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The paper deals with heat transfer processes taking place in the near
flow region of axisymmetric free jet in the presence of coherent motion
stimulated by acoustic wave. The parameters selected for qualitative and
quantitative analysis were the temperature variance and coherent as well
as oscillatory heat fluxes. Temperature variance was treated as a measure
of intensity of heat transport while heat fluxes described spatial charac-
teristics of the heat transfer processes. Analysis of transport equations of
the above quantities should explain the physics of heat transfer realised
in the presence of coherent structures.
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Notation

a – thermal diffusivity
cp – specific heat capacity of air at constant pressure
D – exit nozzle diameter
f – excitation frequency
P, p – pressure
Re – Reynolds number
St – Strouhal number
T – period of oscillatory motion
t – time
U, u – velocity
x, r, ϕ – cylindrical coordinate system
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Θ,ϑ – temperature
λs – wavelength of the coherent structure
ρ – density
ν – kinematic viscosity

and (·) – time-mean average; (̃·) – oscillatory component; (·′) – random
component; 〈·〉 – phase averaging operator, and subscripts: a – ambient
conditions; o – nozzle outlet; r – radial direction; x – axial direction; ϕ –
circumferential direction.

1. Introduction and experimental conditions

The research performed at the Institute of Thermal Machinery in the field
of transport properties of internal (El Sayed, 1995) and kinetic energy revealed
the important role of coherent motion. The object of the research was the non-
isothermal round jet issuing from the contoured nozzle of D = 0.04m at the
constant exit velocity corresponding to the Reynolds number

Re = 40000

The overheat of the flowing medium (i.e. the difference between the ambient
Θa and exit air temperature Θo) was kept at the constant level of

∆Θ = Θa −Θo = 40
◦C

i.e. the experiment was confined to ”weakly-non-isothermal” range because of
the requirements resulting from the hot-wire technique.
The free, round jet reveals a multi-modality of the coherent motion (Drob-

niak, 1986; Drobniak and Elsner, 1986; Wygnański and Peterson, 1987), and
that is why the flow had to be externally stimulated by the harmonic acoustic
wave of the frequency f given by the Strouhal number

St =
fD

Uo
= 0.42

The above value corresponds to the so-called ”alternate-mode”, which on the
one hand is characterised by the largest amplitudes attained and, on the other
hand, by the absence of pairing, which could disturb the mechanism analy-
sed. The acoustic jet stabilisation cancelled the random dispersion of size and
shedding frequency of coherent vortices and furthermore, enabled us to use
the acoustic pressure as a reference signal in the phase-averaging procedure.
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In the course of experiment, the three components of instantaneous ve-
locity together with the instantaneous temperature have been recorded with
the use of a combined four-wire sensor, described in detail in (El Sayed et
al., 1998). The discussion of data processing algorithms was given in (Drob-
niak et al., 1998). The three test cross-sections selected for the analyses were
located in the cross-sections characterised by the growth (x/D = 1.5), the
maximum spatial coherence (x/D = 2.5) and decay (x/D = 4) of the column
mode vortices. The above main cross-sections were accompanied by auxiliary
measuring planes, which were needed to determine the gradients of particular
quantities in the transport equation analysed. The ∆x distance between ma-
in and auxiliary planes was selected as ∆x/λs = 0.08 (i.e. ∆x/D = 0.125),
because the results of preliminary measurements (Elsner et al., 1992; Elsner
and Drobniak, 1994) as well as the literature data (Favre-Marinet, 1986, 1989)
have shown that this value was on the one hand sufficiently small in compari-
son with the wavelength λs of the structures and, on the other hand, it was
large enough to obtain accurate estimation of the particular gradients in the
equations considered.

2. Basic assumptions used in formulation of transport equations

The starting point for formulation of transport equations for temperature
variances and heat fluxes was the triple decomposition concept introduced
in (Reynolds and Hussain) which may be written for the arbitrary flow field
quantity as follows

F (xi, t) = F (xi) + f̃(xi, t) + f
′(xi, t) (2.1)

where F (xi) – time-mean quantity, f̃(xi, t) – periodic component, f
′(xi, t) –

random component. Following the above concept, the velocity Ui, pressure P
and temperature Θ could be the decomposed as follows

Ui = Ui + ũi + ui Θ = Θ + ϑ̃+ ϑ P = P + p̃+ p′ (2.2)

where i = x, r, ϕ stand for the axisymmetric coordinates applied. If one
assumes relatively small velocity range, as well as a moderate overheat of the
jet, then it will be possible to consider the flow as incompressible with constant
physical properties, such as viscosity ν, thermal diffusivity α, etc. In addition
to time-averaging, the phase-averaging operator was introduced according to
the formula
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〈F 〉 = lim
N→∞

[ 1
N

n∑

p=1

F (t+ pT̃ )
]
= F + f̃ (2.3)

where T̃ was the period of oscillatory motion and N denoted the number of
averaged periods. The phase reference was the acoustic pressure signal used for
flow stimulation. The details of derivation of the transport equations analysed
were given in (Pełka, 1999).

3. Budget of oscillatory component of temperature variance

The transport equations for oscillatory component of temperature variance
in axisymmetric coordinates may be written as follows

Ux
∂

∂x

( ϑ̃2

2

)
+ Ur

∂

∂r

( ϑ̃2
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)
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−ũrϑ̃

)∂Θ
∂r︸ ︷︷ ︸

(3)

+ ũx
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= 0

where terms containing ∂/∂ϕ derivatives were omitted, and symbols (·) and
〈·〉 denoted quantities resulting from time and phase-averaging, respectively.
The particular terms of these equations may be interpreted as:
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(1) – Advection of Oscillatory component of Temperature Variance
(AOTV)

(2) – Redistribution of Oscillatory component of temperature variance
resulting from the interaction of temperature oscillations, velocity
U and pressure P fields (ROUP)

(3) – Production of oscillatory component of temperature variance per-
formed by Oscillatory Heat Fluxes (POHF)

(4) – Diffusion of Oscillatory component of Temperature Variance
(DOTV)

(5) – Redistribution of oscillatory component of temperature variance
performed by Modulated Heat Fluxes (RMHF)

(6) – Production of oscillatory component of temperature variance per-
formed by Modulated Heat Fluxes (PMHF)

(7) – Redistribution of oscillatory component of temperature variance
performed by Molecular Heat Transport (RMHT)

(8) – Dissipation of Oscillatory component of Temperature Variance
(DsOTV).

The instantaneous temperature and velocity time-series recorded during
the measurements after proper processing (El Sayed et al., 1998) allowed to
calculate the values of the first four terms of Eq. (3.1), except the term (2)-
(ROUP) which was treated as a closing quantity.

The above transport equation reveals that the transport of oscillatory tem-
perature variance is realised by the following processes:

• Advection which describes the transport oscillatory variance by the mean
motion (term 1).

• Redistribution of oscillatory temperature variance within the same form
of fluid motion (terms 2, 4, 5, 7).

• Exchange of oscillatory temperature variance between the mean and
oscillatory motion (term 3, 6),

• Dissipation which describes the viscous damping of the oscillatory va-
riance by periodic motion (term 8).

All the terms of Eq. (3.1) were normalised by U0(∆Θ)
2/D, where U0 was

the mean velocity at the jet exit.

Results of calculations have shown that the amplitudes of dissipation
(term 8) and redistribution due to molecular motion (term 7) were by three
orders of magnitude smaller than the remaining terms and that is why both
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Fig. 1. Budget of oscillatory component of temperature variance at the
cross-sections: (a) x/D = 1.5, (b) x/D = 2.5, (c) x/D = 4.0

Fig. 2. Radial distributions of axial, radial and total advection of oscillatory
component of temperature variance at the cross-sections: (a) x/D = 1.5,

(b) x/D = 2.5, (c) x/D = 4.0
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these terms were omitted in further analyses. The computed budget of oscilla-
tory temperature variance was presented in Fig. 1 for the three cross-sections
analysed. The data presented in this figure reveal that advection, diffusion and
production are the dominating terms in the budget and that is why they were
the subject of a more detailed analysis.
The advection term in axisymmetric flow (∂/∂ϕ = 0) may be decomposed

as follows

AOTV = Ux
∂

∂x

( ϑ̃2

2

)

︸ ︷︷ ︸
(AOTVx)

+Ur
∂

∂r

( ϑ̃2

2

)

︸ ︷︷ ︸
(AOTVr)

where (AOTVx) denotes the axial component while (AOTVr) is the radial
component of the advection term. As it may be seen in Fig. 2, the axial com-
ponent (AOTVx) dominates practically the advection what means that the
oscillatory variance is convected by the mean motion while the contribution of
radial component (AOTVr) is negligible in all the cross-sections analysed. The
diffusion term contains also the axial and radial subterms denoted as follows

DOTV = ũx
∂

∂x

( ϑ̃2

2

)

︸ ︷︷ ︸
(DOTVx)

+ ũr
∂
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2

)

︸ ︷︷ ︸
(DOTVr)

which were presented in Fig. 3. As it can be seen, both these subterms are
diffused with almost equal intensity in axial and radial directions. The ma-
ximum amplitude of diffusion appears at the cross-section x/D = 2.5 where
the maximum coherence of organised vortices is observed (Drobniak et al.,
1997). The loss of temperature variance in the inner region of the jet and its
gain in the outer area of the jet (see Fig. 3) results from the mixing processes
realised by the fronts and backs of coherent vortices, as it has been described
in (Drobniak et al., 1998).
Production of oscillatory temperature variance realised by oscillatory heat

fluxes (term 4) was also decomposed into the axial and radial components
denoted as

POHF =
(
−ũxϑ̃

)∂Θ
∂x

)

︸ ︷︷ ︸
(POHFx)

+
(
−ũrϑ̃

)∂Θ
∂r

)

︸ ︷︷ ︸
(POHFr)

and presented in Fig. 4. One may note that this type of production is domi-
nated by radial component while the production performed by axial heat flux
is close to zero in all cross-sections. Negative values of the production term
(POHFr) mark the gain of oscillatory temperature variance with the maxi-
mum values in the middle of the shear layer r/D = 0.5. It should be noted
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Fig. 3. Radial distributions of axial, radial and total diffusion of oscillatory
component of temperature variance at the cross-sections: (a) x/D = 1.5,

(b) x/D = 2.5, (c) x/D = 4.0

Fig. 4. Radial distributions of axial radial and total production of oscillatory
component of temperature variance performed by oscillatory heat fluxes, at the

cross-sections: (a) x/D = 1.5, (b) x/D = 2.5, (c) x/D = 4.0
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that this radial location corresponds to the trajectory of vortex centres in the
analysed region (Drobniak et al., 1997).

The production term due to modulated heat fluxes could be decomposed
as follows

PMHF =
(
−〈u′xϑ

′〉
∂ϑ̃

∂x

)

︸ ︷︷ ︸
(PMHFx)

+
(
−〈u′xϑ

′〉
∂ϑ̃

∂r

)

︸ ︷︷ ︸
(PMHFr)

and their distributions are presented in Fig. 5. It may be seen from this figure
that this type of production is equally intense in axial and radial directions,
with the radial component slightly prevailing in the vicinity of r/D = 0.5
area what corresponds to the trajectory of centres of coherent vortices. All
the terms presented in Fig. 5 are positive what corresponds to the loss in the
budget of oscillatory temperature variance and one may find therefore that
this term is responsible for conversion of the oscillatory temperature variance
from periodic to random motion.

Fig. 5. Radial distributions of axial radial and total production of oscillatory
component of temperature variance performed by modulated heat fluxes, at the

cross-sections: (a) x/D = 1.5, (b) x/D = 2.5, (c) x/D = 4.0
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4. Budget of random component of temperature variance

Transport equation of random component of temperature variance in axi-
symmetric coordinates may be written as follows
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Particular terms of the above equation have been interpreted as:

(1) – Advection of Random component of Temperature Variance
(ARTV)

(2) – Redistribution of Random component of temperature variance re-
sulting from the inter- action between oscillatory temperature and
velocity U and pressure P fields (RRUP)

(3) – Diffusion of random component of Temperature Variance perfor-
med by Turbulent motion (DTVT)

(4) – Diffusion of random component of Temperature Variance perfor-
med by Oscillatory motion (DTVO)

(5) – Production of Random component of temperature variance per-
formed by turbulent Heat Fluxes (PRHF)
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(6) – Production of random component of temperature variance perfor-
med by Modulated Heat Fluxes (PMHF)

(7) – Redistribution of Random component of temperature variance
performed by Molecular Heat transport (RRMH)

(8) – Dissipation of Random component of Temperature Variance
(DsRTV).

Distribution of particular terms of Eq. (4.1) has been presented in Fig. 6.
Terms 2 and 8 could not be determined during the experiment and that is why
they were treated as a joint closing quantity. Term 7 presenting the redistribu-
tion of random temperature variance performed by molecular heat transport
(RRMH) was considerably smaller than the remaining terms and was not
shown in Fig. 6. The data presented in Fig. 6 reveal that convection, diffusion
and production of random temperature variance performed by random motion
dominate the budget. Convection is dominated by the subterm responsible for
the transport in x-direction in the way analogous to the one shown in Fig. 2
and because of the limited space, it was not shown here.

Fig. 6. Budget of random component of temperature variance at the cross-sections:
(a) x/D = 1.5, (b) x/D = 2.5, (c) x/D = 0.4
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Analysis of the diffusion term reveals that it may be divided as follows

DTVT = u′x
∂

∂x

(ϑ′2

2

)

︸ ︷︷ ︸
(DTVTx)

+u′r
∂

∂r

(ϑ′2

2

)

︸ ︷︷ ︸
(DTVTr)

and the particular subterms were presented in Fig. 7. As may be concluded
from Fig. 7, diffusion of the random component of temperature variance is
dominated by the radial subterm (DTVTr) which is practically equal to total
diffusion. It means therefore that the diffusion performed by random motion
(DTVT) reveals a character typical for a gradient process.

Fig. 7. Radial distributions of axial, radial and total diffusion of random component
of temperature variance performed by turbulent motion at the cross-sections:

(a) x/D = 1.5, (b) x/D = 2.5, (c) x/D = 4.0

Diffusion performed by oscillatory motion was also subdivided into two
subterms, i.e.

DTVO = ũx
∂

∂x

〈ϑ′2

2

〉

︸ ︷︷ ︸
(DTVOx)

+ ũr
∂

∂r

〈ϑ′2

2

〉

︸ ︷︷ ︸
(DTVOr)

and distribution of particular subterms as well as of total (DTVO) diffusion
was shown in Fig. 8. Contrary to the case discussed in the previous section,
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the diffusion process performed by oscillatory motion is realised by radial and
axial subterms as it is shown in Fig. 8. Total diffusion reveals a certain gain in
the inner and outer jet areas while in the central region r/D ≈ 0.5, the total
diffusion (DTVO) as well as its axial (DTVOx) and radial (DTVOr) compo-
nents have positive values what corresponds to the loss in the budget of the
random temperature variance. It may be also interesting to note that diffusion
performed by oscillatory motion is characterised by large amplitudes what se-
ems to be surprising, bearing in mind that diffusion is usually treated as a
process typical for random turbulence. The complex character of (DTVO) di-
stributions suggests that term (DTVT) redistributes the random temperature
variance along the axial and radial directions of the flow.

Fig. 8. Radial distributions of axial, radial and total diffusion of random component
of temperature variance performed by oscillatory motion at the cross-sections:

(a) x/D = 1.5, (b) x/D = 2.5, (c) x/D = 4.0

Production of random temperature variance performed by turbulent heat
fluxes (PRHF) was also subdivided into two terms

PRHF =
(
−u′xϑ
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)∂Θ
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︸ ︷︷ ︸
(PRHFr)
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and their distributions have been presented in Fig. 9. Production (PRHF) re-
presents gain in all cross-sections and it is dominated by its radial component
(PRHFr). Maxima of (PRHF) and (PRHFr) coincide with the maximum va-
lues of mean temperature gradient what is typical for all production terms
(El Sayed, 1995). One may expect therefore that term (PRHF) is responsible
for generation of random temperature fluctuations characteristic for turbulent
mixing processes.

Fig. 9. Radial distributions of axial radial and total production of random
component of temperature variance performed by turbulent heat fluxes, at the

cross-sections: (a) x/D = 1.5, (b) x/D = 2.5, (c) x/D = 4.0

5. Budget of oscillatory heat fluxes

In order to extend the description of the heat transfer processes performed
in the round jet characterized by the presence of coherent structures, the ana-
lysis of transport equation for oscillatory heat fluxes has also been performed.
Heat fluxes are directional quantities, which explain not only the mechanisms
but also they give information about spatial properties of the heat transfer
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processes. Preliminary analysis performed in (Reynolds and Hussain, 1972)
revealed that the amplitudes of circumferential heat fluxes were at least by
one order of magnitude smaller than the amplitudes of axial and radial fluxes.
That is why the present analysis has been confined to the transport equation
of axial and random components of oscillatory heat flux.

The equation of oscillatory heat flux transported in axial direction is writ-
ten as follows
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∂2ũx
∂r2
+
1

r

∂ũx
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where
(1) – Convection of Oscillatory Heat Fluxes (COHFX)
(2) – Redistribution of Oscillatory Heat Fluxes resulting from interac-

tion between the oscillatory temperature T and velocity U and
pressure P fields (ROHFTVPX)

(3) – Production of Oscillatory heat fluxes realised by longitudinal com-
ponent of mean velocity component (POHFVX)

(4) – Production of Oscillatory heat fluxes performed by mean tempe-
rature component (POHFTX)

(5) – Production of Oscillatory Heat Fluxes performed by longitudinal,
oscillatory velocity component (POHFuX)

(6) – Production of Oscillatory Heat Fluxes performed by oscillatory
temperature component (POHFtX)

(7) – Redistribution of Oscillatory Heat Fluxes performed by triple ve-
locity – temperature correlations (ROHFutX)
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(8) – Molecular Transport of oscillatory heat fluxes performed by Vi-
scosity (MTVX)

(9) – Molecular Transport of oscillatory heat fluxes performed by Ther-
mal Conductivity of the fluid (MTTVX).

Transport equation of the radial component of heat flux was written in the
following form
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(3)

−

−
(
−ũxũr

)∂Θ
∂x
−
(
−ũrũr

)∂Θ
∂r︸ ︷︷ ︸

(4)

+(−〈u′xϑ
′〉)
∂ũr
∂x
+ (−〈u′rϑ

′〉)
∂ũr
∂r︸ ︷︷ ︸

(5)

+

+(−〈u′xu
′

r〉)
∂ϑ̃

∂x
+ (−〈u′ru

′

r〉)
∂ϑ̃

∂r︸ ︷︷ ︸
(6)

+
∂

∂x

(
ũxũrϑ̃+ ũr〈u′xϑ

′〉+ ϑ̃〈u′xu
′

r〉
)
+

︸ ︷︷ ︸
(7)

(5.2)

+
∂

r∂r

[
r
(
ũrũrϑ̃+ ũr〈u′rϑ

′〉+ ϑ̃〈u′ru
′

r〉
)]
−
1

r

(
ũϕũϕϑ̃+ ϑ̃〈u′ϕu

′

ϕ〉+ 2Uϕũϕϑ̃
)

︸ ︷︷ ︸
(7)

−

− νϑ̃
(∂2ũr
∂x2
+
∂2ũr
∂r2
+
1

r

∂ũr
∂r

)
−
1

r

(2
r

∂ũϕ
∂r
+
ũr
r

)

︸ ︷︷ ︸
(8)

−

− aũr
(∂2ϑ̃
∂x2
+
∂2ϑ̃

∂r2
+
1

r

∂ϑ̃

∂r

)

︸ ︷︷ ︸
(9)

= 0

where particular terms have been denoted as:

(1) – Convection of Oscillatory Heat Fluxes (COHFR)
(2) – Redistribution of Oscillatory Heat Fluxes resulting from interac-

tion between the oscillatory temperature T and velocity U and
pressure P fields (ROHFTVPR)

(3) – Production of Oscillatory heat fluxes realised by longitudinal com-
ponent of mean velocity component (POHFVR)

(4) – Production of Oscillatory heat fluxes performed by mean tempe-
rature component (POHFTR)

(5) – Production of Oscillatory Heat Fluxes performed by longitudinal,
oscillatory velocity component (POHFuR)
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Fig. 10. Budget of oscillatory heat fluxes of longitudinal component, at the
cross-sections: (a) x/D = 1.5, (b) x/D = 2.5, (c) x/D = 4.0

Fig. 11. Budget of oscillatory heat fluxes of radial component, at the cross-section:
(a) x/D = 1.5, (b) x/D = 2.5, (c) x/D = 4.0
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(6) – Production of Oscillatory Heat Fluxes performed by oscillatory
temperature component (POHFtR)

(7) – Redistribution of Oscillatory Heat Fluxes performed by triple ve-
locity – temperature correlations (ROHFutR)

(8) – Molecular Transport of oscillatory heat fluxes performed by Vi-
scosity (MTVR)

(9) – Molecular Transport of oscillatory heat fluxes performed by Ther-
mal Conductivity of the fluid (MTTVR).

The instantaneous temperature and velocity time series allowed to calcu-
late the values of all the terms of Eqs (5.1) and (5.2) except term 2 of both the
above equations, which was treated as a closing quantity. Fig. 10 and Fig. 11
present the oscillatory heat flux budgets for axial and radial components which
were calculated in three consecutive cross-sections x/D = 1.5, 2.5 and 4.0.
Budget of the heat flux transported in the longitudinal direction (see Fig. 10)
is dominated by convection (COHFX) and production performed by mean
velocity (POHFVX). One may also note that transport of radial component
of the oscillatory heat flux (see Fig. 11) is under the prevailing influence of
convection (COHFR) and production performed by temperature (POHFTR)
and this observation is valid in all cross-sections. Following the analyses per-
formed in previous sections, the convections terms of Eqs (5.1) and (5.2) have
been decomposed into the axial and the radial directions according to the
formulae:
— for axial heat flux component

COHFX = Ux
∂

∂x

(
ũxϑ̃
)

︸ ︷︷ ︸
(COHFXx)

+Ur
∂

∂r

(
ũxϑ̃
)

︸ ︷︷ ︸
(COHFXr)

— for radial heat flux component

COHFR = Ux
∂

∂x

(
ũrϑ̃
)

︸ ︷︷ ︸
(COHFRx)

+Ur
∂

∂r

(
ũrϑ̃
)

︸ ︷︷ ︸
(COHFRr)

Distributions of the above terms have been calculated and presented in
Fig. 13 and Fig. 14 where one may note that in all cases, the analysed con-
vection is dominated by terms corresponding to the axial direction. This ob-
servation agrees well with the results of previous analyses performed for the
temperature variance and it may be treated as a typical property of all the
convection processes. When looking for characteristic features of both the co-
nvection processes, one may note that in the first cross-section x/D = 1.5 the
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Fig. 12. Radial distributions of axial, radial and total advection of axial oscillatory
heat fluxes at the cross- sections: (a) x/D = 1.5, (b) x/D = 2.5, (c) x/D = 4.0

Fig. 13. Radial distributions of axial, radial and total advection of radial oscillatory
heat fluxes at the cross- sections: (a) x/D = 1.5, (b) x/D = 2.5, (c) x/D = 4.0
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total and axial convection terms have the same sign corresponding to a gain

in case of ũxϑ̃ flux and to a loss observed for ũrϑ̃. In the last cross-section
analysed (see Fig. 12c and Fig. 13c) one notices the same character but the
opposite contributions of axial and radial components of the oscillatory heat
flux.
In the cross-section x/D = 2.5 where the coherent vortices achieve a maxi-

mum coherence (El Sayed, 1995), both convection terms presented in Fig. 12b
and Fig. 13b oscillate between loss and gain. It may also be interesting to
note that maximum amplitudes of both the convection terms change signifi-
cantly along the jet axis while at the same time, the maximum amplitude of
(COHFR) term is on the average two times larger than the one revealed by
(COHFX) term. The next interesting observation concerns the role of viscosity
in diminishing the spatial coherence of vortex structures. This phenomenon
is seen most clearly in cross-section x/D = 4.0 where the convection terms
become evidently distorted. The inner jet region r/D < 0.5 is characterised
by the considerable amplitude of convection terms while in the outer region
r/D > 0.5 this amplitude tends to zero. It may be expected that viscous shear
forces destroy the spatial coherence of the vortex in the outer jet region and
result in the decrease of convection of oscillatory heat fluxes. It should however
be noted that this tendency is more clearly visible in the case of the (COHFX)
term because the radial extent of (COHFR) distribution is larger in the outer
jet region (see Fig. 12 and Fig. 13 for comparison). The next important process
is the transport of oscillatory heat fluxes in the production, which has been
the decomposed as follows:
— for longitudinal heat fluxes

POHFVX =
(
−ũxϑ̃

)∂Ux
∂x︸ ︷︷ ︸

(POHFVXx)

+
(
−ũrϑ̃

)∂Ux
∂r︸ ︷︷ ︸

(POHFVXr)

— for radial heat fluxes

POHFTR =
(
−ũxũr

)∂Θ
∂x︸ ︷︷ ︸

(POHFTRx)

+
(
−ũrũr

)∂Θ
∂r︸ ︷︷ ︸

(POHFTRr)

As can be seen in Fig. 14 and Fig. 15, both these terms reveal a very simi-
lar behaviour in all consecutive cross-sections. In particular, their maximum
amplitude occurs in x/D = 2.5 cross-section what means that both these
processes are closely correlated with the spatial coherence of organised vorti-
ces. Both these distributions are dominated by longitudinal components what
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Fig. 14. Radial distributions of axial, radial and total production of axial, oscillatory
heat fluxes realised by longitudinal component of mean velocity component, at the

cross-sections: (a) x/D = 1.5, (b) x/D = 2.5, (c) x/D = 4.0

Fig. 15. Radial distributions of axial, radial and total production of radial,
oscillatory heat fluxes performed by mean temperature component at the

cross-sections: (a) x/D = 1.5, (b) x/D = 2.5, (c) x/D = 4.0
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results from the obvious relations

∂Ux
∂r
≫
∂Ux
∂x

∂Θ

∂r
≫
∂Θ

∂x

One may also note that both these distributions become nonsymmetric due to
the action of shear forces what is most clearly visible in the outer jet region
at x/D = 4.0 cross-section (see Fig. 14 and Fig. 15).

6. Conclusions

Within the research presented here, an analysis of temperature variance
and oscillatory heat fluxes has been presented. The computed distributions
of particular terms allowed to obtain a quantitative information about the
intensity of heat transfer processes.
Experimental limitations did not allow to calculate all the quantities ap-

pearing in the transport equations and that is why some terms had to be
treated as closing quantities. One should note however that relatively smooth
distributions of the closing terms in all budgets suggest a good accuracy of
the analyses.
The results of the research performed allowed to formulate a considerable

amount of observations but their number is certainly too large to be discussed
here. However, one may state that the transport processes of temperature
variance and oscillatory heat fluxes are under a distinct influence of coherent
structures.

Acknowledgements

The work has been funded by the State Committee for Scientific Research (KBN,

Warsaw) under the Statutory Funds BS – 03 301/98.

References

1. Drobniak S., 1986, Coherent Structures of Free Axisymmetric Jet, Monograph
Series No. 1, Technical University of Częstochowa

2. Drobniak S., Elsner J.W., 1986, Coherent Structures and their Relation to
Instability Processes in a Round, Free Jet, In: Advances in Turbulence, Springer-
Verlag, Berlin



Coherent structures and transport... 907

3. Drobniak, S., Elsner J.W., El Sayed Abou El Kassem, 1997, The In-
ternal Structure of the Column-Mode Coherent Vortex in Free Axisymmetric
Jet, Journal of Theoretical and Applied Mechanics, 35, 2, 347-368

4. Drobniak S., Elsner J.W., El Sayed Abou El Kassem, 1998, The Re-
lationship Between Coherent Structures and Heat Transfer Processes in the
Initial Region a Round Jet, Experiments in Fluids, 24, 225-237

5. El Sayed Abou El Kassem, 1995, An Analysis of Heat Transfer Processes in
the Coherence Region of a Round Free Jet, Ph.D. Thesis, Technical University
of Częstochowa

6. El Sayed Abou El Kassem, Drobniak S., Elsner J.W., 1998, Experimen-
tal Analysis of Internal Energy Transport in the Presence of Coherent Motion,
International Journal of Heat and Mass Transfer, 41, 3, 635-643

7. Elsner J.W., Drobniak S., 1994, Transport Processes Realized by Organized
Vortex Structures, Proc. XI National Conference on Fluid Mechanics, 2, 19-24

8. Elsner J.W., Klajny R., Drobniak S., 1992, Contribution of Coherent
Structures to Heat and Mass Transport in the Round, Free Jet, Proc. VIII
Symposium of Heat and Mass Transfer, 149-156

9. Favre-Marinet M., 1986, Structure Coherentes Dans un Jet Ronde Excite,
These Doct. Sc., USTMG et INPG, Grenoble

10. Favre-Marinet M., 1989, Coherent Structures in a Round Jet, Proc. of the
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Struktury koherentne i transport wariancji temperatury oraz

oscylacyjnych strumieni ciepła w strudze kołowej

Streszczenie

W pracy przedstawiono wyniki eksperymentalnej analizy procesów transportu
ciepła zachodzących w początkowym obszarze osiowosymetrycznej strugi swobodnej
w obecności struktur koherentnych stymulowanych polem akustycznym. Przyjęto, że
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parametrami, przy pomocy których można w sposób jakościowy i ilościowy opisać
zachodzące w przepływie procesy są wariancja temperatury i oscylacyjne strumienie
ciepła. Wariancja temperatury może być bowiem traktowana jako miara intensywno-
ści transportu ciepła, podczas gdy strumienie ciepła opisują jego przemieszczanie się
w obszarze przepływu. Uzyskane na drodze eksperymentalnej przestrzenne rozkłady
obu wielkości fizycznych, uzupełnione fizykalną analizą ich równań transportu, po-
zwoliły na rozpoznanie procesów przemieszczania się ciepła w przepływie w obecności
struktur koherentnych.
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