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The paper presents numerical calculations of dynamic contact problems
in the presence of friction and large deformations. Since this kind of
boundary-value problems exhibit a strong nonlinearity, the increments
of all contact-dependent terms are discussed in details. Different friction
models are considered.
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1. Introduction

In the paper a dynamic unilateral contact problem of elastic bodies sub-
ject to large displacements and large deformations in terms of friction will be
considered. The formulation and setting of proper contact conditions in this
kind of boundary-value problems was discussed by many authors (see He et
al., 1996; Klarbing, 1995; Klarbing and Bjorkman, 1992; Laursen and Simo,
1993a,b; Laursen, 1994; Szefer, 1997, 1998; Szefer et al., 1994; Curnier et al.,
1994). Friction (also in the presence of large deformations) was discussed in
a common work edited by Raous (1988). The large deformation contact in-
volved with an impact was presented by Wriggers et al. (1990), and Zhong
(1993). Difficulties connected with the determination of the unknown contact
zone and the lack of the existence theorem for larger friction coefficients (see
Jarusek, 1999) constitute, that the dynamic frictional contact of bodies in the
presence of finite strains belongs furthermore to the recent problems of the
contact mechanics. In the present paper we focus our attention on the nu-
merical analysis demonstrating results for different models of friction (among
them also for p > 1). The paper is organized as follows: we start with a general
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formulation of the problem in a possibly convenient form, which is stated in
Section 2. Next, we pass to the numerical statement connected as well with the
strong nonlinearity as with the space and time discretization of the problem.
Examples of numerical calculations for kinematic and dynamic excitations are
given in Section 4. Concluding remarks summarize the results of the paper.

2. Formulation of the problem

Consider an elastic body B* which, due to external body forces with the
density b and the prescribed surface tractions p, is in contact with another
target body B~ (which may be elastic or rigid).

Denote by Br and B; the reference and current configurations of the bo-
dies, respectively (Fig.1). Let {0XX} and {0z}, i, K = 1,2, 3 stand for the
material and spatial coordinates of the particles X € Bg. Denote furthermore
by 0B}, 0BY, these portions of the boundary of Bg, where displacements and
tractions are prescribed, and by I, the unknown in advance (except the parti-
cular cases) contact zone (I, must be found through the deformation process).
Thus, the most convenient statement of the dynamic initial-boundary-value
problem in terms of the large deformation takes the form

/Tu{é'ui};( dVg = /pnbiéui dVp + /pngui dSg — /pRﬁi(S'L{.é dVp +

VR Vi Sk Ve
+ f teidu; dI Vou € Y°
e (2.1)
wi( X, t0) = uoi(X ™) (X, o) = voi (X ™)
where
Vr = B} U By, Sr = (8B UBBR)\ I,
S% = 8BE* U 8BR" U = {0u: du=0 onS%}
and
e — components of the I Piola-Kirchhoff stress tensor

Tr which satisfy the angular momentum conditions
Tki(djk +uj k) = Tri(bir + vi k)

tei — components of the contact stress vector .

u;,0u; — components of the real and virtual displacement vectors
u, 0u
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0By

Fig. 1.

More details about the derivation of the virtual power principle in terms
of large deformations and a large displacement contact one can find in the
papers of Laursen (1994), Laursen and Simo (1993a,b), Szefer et al. (1994).
Determination of the contact domain I, and the contact stresses t. needs
setting of the contact conditions. For this reason, a distance (or gap) function
must be introduced. Denote by I;” € dB;" and Iy € 0B; these parts of
the boundaries, which potentially may come into contact at the instant ¢ (see
Fig.1). Assuming large displacements, let us define

gn(z",2,) = (&' —z,)n" (z,) (2.2)
where
z, - orthogonal projection of z¥ € I, -t onto I, z, = projz™
n~ - outward unit vector normal to I at z,

The projection vector z, results from the solution of the system of equ-
ations

[t - (X% (%), t)] - (2.3)
where ae- OX ax
- ox- .
%= ox= da TV 5

are basic vectors tangent to the surface I’ described by the parametric equ-
ations z* = z(X%(0%),1), a = 1,2.

Equations (2.3) can be solved iteratively, only.

To formulate the Signorini unilateral contact conditions the normal com-
ponent of the Cauchy stress vector t. must be calculated

th=t-n" =(Tn") -0~ =tjn;n; = J 1 Tki(0ix + ujg)n; g (2.4)
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Here J = det(d;; + u; %) > 0, and T is the Cauchy stress tensor.
Then we have

\%

gn 0 tn, 20 tngn 2 0

i.e.

>0=>1t,=0
In . (2.5)
gn=0=>1,>0
The friction conditions require calculation of the tangent component of t.,
which is equal

t,=t.—t,=t.—t,n” =t.—(t.-n")n" =
(2.6)
=(1-n"®n )t,=PJ 'Tr(l+ Vu)n~
The second-order tensor P =1—n" ® n~ maps any vector t. to its projection
on the plane tangent to the surface 7 at the point .
Hence, the Coulomb-Amonton friction law reads

t;| = pty, =ty = v = —|vrler (2.7)
er = 2L
=

on I., where v is the sliding velocity

vr =& -z, )a,) =" —v7)— [T —v7)-n]n =

=1-n"@n )vt—-v )=PT —9")

and g = p(ty, |vr|) — friction coefficient.
The multivalued relations ¢, = t,(g5,) and tr, = tra(vre) described by
(2.5) and (2.7) are obviously replaced by their regularizations

0 gn >0
lne = tr. = _Mtn¢
—g“f 9n <0 ’
(2.8)
v
T lvr| > ¢
v |
¢£ = v
5 lvr| < e
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Instead of (2.5) and (2.7), the compliance model is sometimes used (see
Oden and Martins, 1985). Then it is

. 0 gn >0
tﬂ:CNQ-rN g+ = 50
In an 2

(2.9)

vr
tr = —crgl T —

lv7|

Taking (2.4)-(2.8) or (2.9) into account we obtain the virtual power of the
contact response (the last term in (2.1))

0L, = [tciéui dI’ = ftnﬁun ar +/tmf5uq~a ar (2.10)
I I: I'e

where

dup, = (0wt —du")n~

dure = (0u™ — du~)a, in the local coordinate system (o =1,2) or

Sur; = (6ut — du~)e; in the global system {0z'}i =1,2,3.

Since the constitutive equation for the nonlinear elastic material is rather
given by the II Piola-Kirchhoff stress tensor S in the form

oW
S =S = F(E) (2.11)

where W = W (E) is the elastic potential and

1
E=(Exr) = E(RK,L +ur Kk + UNKUN,L) (2.12)

is the Green strain tensor, the relation between S and Tx must be introduced
Tki = Skr(dir +uir) (2.13)

The nonlinearity of (2.1) causes that the incremental approach is
obviously used. Thus, considering the sequence of configurations
By = Bgr,Bi,...Bn,Bn41,..., By and introducing the expressions
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WV = uN + Au TRt =TR + ATy

ATgr = AS(1 + Vu) + SV(Au) AS = C'AE

AE — % [V(4u) + V7 (4u) + V(Au)u +uTV(4u)]

N+l = ¢} + Aty th =t + Atr

Aty = Atpe = —édgn = -—i—Aun gn <0 (2.14)
Aty = Atpe = —(Aptn + pAin)d. — ptn A,

0 "UT[>E
LA e
VT = pN + Ab pRtt=pN +Ap

(C* - means tangent Hooke’s coefficient tensor) we obtain from (2.1) (taking
(2.10) into account) the linearised (with respect to the increment Au) equation

f ATy : 6V(Au) dVg = f prAbg - 5Au AV + / App - §Au dSg, —
Vi Sr

Vi
(2.15)

- /pRAﬂ -0Au dVy + /Atnﬁﬂun al’ + f Aty - 6Aup dI' + 6L AT,
Vi Ie Ie

where the term

SLar, = [ (%"- - thn) Ap - néAuy, dI + / tv - ApdAuy, ds +

I, ar,
(2.16)

+/(% — thT) A -néAur dI" + f trv - ApdAur ds

I, ar.

is the increment of the virtual power which results from the increment (varia-
tion) of the contact zone I, (see Szefer, 1997, 1998).

Here Ag is the increment of the contact domain I, k¥ — mean curvature of
the surface I'., v — outward unit vector tangent to the surface I'. and normal
to its boundary OI.
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Equation (2.15) constitutes the basis for numerical analysis of the contact
problem.

3. Discretization. Numerical solution of the problem

To solve initial-boundary-value problem (2.1) with contact and friction
conditions (2.8), incremental formulation (2.15) has been applied. To solve
the problem in increments the space discretization by means of the finite-
element technique will be used. Thus, we approximate the solution u;(X,?)
(and Au; respectively) 7 = 1,2,3 in terms of the shape functions Nj,(X) and
nodal displacements ¢,(t), @ =1, ..., N, as

N
wi(X,t) = Y Nia(X)ga(t) = [Nia)(4a]
a=1

(3.1)
Au; = [Nia]|g0] Au = NAg
Hence, it will be (respecting the tensor notation)
Vg = U = [Néa] [é’a] P= [P%J] - [(1 -n ®n_)fj]
vy =Pt —v,) vri = [Py][Njolldg — da]
Avri = [Fyj][Njal[Ady — Adg ]
Aii; = [Nig)[Adq] Au, = Au-n~ = N;jn Agen;
1 1

Aty = "EA'U% = ‘_ENianiAQQ

U 1
th = —— = —=NjqNigq

3 €
Aty = —(Apty + pAb)g, — ptndd, = 32)

¢
= —Aptnd, + §¢5NjanjAQa — i—”ﬂvr

¢s = Qe¥7 = f:f’s[Péj][Nja] [QEL_ - qc_g}

1
@ |1JTl > &
¢’5 - 1
- lvr| <€

po it — a5
Eijaana[Pik][Nkﬂ][qg ~ 45

tri = —ptndevri = —
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The corresponding increments of the considered tensors take the form

AE

AS

ATgr

1
= [A-EMN] = -Q—[NM&,NAqa +

+ NnaMmAgo + NrkamA@aNKs,Ngs + Nk mAqeNKa N AGe] =

NytaN + Nyayr  NgamNrgn ++NrgmuNia N
— [ O’., 2 [£7 + @, -‘31 2 ﬁ &, qB] [Aqa] —

(B8 nal + (B Nap)ll951) [Adal = [BisnallAda] = B Ag

= [ASk1] = [Cxrmn|[AEMN] = [CkLMn][Buna)lAga] = CB* Ag

= AS(1+ Vu) +SV(Au) = (3.3)
= [ASki)[dir + Niy,.y] + [Sk L][Nia,L][9e] =

= [CkLMN|[BMNollAdall0ir + Niy,10y] + [SkL][Nia,L][Aga] =

= ((CxLa](Birnalldir + Niy,pay) + [Sx1)[Nia,r1) [Aga] =

= {Oxemm)BYnalBiz) + (Crcoaen] (IBS W asllasl Bir + Niypas]) +
+ Sk1)[Nia,z] }[Ade) = [ATxia][Aga] =

= (CB"1 + CB** + SAN)[Aq,]

where the following matrices have been introduced

Numa,N + Nyam
B = [By,) = [l T —NaM ]

NL) _ p(NL) 1 [Nka,MNkpg N+ Nrgm + Nka,n

B (g) = [Bisnal = ((Biwal + [Biinagllus]) =B’ + BN g

C=[CkrLmn]

VN = [Niq,L] = [6ik NKa,L] =

Hoix] ( [NKa,L -|2- NLQ,K] + [NKa,L ; NLa,KD _ I(BO + BA)
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* ok Kk NL
B™ () = [Biynair] = [Bf'vmlg][qﬂ]wu‘ + Niy,1.y] =
= BVEg(1 + VNg) = BNL)g + BIVL)gBRYg
The finite element approximation of the virtual terms gives

§Au = [Njo)[6Aga) 0V (Au) = [Nig k[0 Agp) (5.4
5 Mun = [Njpm;)[6Ags) SAur = [Py|[Njsl6Agf — 64g5]

Substituting now all obtained expressions (3.1)-(3.4) into integrals (2.15), and
taking into account the known result, that the multiplication of symmetric
and skew matrices are equal to zero, we obtain

ASU = f AT : 6V (Au) dVg = / ATkiaAqaNig,k6Aqg dVg =
Vr VR

_ / (CB°1 + CB** + SYN)VNAgAg dVi —
Vr

- f (CB°VN + CB* VN + SYNVN) dVi|Agal[6Aga] =
Vr

/ (B"TCBY + BT CB* + SYNVN) dVi AgiAq =
Vr
= [Ko + K(nr)(q) + Ks(g)]AgdAgq

AL = /pRAbeAu dVR+prR5Au dSg =
Vi SR

= prAbiNm(SAqa dVg + /ApmNig5AQ5 dSr =
Vi Sk

= (/ pRAb;:Nw dVR -+ / ApRiNz'ﬂ dSR)5AQ5 =
VR SH_
= [AF§™|[6Agg] = AF**'5Aq

ASLp = ] prRAWSAu dVp = f PRNiaAjaNigdAqp dVR =
Vr Ve
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- [ f pPrNiaNig dVR][AGa][0Ags] =
Vi
= [Moup][Ado)[6Ags] = MAgs Agq

ASL, = /Atnéﬁun dI’ = —E/Neamﬁ%NjﬂnﬁA% I’ =
I Ie
1
= [15 / NiaNjgnin; dI'][Aqqa][0Aqs) =
I.
= (K [Aqal[6 Ags) = Koy AgdAg

ao1r = [ Atrsdur ar = [{-AutugelPs| Nl - da)+
I:

T gés[})ﬁj] INjy )65 = 4y 1NjanjAge —
_ iﬁfﬂ[Pﬁj][Nja] 46 ~ Adg) b Pl Nisll6Ag) - 6Aq5) I =

(- f Py utaNjaPik Nicg 4T )i — i) +

l;¢'s /RJNJF}«NK{:L”KPNNE,G dF)[ - Q—y ][AQOL]

{
(

+ (- /‘“’t”P NjaPikNics dI")[Ad} — Aiz] )b Ag) — 6Aq5] =
{1K8] + [K2F)[Aga] + [K35l[Ad — Adz)}[0AgS — 6Ad5) =
(K

u(@) + Kur (@) Ag + Kr(Aq+ - Aq7) }[5Aq* - 34q7]

§Lap, = { / (%’i - 2ktn)4¢-n*[Nmm] dr +
I,

+ [ tnl - A@|N;ign;] ds}&Aqﬁ +

are

! {/P(% a %tT) Ap-n~PijN;g dI’ +
Ie
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+ f Ptrv - ApP;jNjs ds}[mgg —0Aqg] =
are
= [F§"|[0Aqp] + [FST[0Aq — 6Aqg] =

= Fy, - 0Aq+Fy,, - (6AqT —0Aq7)

The following matrices have been introduced in the above
Ky — stiffness matrix

Ko — / BOTCR dvy
Ve

Ky, - stiffness supply matrix resulting from the strain nonlinearity
Knp — f BTCB™ dVp
Vr
Ks - stiffness supply matrix resulting from the stresses
Ks = / SYNVN dV
Vr

M - inertia matrix

M= j prNTN dVy
Vi

Ko — stiffness supply matrix resulting from the normal contact stresses
1
Kew = == | NiaNjgnin; dI
Ie
K, - friction matrix resulting from the friction coefficient
K= =b [ P utaNiaPucNis AL - d2)
Ie
K7 — stiffness supply matrix resulting from the friction

ﬂ . - —
Knr = E/‘i’sﬂjNhNKanKP“Nw(q? ~4y)dr
Ie
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Kr — damping matrix resulting from the friction

Ky = “;f“ Py NjoPix Nis dT’
I,

F,,. — contact domain residual matrix resulting from the normal contact stres-
ses

Fo, = / ("Zi" n) Nign;Apgng dI’ + ftnN£67LiVjA(PJ s

FC 8rﬂ

F,, — contact domain residual matrix resulting from the friction

ot
/ Pk ﬂ - 2ktTK)P33N55Acpm; dl + f Piktri Py N;ppo1Ap, dS
are

AF®t _ external force matrix

AF®®t — /pRNAb dVgr +[NApR dSgr
Vi

Substituting all the obtained expressions into virtual power equation (2.15)
and taking into account the fact that it must be fulfilled for all virtual incre-
ments §Aqg, 8 = 1,..., N, where N is the global number (after aggregation)
of the unknowns, we finally obtain the matrix equation

MAg + Kr(q)Aq + [Ko + Kni(g) + Ks(g) + Kur (@) + Ken]Ag = (35)
= AF* + K,(q) + Fp, (@) + Fyr (4)

The matrix K,z is non-symmetric since it results from the terms containing
product of the displacements normal and tangent to the boundary velocities.
The matrices Ky (q) and Kg(g) follow from the presence of large deforma-
tions. The matrix K¢y is responsible for the normal contact whereas K and
K, represent the influence of friction. The vectors F, and F,, . represent these
parts of reaction of the system, which are induced by the changes of the con-
tact zone during the deformation. So, equation (3.5) contains all terms which
characterize the properties of the dynamic frictional contact of bodies under-
going large deformations. The solution to system (3.5) must be accompanied
by a procedure of determination of the current contact zone I'*. This can be
done by the following iterative approach: in each time step one considers two
separate problems:
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stage I — assumes that the tangent stresses tr are known (from the previous
iteration). This makes it possible to solve (3.5) in a much more simple
form

MAG+KrAg+ (Ko +Kyr + Ks +Kon)Ag = AF +F, + AR; (3.6)

where AR; denotes the sum of all known terms depending on friction.
Solving (3.6), we obtain Agq and hence At,, t, and I..

stage II - having I, and %, obtained we look for the new tr by considering
the equation

MAG + KrAg + (Ko + Knr + Ks)Ag = AF® + ARy (3.7)

The term AR;; means now the sum of all terms known from the previous
stage.

Both procedures of solving are being repeatedly carried out until the dif-
fernces between Ag’ and Agq’’ (and hence the corresponding zones I'Y, I'/T)
for both stages are small enough (with the demanded accuracy). In such a way
we omit the difficulties connected with the asymmetry of the matrix K,7. This
fact enables us to use the standard procedure of solving the linear system of
equations (with symmetrical matrices). Then we pass to the next time step
t + At. To solve (3.5) numerically, different time integration methods can be
used. We decided to apply the implicit Newmark method with the obviously
used parameters o = 0.25 and 8 = 0.5. Thus, it is convenient to write equ-
ation (3.5) in the form

Mg+ 4t + Kb Ag + K* Ag = FEEA + R + Mgt — F (3.8)

ext

where K* is the global stiffness matrix
K* = K+ Ky + Ks + Knr + Ken
and R* - residual column-matrix resulting from the increment of contact terms
R* =K.q+Fy, +Fy,

Knowing that for the instant ¢ (i.e. for the configuration By) equation (2.1)
must be fulfilled, one can write

Q' =F,, — Mgt +F. +F, (3.9)

where the members
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Q" = [Q] = f TkiNig,x dVRr Fr=[Fj]= f triPijNjg dI
Vr I.

FL = [F2) = f taNigns dI
I

result directly from (2.1) after substituting (3.4).
Hence, governing equation (3.8) finally takes the form

Mqt+At+K%Aq+KiAq: Fil-tAt"i'Ri +F§r‘ +F$1 "Qt (310)

suitable for direct application of the Newmark formula.

4. Numerical examples

4.1. Rubber block undergoing kinematic excitation

Consider a rubber block a X b = 0.48 x 0.5 m resting on a rigid foundation
(Fig. 2). For simplicity, the material of the rubber is treated as an elastic one
with Young’s modulus £ = 5000 KN/m?, Poisson’s ratio v = 0.45 and density
p = 1.7-10%kgm?>. The block being in equilibrium at the initial instant #g, is
assumed to be excited by the prescribed vertical and horizontal displacements
ugy = 0.05m, up; = vz, voz = 1 m/s on the upper edge (see Fig. 2). The side-
edges are free of loads. Three friction models have been taken into account:

e Coulomb-Amonton’s law with the constant but sufficient large friction
coefficient p = 1.0

e Coulomb’s model with the variable friction coefficient according to the
Grosch-Schallamach formula p = po(tn/E)Y?, po =1

e compliance model with the parameters

8
my =1 mng cy = 104

16
my =2 mT:? CN:108 CTZC%QEUQ
my =3 mng ey = 102



DYNAMIC ANALYSIS OF LARGE DEFORMATION CONTACT... 249

50 74 98

Fig. 3. Discretization by FE
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Fig. 5. Contact stresses at node 50 for different friction models
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Fig. 6. Contact stresses at node 98 for different friction models
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Numerical results are shown on Fig. 4-7, which demonstrate the behaviour
of the system during the time interval [0-0.07] s. The plots of contact stresses
at node 50 show stiction at the beginning and then separation for all conside-
red models of friction. This character of stress distribution coincide with the
deformation of the block (Fig.4). It is to be emphasized, that the zero values
of the friction at the initial instant ¢y = 0 (see Fig. 5 and Fig. 6) results from
the initial condition.

Point 98 being in permanent contact with the foundation (see Fig.4 and
Fig. 6) demonstrates a stick-slip process (Fig. 7).

4.2. Vibration of a concrete block resting on an elastic stratum

A block with dimensions a x b = 1.0 x 0.5m is loaded by forces as it is
shown in Fig. 8.

The following data have been used:
— for concrete

Ep =2.3-10% i v =0.16 p=22-10° ke
m? m3
— for the foundation (soil)
N k
By =23-10" = v=103 p=18-10°—

and
Py =300KN P, =80KN

The initial conditions: the static frictionless indentation under F, and own
weight, u(X,0) =0.

Friction for the Coulomb model with g = 1.2.

Fig. 11 shows an evident swaying process of the block evoked by the short-
time load P;. The middle point C demonstrates a stable vertical displacement
with a value which results from the initial state. The vibrational character of
motion of the system is visible also from the contact stress diagrams in Fig. 12
and from the phase plane plot in Fig. 13.

5. Conclusions

The numerical statement and analysis of the dynamic large deformation
contact problem with friction have been considered. To omit the difficulties
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Fig. 8.
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Fig. 9. FE mash and time dependence of the horizontal load
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Fig. 10. Indentation of the block at time ¢ = (0.094s
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Fig. 11. Vertical vibrations of nodes of the contact zone
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Fig. 12. Normal contact stresses of nodes
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Fig. 13. Phase plane plot for the horizontal displacement of node A
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connected with the asymmetric matrix K, resulting from friction a two-stage
iterative procedure has been proposed. This approach has proved to be effec-
tive in determining the unknown zone. The numerical examples show that
larger values of the friction coefficient (z ~ 1) require more time-consuming
calculations. The compliance model of the contact response has proved to be
more convenient in the calculations in comparision with the Signorini unilate-
ral conditions and with the Coulomb law. It is also worth mentioning that the
allowance for large deformations is suitable not only in the case of high elastic
materials (example 4.1) but also for small deformations (example 4.2), where
the nonlinear description leads to more accurate results (the displacements are
smaller than those which results from the linear description).
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Dynamiczna analiza kontaktu cial sprezystch przy duzych deformacjach

Streszczenie

W pracy przedstawiono analize numeryczng dynamicznych zagadnien kontakto-
wych w obecnosci tarcia dla duzych deformacji. Poniewaz problemy tego typu od-
znaczajy, si¢ silng nieliniowodcig rozwazono szczegélowo przyrostowy opis wszystkich
czlonéw kontaktowych. Rozpatrzono rézne modele tarcia.
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