Γc = [0, l] × {h} × R, the slab is in contact with

friction with the rigid body which pushes it with the constant normal force

σ = σ22 = −S or σ(u)N ·N = −S on Γ1

where u is the displacement field, σ = σ(u) is the stress tensor and N is
the outward unit normal vector. Along Γ0 = [0, l]×{0}×R the displacement
is prescribed

u1 = 0 u2 = 0 u3 = B
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and on Γc = {0, l} × [0, h] ×R

u1 = 0 σ12 = σ13 = 0

Let uA = 0 and

u2 = u2(x2)
∂u3
∂x3
= 0

Since no perturbation of the equilibrium in the x1-direction is considered, we
get

u2(x2) = −
S

λ+ 2G
x2 (4.12)

where λ,G > 0 are the Lamé constants. Let us denote by Ω the rectangle
Ω := (0, l) × (0, h); moreover we set

w := u3 −B
(
1−
x2
h

)

First, we describe the static case. In this case the slip-dependent friction law
on Γc is described by

σT (u) = −Sµ(|uT |)
uT
|uT |

if uT 6= 0 on Γc (4.13)

and
|σT (u)| ¬ µ(0)S if uT = 0 on Γc (4.14)

Here uT and σT are the tangential displacement and tangential stress, re-
spectively. The equlibrium equation

divσ = 0 (4.15)

and the boundary conditions lead to the following problem:
Find w : Ω → R such that

∆w = 0 in Ω

∂w(x1, x2)

∂x1
= 0 for x1 = l and x1 = 0 ∀x2 ∈ (0, h)

w(x1, 0) = 0 ∀x1 ∈ (0, l)
(4.16)

G
∂w(x1, h)

∂x2
+ µ(|w(x1, h)|)S sgnw(x, h) = q if w(x1, h) 6= 0

∣∣∣G
∂w(x1, h)

∂x1
− q
∣∣∣ ¬ µ(0)S if w(x1, h) = 0
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where q is the tangential stress, which corresponds to the stick case, i.e.,
q = GB/h.

In the dynamic case, the slip-dependent friction law on the contact surface
is described by the following system

σT (u) = −Sµ(|uT |)
∂u

∂t

∣∣∣
∂u

∂t

∣∣∣
−1
if u̇T 6= 0 on Γc

|σT (u)| = −Sµ(|uT |) if u̇T = 0 on Γc

The momentum balance law divσ = ̺ü and the boundary conditions lead to
the following dynamic problem:
Find w : R+ ×Ω → R such that

ẅ(t) = c2∆w(t) in Ω

∂w(t, l, x2)

∂x1
=
∂w(t, 0, x2)

∂x2
= w(t, x1, 0) = 0

G
∂w(t, x1, h)

∂x2
+ µ(|w(t, x1, h)|)S sgn

(
ẇ(t, x1, h)

)
= q if ẇ 6= 0

∣∣∣G
∂w(t, x1, h)

∂x2
− q
∣∣∣ ¬ µ(|w(t, x1, h)|)S if ẇ(t, x1, h) 6= 0

w(0) = w0 ẇ(0) = w1 in Ω

Here c =
√
G/̺ is the shear velocity and w0, w1 are the initial conditions.

The static analysis of the first of the formulated problems was performed
by Ionescu and Paumier (1997) using variational methods.

5. Friction conditions and sliding rules

The descriptions of friction on geological faults discussed previously are
confined to one-dimensional modelling of the change of the friction coefficient.
In this section we propose an alternative and rather general approach to mo-
delling the friction condition and sliding rule in the spirit of modern contact
mechanics, cf Telega (1988). In the the comprehensive rewiev paper (Shillor
et al., 2002), the available variational and numerical methods of solving qu-
asistatic contact problems are discussed. Let Ωa (a = 1, 2) be a domain in
the three-dimensional physical space occupied by a linear-elastic body in its
undeformed state. Γc denotes the contact surface (the fault surface) of the
two contacting bodies. Unbounded domains are not excluded. Let Na = (Nai )
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denote the outer unit normal vector to ∂Ωa. We set N = N 2 = −N1. Let
σ
a = (σaij) (i, j = 1, 2, 3) be the stress tensor in the body Ω

a; ua stands for
the displacement vector. Moreover, by σaN = σ

a
ijN
a
i N
a
j we denote the normal

component of the stress vector and σaT = (σ
a
ijN
a
j ) − σ

a
NN
a is the tangent

stress vector, while [[uT ]] = u
1
T − u

2
T denotes the jump of the tangent displa-

cement across the fault surface Γc. Throughout this paper the summation
convention is consequently applied, except that a = 1, 2. According to the
action-reaction principle we set σT = σ

1
T = −σ

2
T . In the absence of state

variables, the friction condition is assumed to be given by f(σN ,σT ) ¬ 0,
where f is a continuous function. Anisotropic friction is not precluded. For
a fixed σN we introduce a set K(σN ) of admissible tangential stresses as
follows

K(σN ) = {τ | f(σN , τ ) ¬ 0, τ ·N = 0 on Γc}

Prior to the formulation of the friction law we recall the definition of a sub-
differential of a convex function. If f : Rn → R is a convex function then its
subdifferential at x0 is a subset of R

n such that

∂f(x0) = {y ∈ R
n : f(x)− f(x0) ­ 〈y, x− x0〉 ∀x ∈ R

n}

Here 〈y, x〉 = yixi. For more details the reader is referred to Rockafellar
(1970). We assume that K(σN ) is convex and closed while the sliding rule
has the subdifferential form

[[u̇T ]] ∈ ∂IK(σN )(σT ) (5.1)

where u̇T = ∂u/∂t and IK(σN ) is the indicator function of K(σN ), i.e.

IK(σN )(τ ) =




0 if τ ∈ K(σN )

∞ otherwise

As usual, ∂IK(σN ) stands for the subdifferential of the function IK(σN ). In
the variational formulation given in the next section, the frictional dissipation
density will be involved. It is determined by

D(σN , [[u̇T ]]) = sup{[[u̇]] · τ | τ ∈ K(σN )} (5.2)

Obviously, D(σN , [[u̇T ]]) = [[u̇T ]] · σT . Our approach includes anisotropic fric-
tion.
In the case of the classical Coulomb friction condition we have

D(σN , [[u̇T ]]) = µ|σN | · |[[u̇T ]]|
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Then (5.1) takes the following form

[[u̇T ]] = −λσT λ ­ 0 (5.3)

If the state variables ϑp (p = 1, . . . , n) are employed for the description of
friction on the fault then the friction condition is assumed in the form

f(σN ,σT , ϑp) ¬ 0 (5.4)

For fixed σN and ϑp, p = 1, . . . , n, the set of admissible tangential stresses is
given by

K1(σN , ϑp) = {τ | f(σN , τ , ϑp) ¬ 0, τ ·N = 0 on Γc} (5.5)

In this case the sliding rule may also be assumed in the subdifferential form

σT ∈ ∂3D(σN , ϑp, [[u̇T ]]) p = 1, . . . , n (5.6)

to which the evolution equation for ϑp should be appended

ϑ̇p = Hp(t, σN , ϑm, [[u̇T ]]) m, p = 1, . . . , n (5.7)

Here ∂3D(σN , ϑp, [[u̇T ]]) denotes the subdifferential of the frictional dissipa-
tion density with respect to the third variable. Particularly, suppose that the
friction condition is given by f(σN ,σT , ϑp) = |σT | − µ(ϑp)σN ¬ 0. Then we
have

D(σN , ϑp, [[u̇T ]]) = |σT ||[[u̇T ]]| = µ(ϑp)|σN |[[u̇T ]]| (5.8)

We conclude that the friction coefficient may depend on the slip velocity via
the state variables.

Remark 5.1. It may happen that the friction condition does not depend on
the normal stress σN . Specific case is provided by the friction condi-
tion used by Cochard and Madariaga (1994). These authors employ the
following velocity-dependent condition in the case of antiplane shear, cf
Section 6 below

f(σyz, [[u̇]]) = |σyz | − σ
0
yz

V0
V0 + [[u̇]]

(5.9)

where V0 is a reference velocity that determines the rate of slip velocity
weakening and σ0yz is the maximum traction drop, reached when the
slip velocity is very large. The friction condition can be obtained from
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the condition depending on an internal variable ϑ. More precisely, let
the condition f̃ depend on σyz and ϑ, where

dϑ

dt
= H([[u̇]]) ϑ(0) = ϑ0 (5.10)

Solving the last equation we get

ϑ = h([[u̇]]) (5.11)

Substituting (5.10) into f̃(σyz, ϑ) we obtain

f(σyz, [[u̇]]) = f̃
(
σyz, h([[u̇]])

)
(5.12)

Remark 5.2. Friction conditions may possess no convexity property. Then
the subdifferential ∂ should be replaced by the generalized subdifferen-
tial ∂, cf Panagiotopoulos (1993). Instead of variational inequalities we
have to deal then with so-called hemivariational inequalities.

6. Classical and variational formulations of the fault contact
problem

Now we pass to the formulation of a quasi-static initial-boundary value
problem in the presence of a fault. The fault is treated as a contact surface
or interface between two anisotropic, linear-elastic bodies. It can also be mo-
delled as a closed crack in the elastic body. The interface is modelled by the
subdifferential sliding rule (5.6). We set ∂Ωa = Γ

a
0 ∪ Γ

a
1 ∪ Γ

a
2, Γc = Γ

1
2 = Γ

2
2

and formulate the quasi-static contact problem.

Problem (P )

Find ua(x, t) (a = 1, 2) and ϑp(x, t) (p = 1, . . . , n), such that

σaij,j(u
a) +Bai = 0 in Ωa × [0, T ]

σaij(u
a) = aaijklεkl(u

a) in Ωa × [0, T ]

u
a(x, t) = 0 on Γ a0 × [0, T ]

σaijN
a
j = F

a
i on Γ a1 × [0, T ]

σT ∈ ∂3D(σN , ϑm, [[u̇T ]]) on Γc × (0, T )
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ϑ̇p = Hp(t, σN , ϑm, [[u̇T ]]) on Γc × (0, T ) m = 1, . . . , n

u
a(x, 0) = ua0(x) for x ∈ Ωa

ϑp(x, 0) = ϑ
0
p(x) for x ∈ Γc

where εkl(u) = (uk,l + ul,k)/2, and B
a and F a are the applied body forces

and surface tractions, respectively. The functions Hp, u
a
0 and ϑ

0
p are given.

The formula σaij(u
a) = aaijklεkl(u

a) expresses the anisotropic Hooke’s law.

To obtain the variational formulation we set

aa(ua,va) =

∫

Ωa

aaijklεij(u
a)εkl(v

a) dx

a(u,v) =
2∑

a=1

aa(ua,va) (6.1)

L(v) = L(v1,v2) =
2∑

a=1

(∫

Ωa

Bai v
a
i dx+

∫

Γ a
1

F ai v
a
i ds
)

where u = (u1,u2), v = (v1,v2). It can readily be shown that the problem
(P) may be transformed to the variational formulation.

Problem (Pv)

Find ua = ua(x, t), x ∈ Ωa (a = 1, 2), t ∈ [0, T ] and ϑp (p = 1, . . . , n),
such that ua(x, 0) = ua0 (x ∈ Ω

a), ϑp(x, 0) = ϑ
0
p(x) (x ∈ Γc) and

a(u,v − u̇) +

∫

Γc

D(σN , ϑp, [[vT ]]) dΓ −

∫

Γc

D(σN , ϑp, [[u̇T ]]) dΓ ­ L(v − u̇)

(6.2)∫

Γc

[
ϑ̇p −Hp(σN , ϑm, [[u̇T ]]

]
ηp(x) dΓ = 0

for all test functions v = v(x), ηp = ηp(x). The inequality (6.2)1 provides an
example of an implicit variational inequality; more precisely, it is a variational
inequality of the second kind. From the physical point of view, it represents
the principle of virtual velocities in the presence of friction.

The variational formulation proposed can be used for the derivation of
numerical procedures, cf Johansson (1992) and Section 7.
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7. Green’s function and contact stresses

Starting from the problem (Pv) we can derive the so-called dual formu-
lation for the determination of stresses σN and σT on the interface, i.e., on
the fault. Applying the procedure developed by the second author, see Telega
(1991), we arrive at the dual problem.

Problem (PG)

Find Σ = (σijnj) = (σN (x, t),σT (x, t)), σT ∈ K1(σN , ϑp), and ϑp(x, t),
x ∈ Γc, such that for all t ∈ (0, T ) such that

∫

Γc

〈
sT (x)− σT (x, t),

d

dt
[[[û(x, t)]]T + (G

1 +G2)Σ(x, t)]T
〉
dΓ (x) ­ 0

∫

Γc

(
[[û(x, t)]]N + [(G

1 +G2)Σ(x, t)]N
)
ϕ(x) dΓ (x) = 0

(7.1)∫

Γc

(
ϑ̇p(x, t)−Hp(σN , ϑm, [[u̇T ]])

)
ηp(x) dΓ (x) = 0

ϑp(x, 0) = ϑ
0
p(x) Σ(x, 0) = Σ0(x) x ∈ Γc

for all S = (sN , sT ), sT ∈ K1(σN , ϑp) and for all sufficiently regular ϕ.
Similarly to Section 4, 〈·, ·〉 denotes the scalar product in R

3. Obviously Ga

(a = 1, 2) denotes the Green function for the domain Ωa; moreover

ûak(x, t) =

∫

Ωa

Bai (y, t)G
a
ik(x, y)dΩ

a(y) +

∫

Γ a
1

F ai (y, t)G
a
ik(x, y) dΓ (y). (7.2)

In Eqs (7.1)1,2 the following notation is used

[(G1 +G2)Σ]i(x, t) =

∫

Γc

[G1ij(x, ξ) +G
2
ij(x, ξ)]Σj(ξ, t) dΓ (ξ)

We observe that the dual problem (PG) enables us to find the normal and
tangential stresses on the fault surface Γc. The inequality (7.1)1 is a quasi-
variational inequality since the set of constraints K1 depends on the solution.

Remark 7.1. Dual formulation for the static problem with friction was exa-
mined in Bielski and Telega (1985).



Modelling contact problems... 497

8. Antiplane deformation

In order to illustrate the approach developed in the previous section,
we consider the antiplane crack problem in an isotropic infinite space. Now
Ω = R

3 and the contact surface, i.e. the crack Γc, is defined by

Γc =
{
(x, y, z) ∈ R

3 | −ℓ ¬ x ¬ ℓ, −∞ < y <∞, z = 0
}

(8.1)

where ℓ > 0. The displacement vector field is assumed to be continuous on
Ω\Γc. In the case of the antiplane deformation we have, see Cochard and
Madariaga (1994)

u(x, z) = [0, u(x, z), 0] (8.2)

The strain tensor has the following form

e =
1

2



0 u,x 0
u,x 0 u,z
0 u,z 0


 (8.3)

The stress tensor σ = 2µe+ λ tre reduces to

σ = µ



0 u,x 0
u,x 0 u,z
0 u,z 0


 (8.4)

The equilibrium equation is expressed by

µ∆u(x, z, t) = 0 in R
3\Γc (8.5)

Now u depends also on time t since the problem under consideration is
quasistatic. Here ∆ denotes the Laplacian with respect to the variables x, z.
The fundamental solution or the Green function for the last equation is, see
Vladimirov (1984)

G(x, z; ξ) =
1

2πµ
ln r (8.6)

where r2 = (x− ξ)2 + z2.
From Betti’s formula we find the displacement inside the elastic body

u(x, z, t) = µ

ℓ∫

−ℓ

[[u(ξ, t)]]
∂G(x, z; ξ)

∂z
dξ (8.7)

The problem considered is two-dimensional, since it does not depend on y.
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Now we have uN = 0 and the tangent displacement uT = u is in the
direction of the axis y. We set

[[u(x, t)]] = u(x, 0+, t)− u(x, 0−, t) (8.8)

Then
[[u(x, t)]] = 0 for |x| > ℓ

[[u(x, t)]] 6= 0 for |x| ¬ ℓ

Eq. (8.5) is completed with
(i) the sliding rule

σ = σT ∈ ∂2D(ϑp, [[u̇]]) for |x| < ℓ p = 1, . . . , n (8.9)

(ii) the evolution equation for ϑp

ϑ̇p = Hp(ϑm, [[u̇]]) m, p = 1, . . . , n |x| < ℓ (8.10)

(iii) the initial conditions

ϑp(x, 0) = ϑ
0
p(x) σ(x, 0) = σ0 (8.11)

We observe that now the friction condition does not depend on the normal
stress, cf Remark 8.1.
In the case of the antiplane deformation, the dual problem (PG) reduces

to:
Find σ(x, t), x ∈ Γc, t ∈ [0, T ] such that (8.9) is satisfied and

ℓ∫

−ℓ

ℓ∫

−ℓ

[s(x)− σ(x, t)]G(x, z; ξ)σ̇(ξ, t) dξdx ­ 0 ∀s(x) ∈ K1 (8.12)

The indicator function of the set K1(ϑp) is a dual of D(ϑp, ·). Once the
density of frictional dissipation is known, one can also find the set K1(ϑp).
Eq. (8.2) is now trivially satisfied. We observe that in the case of the friction
condition used in Cochard and Madariaga (1994), the problem (PG) for the
antiplane shear does not involve Eq. (8.9).

Remark 8.1.

(i) The antiplane problem significantly simplifies the fault deformation.
Here it has been used to show how the method of duality may be em-
ployed to study the friction problem in the neighborhood of the fault.

(ii) Okubo (1989) defined the fault as the plane x3 = 0 in an infinite,
homogeneous, elastic whole space. In such case Γc = R

2 and our duality
method can also be applied.
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9. Time and space discretizations

Now we pass to time discretization of problem (PG) in the case of the anti-
plane shear. First, we observe that then Green’s function G of the considered
problem does not depend on time t, cf Eq. (8.6). Thus we have dGσ/dt = Gσ̇.
Therefore we can introduce the following approximation of the stress deriva-
tive with respect to time t. Let the time interval [0, T ] be divided into L
intervals (tl−1, tl) for l = 1, . . . , L and 0 = t0 < t1 < . . . < tL = T . The time
derivative is approximated by the backward finite difference in the following
way

σ̇(x, tl) ≈
σ(x, tl)− σ(x, tl−1)

tl − tl−1
(9.1)

The evolution equation of the internal variables takes the form

ϑ̇p(x, t) = Hp(ϑm, [[u̇]])

After discretization in time we write

ϑ̇p(x, tl) ≈
ϑp(x, tl)− ϑ(x, tl−1)

tl − tl−1
= Hp(ϑm(x, tl−1), [[u̇(x, tl−1)]]) (9.2)

Substituting (9.1) into (PG) we get the following problem for the interval
(tl−1, tl). After time discretization, the quasi-variational inequality (8.12) is
written as the sequence of quasi-variational inequalities.

Problem (P lG)

Find σ(x, tl) and ϑp(x, tl), l = 1, . . . , L; 0 = t0 < t1 < . . . < tL = T ,
x ∈ (−ℓ, ℓ) such that for all admissible stresses s = s(x) ∈ K1(ϑp(x, tl)),

ℓ∫

−ℓ

ℓ∫

−ℓ

G(x, ξ)σ(ξ, tl)[s(x)− σ(x, tl)] dxdξ ­

­

ℓ∫

−ℓ

ℓ∫

−ℓ

G(x, ξ)σ(ξ, tl−1)[s(x)− σ(x, tl)] dxdξ

(9.3)

ϑp(x, tl)− ϑp(x, tl−1)

tl − tl−1
= Hp(ϑm(x, tl−1), [[u̇(x, tl−1)]])

σ(x, 0) = σ0(x) ϑ(x, 0) = ϑ0(x) x ∈ [−ℓ, ℓ]

where G is given by (8.6)
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Remark 9.1. Cochard and Madariaga (1994) have considered dynamical pro-
blem of fault friction for slip velocity-dependent model of friction in
the case of antiplane deformation of the whole space. In this paper, we
consider a quasi-static deformation. We take into account the friction
condition and the sliding rule. We observe that our approach can be
generalized to the dynamic case. Then Green’s tensor will depend on
time.
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Modelowanie zagadnień kontaktowych z tarciem w mechanice uskoków
geologicznych

Streszczenie

Cel pracy jest dwojaki. Po pierwsze, omówiono modele tarcia stosowane w geofi-
zyce. Modele te obejmują tarcie zależne od strun, prędkości i poślizgu.
Po drugie, zaproponowano nowy opis tarcia w języku nowoczesnej mechani-

ki kontaktu, wprowadzając prawa poślizgu wiążące naprężenie poślizgu z prędko-
ścią poślizgu. Prawa poślizgu sformułowano w postaci subróżniczkowej. Zagadnienia
początkowo-brzegowe sformułowano w postaci silnej i wariacyjnej. Stosując funkcję
Greena zaproponowano sformułowanie wariacyjne pozwalające wyznaczyć normalne
i styczne naprężenia kontaktowe.
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