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The aim of this contribution is to propose a new averaged 2D-model
of non-homogeneous Reissner-Mindlin elastic plates with one-directional
periodic structure. So far, the averaged 2D-models of periodic plates
were formulated on the basis of the known asymptotic homogenization
theory in the framework of which the effect of repetive cell size on the
overall plate behaviour is neglected. To remove this drawback the to-
lerance averaging of the plate equations was applied, cf. Wozniak and
Wierzbicki (2000). It is shown that the aforementioned cell size effect
plays an important role not only in dynamic problems (like for plates
with two-directional periodic structure) but also in the quasi-stationary
and stability problems. The obtained results are compared with those
derived for the plates having a periodic structure in two directions as
well as for the plates described in the framework of homogenization.

Key words: medium thickness plates, periodic structures, modelling,
length-scale effect

1. Introduction

By the plate with a uniperiodic structure we mean a plate having a non-
homogeneous material structure and/or variable thickness which are periodic
(with the period 1) only in one direction parallel to the plate midplane. In
the perpendicular direction both non-homogeneous plate material properties
as well as its thickness in a general case can be arbitrary, cf. Fig. 1. It is also
assumed that the period [ is very small as compared to the smallest cha-
racteristic length dimension of the plate midplane and is large as compared
to the maximum plate thickness. In the subsequent analysis it will be also
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assumed that the plate under consideration can be described, with a suffi-
cient accuracy, in the framework of the Reissner-Mindlin elastic plate theory
(the medium thickness plate theory). Hence, in the known equations of this
theory we shall deal with functional coefficients, which are periodic and can
be noncontinuous and highly oscillating with respect to one Cartesian coordi-
nate (say, the z;-coordinate), along which the plate structure is periodic. The
above coefficients can also depend on the zs-coordinate, as shown in Fig. 1,
or to be independent of z5, which takes place in many problems met in the
engineering practice, cf. Fig. 2.
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Fig. 2.
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The direct application of the Reissner-Mindlin plate equations to the ana-
lysis of special problems of uniperiodic plates is rather difficult due to the
periodic, possibly noncontinuous and highly oscillating form of the coefficients
depending on the z-coordinate. Thus, the problem arises how to formulate an
approximate 2D-model of the uniperiodic plate described by equations with
a certain averaged coefficients which are independent of ;. This problem
can be solved by using the homogenization theory of partial differential equ-
ations with periodic coefficients, Bensoussan et al. (1980), Sanchez-Palencia
(1980), Caillerie (1984), Kohn and Vogelius (1984); homogenized models of
the Reissner-Mindlin plates were studied by Lewinski and Telega (2000) and
Lewinski (1991, 1992). However, in order to apply the homogenization as a
tool of modelling of periodic structures in mechanics, we have to introduce the
heuristic assumption that the overall behaviour of the periodic structure under
consideration does not depend on the periodicity cell size. On this assumption
we can apply the limit passage with the cell length dimensions to zero and
to assume that the homogenized equations derived from this passage describe
the problem we deal with. On the other hand, in many physical problems we
are interested how the periods of inhomogeneity influence the behaviour of a
microperiodic structure on the macroscopic level. To answer this question we
shall replace the homogenization by a more general modelling approach called
the tolerance averaging of partial differential equations with periodic coefhi-
cients, cf. the book by Wozniak and Wierzbicki (2000). So far, this method
was applied in mechanics of periodic composites, cf. Wozniak (1993a,b, 1995,
1999a,b), Wagrowska and Wozniak (1996), Wierzbicki et al. (1996, 2001), in
the modelling of Kirchhoff’s plates, Jedrysiak and Wozniak (1995) and Jedry-
siak (2000a,b), and the wavy-type plates, Michalak et al. (1996) and Michalak
(1998, 2000), as well as in the continuum modelling of lattice-type structures,
Cielecka et al. (2000).

The main aim of this contribution is to adapt the method of tolerance
averaging to the modelling of the medium thickness uniperiodic plates. It
will be shown that the resulting averaged equations after the limit passage
[ — 0 lead to the homogenized equations. Hence, from the point of wiew of
mechanics, the tolerance averaging constitutes a certain generalization of the
homogenization. In the general case, the form of obtained averaged equations
for uniperiodic plates is different than that derived by the tolerance averaging
of the Reissner-Mindlin equations for plates with a periodic structure in two
directions, given by Baron and Wozniak (1995). It will be also shown that the
effect of the periodicity length on the overall behaviour of the plate plays an
important role and cannot be neglegted in many problems. In the forthcoming



10 E. BARON

paper the obtained plate equations will be applied to the analysis of dynamic
stability and they can also find applications to many other problems described
within the framework of the Reissner-Mindlin theory of uniperiodic plates.
Throughout the paper the subscripts «, 3, ... (4,7,...) run over 1,2 (over
1,2,3). The superscripts a,b,... and A, B runover 1,2,...,n and 1,2,...,.N
respectively. Summation convention holds for all aforementioned indices.

3

2. Formulation of the modelling problem

Let 0zjzozs be the orthogonal Cartesian coordinate systemn in the physical
space; subsequently we shall also use the denotations z = (x1,29), z = z3.
The region {2 occupied by the undeformed medium thickness plate under
consideration will be given by 2 = {(z,z) : 6 (z) < z < §7(z) for almost
every x € II} where II = (0,L;) x (0,Ls) and 6 (z) < 0, 6" (z) > 0 are
functions which have the period [ with respect to the coordinate z; such
that | < min(L;, Ly). We also denote &(z) = §*(z) — §~(z) and assume
| > maxd(x), ¢ € II. The plate material is assumed to be elastic and the
components A;;z; of the elastic modulae tensor as well as the mass density p
depend on z, z and are periodic functions (with the period [) with respect to
the x coordinate. It is also assumed that z = const are elastic symmetry
planes. Subsequently, we define

Capys = Aapys — Aap33Aszys(As3az)” Bap := Au3p3
and
5+ ot
J1,5:——-/‘,«';»(12: J::/zzpdz
5 5-

The plate is loaded in the direction of the x3-axis by the surface loading
pt(z), p~(z) applied to the boundaries z3 = 67 (z), z3 = 6 (z), respectively,
and by the constant body force . The problem under consideration within
the framework of the elasticity theory is assumed to be governed by the strain-

displacement relations

1
€ij = U(ij) T 5U3,iU3,j (2.1)

the stress-strain relations

Oaf = 035 + CopysEqs 003 = 2B,pEga3 (2.2)
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where o, 5 1s the know prestressing, and by the variational equation of motion

. . oF
/[Uiﬁ@j dzdz + / /p*&ﬂ@ dzdz =
: )/

1T~ g
(2.3)
gt
- / ] pbus dzdz + / [p"* uz(z,0") + p us(x, 5_)] dzx
1 s- 1

where ;5 = U ;) + u3,(iUs,5) , which holds for every virtual displacement field
u;. We shall also take into account the Reissner-Mindlin kinematic assumption

Ue(Z, 2, 1) = zvg (2, t) us(z, z,t) = w(zx,t) (2.4)

where w(z,t) is the deflection of the plate in the z3-axis direction and v, (z,t)
are indepedent rotations. Combining (2.1)-(2.4) and denoting

ot 5+
Gapys = /EQC'QI375 dz Dygs = / B, dz
- 5~
o
Ngg = ] Oop dz p=p" —p" +bu
6_

after linearisation and under assumption that N,gz = 0, we obtain the
following system of equations for w and 9,

(Guﬁwé'ﬁ(w,d))};f — Dypidg — ‘]"'Si& =0
(2.5

Jvczﬁ‘w,ag + [Dmg('ﬂg + ’w”@)]}u —pw+p=>0

representing the Reissner-Mindlin 2D-model of a medium thickness plate. The
coefficients Gopys, Dag, J, p in (2.5) are periodic functions of the argument
x) with the period [; in the general case they can also depend on 9. In the
subsequent analysis, functions like these will be called uniperiodic. Hereafter,
any function which depends only on 2 and has the period [ will be referred
to as periodic.

The modelling problemn we are going to solve is to derive from (2.5) a sys-
tem of equations with coefficients which are independent of z;; moreover,
some from these coeficients should depend on the period [. Bearing in mind
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the comments given in Section 1 the above modelling problem cannot be for-
mulated within the framework of the homogenization and will be solved by
using the tolerance averaging procedure. To make this paper self consistent in
the subsequent section, following Wozniak and Wierzbicki (2000), we outline
the basic concepts and assertions of this procedure.

3. Mathematical preliminaries

Let JF(II) be asystem of functions defined in II (which can also depend on
time t), which are treated as unknowns in the problem under consideration; it
is assumed that to every F' € F(II) there is assigned a certain unit measure.
Moreover, let ¢(-) be a mapping which assigns to every F € F(IT) the
positive number ep = e(F') which characterises a certain admissible accuracy
related to calculations of values of the function F(-) or to the measurements of
physical quantities (displacements, strains, stresses, etc) represented by F(-).

For any pair z, y from the domain of F(-) we shall write F(z) ~ F(y)
if and only if |F(z) — F(y)| < €F, it means that the values of F(-) at =z
and g can be treated as indiscernible in the problem under consideration.
The constant ep is called the tolerance parameter (related to the values of

function F') and the symbol ~ represents a certain tolerance relation which
is the reflexive and symmetric binary relation defined on the set R* of real
numbers endowed with a certain unit measure.

Let us denote A = {z € R*: z; € (=1/2,1/2), =, = 0} and assume
that there is known the triple 7 = F(II),€(:), A. Let DF stand for a certain
function F'(-) € F(II) as well as for all its derivatives (including time deriva-
tives) which occur in the problem under consideration and hence, also belong
to F(II). The function F(-) will be called slowly varying (with respect to 7),
F(-) € SV(T), if for every z!, z such that |z} — z7| < 2] and every z the
condition |DF(z|,z9) — DF(z!,z9)| < ep holds in the whole domain of the
definition of every DF'.

Let use define A(z) =z+Aand II4 = {z € I : A(z) C IT}. The function
@(+) € F(IT) will be called periodic like (with respect to T), () € PL(T),
if for every z = (z1,z2) € Il there exist a periodic function ¢z of 1
such for every (y1,22) € A(z) the condition |pz(y1,z2) — @(y1,22)| < €y
holds. It means that in every subset A(z), € IT4 of II, the function ¢ can
be approximated by a certain periodic function ¢z(-) which will be called a
uniperiodic approximation of ¢(-) in A(zx).
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We shall define the averaging operator (-) setting

T +U2

(f) ={f)(=) = / flyr,@a) dy, = (xy,29) € II4

I —!/2

where f(-) is an arbitrary integrable function defined in II, which can also
depend on time ¢. If f(-) is uniperiodic then (f)(-) is independent of z;.

Let p be an integrable positive valued uniperiodic function. The function
Y(-) € F(IT) will be called oscillating (with the weight p), ¥(-) € PLP(T) if
P(-) € PL(T) and {(py)(z) = 0 for every x € Il .

It can be proved that if ¢(-) € PL(T) then there exist the unique decom-
position

o() =¢°() +¢*() (3.1)
where ¢°(-) € SV(T), and ¢*(-) € PLP(T) where ¢°(-), ¢*(-) will be
referred to as the averaged and oscillatory parts of ¢(-), respectively; here
°(z) = (pp)()[{p}(22)] !

If fis an arbitrary integrable uniperiodic function, F' is a slowly varying
function, ¢ is a periodic-like function and A(-) is a differentiable uniperiodic
function such that max{|h(y)|: y1 € A} <[, then it can be proved that the
following relations hold

(fF)(z )é<f>F(s) for &= (|f|)er

(fo)(@) & (fu)(@) for &= (|f|)e,

(f(hF),)(&) ~ (fFh,)(z) for &= (|f[)(er +lery)

(F(h) 1) (@) & —(feoh1)(z) for e=ep+lepy  F = (hfo)l!

(3.2)
For the detailed discussion related to the concept of tolerance and its ap-
plications the reader is referred to Wozniak and Wierzbicki (2000).

4. Modelling approach

The tolerance averaging of equations (2.5), leading to equations with coef-
ficients which are independent of zi, is based on two assumptions. The first
1s the heuristic conformability assumption which states that the unknown ki-
nematics fields w(-), 9o(+) in (2.5) conform to the uniperiodic structure of the
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plate. It means that these fields (together with their derivatives) are periodic-
like functions: w(-) € PL(T), 9,(-) € PL(T). The second assumption states
that in the course of modelling the left-hand sides of relations (3.2) can be ap-
proximated by their right-hand sides; this assuinption was referred by Wozuiak
and Wierzbicki (2000) to as the tolerance averaging assumption.

From the conformability assumption and (3.1) we obtain

ﬁa(';w% t) — 19?};(': o, t) + !93(121'5)

,w(': Ly, t) - ,wo(_= I, t) + 'LU*(‘, L2, t)
where

9, (o, t) = [(J)(22)]"HTa) (-, 22, t)
(4.2)

w® (-, 2a,t) = [{u) (2)]~ {pao) (-, 22, 1)

are slowly varying functions and 97,(-, z9,t), w*(-,z9,t) are oscillating func-
tious with the weights J, u, respectively. Subsequently, in order to sunplify
the calculations, in equations (2.5) we shall approximate the term N sW,08
by Ngzw’,s neglecting the effect of oscillations w* on the stability of the
plate (this effect will be studied in a separated paper). Substituting the right-
hand sides of (4.1) into (2.5), and averaging the resulting equations over A(z),
x € I1,, after applying the tolerance averaging assumption we obtain the ave-
raged equation of motion

[(Gu;375>19E7,6) + (Gﬂﬁ’raﬂz"}r,é))],ﬁ - (Dﬂﬁxlﬁ% + w?ﬂ) -

—(Dog(0% +w's)) — 43(’(.553:0
(Dap (93 +wip)) — (J) (4.3)

Nopwiap + [(Dap) (95 + wip)] o + [(Dap(9p + wip))] o — (u)i® + (p) = 0

Now, let us restrict the domain of definition of functions in equations (2.5)
to an arbitrary but fixed interval A(z), £ € II4. Multiplying these equations
by the periodic test functions v, (-) and 7(-) of the argument y,, taking into
account decomposition (4.1) and using the tolerance averaging assumption.
after some transformations we formulate the following periodic cell problem:
for the fixed z = (z;,29) € 114 find the uniperiodic functions ¥} (-, z9,1),
wy(-, z9,t) of the argument y; € [z, — /2,2 + /2], satisfying the conditions
(JUz,) () =0, (pwi)(xz) =0 and the variational equation
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(va,lGalvéﬁ;(%ﬁﬂ - <'Ua(Ga2'yc5"9;(—r,5)),2> +
+(vaDag(Vzs + w3,p)) + (vaV3a) =

- "(’Ua,lGal'ré)ﬁ?y,é) + ('Ua(GaQ'yé}ﬂ?%a))Q - (’UaDaﬁx"?Ei + 'w?ﬁ) (4.4)

(n1D15(025 + wg g)) — (N[Dap(Vz5 + wgz p)],2) + (Mpilig) =

= Ngg(mwS,s — (n,1D15) (95 + w) + (n[Dag) (95 + ws)] 2 + (np)

which holds for arbitrary periodic functions vy, 7 of y; such that (Juvs)(2) =
0, {un)(z) = 0. It has to be emphasized that in (4.4) we deal with values of
the functions 92, w® and their derivatives at the point & = (z1,x3), where
Ty, Ty are treated as parameters.

Averaged equation of motion (4.3) and the periodic cell problem related to
variational equation (4.4) constitute the fundamentals of the applied modelling
approach.

The approximate solution to the periodic cell problem will be obtained by
the discretization of the cell [z, —1/2,z; + {/2] and applying the Galerkin
approximation. To this end let us introduce two systems of the linear indepen-
dent periodic shape functions h%(yy), a = 1,...,n and ¢4(y), A =1,...,N,
such that (Jh®)(z) =0, (zg*)(z) = 0; in the special case the above systems
of functions can coincide. In the simplest case the shape functions can be assu-
med as continuous linear ones similar to those applied in the one-dimensional
finite element method but satisfying the aforementioned conditions. For the
detailed discussion of the cell problem the reader is referred to WozZniak and
Wierzbicki (2000). The approximate solution to the periodic cell problem will
be assumed in the form of the finite sums

ﬁ;a (yla T2, t) = ha(yl)@?x (xa t)
(4.5)
* . ~ A A
wg(y1,22,t) = g7 (y1)W (2, 1)
where y; € |21 —1/2,2) +1/2], £ = (z1,29) € 4, and ©%(z,t), WA(z,1) are
the new unknowns and the approximation = depends on the number of terms

on the right-hand sides of (4.5). It follows that for the unknowns 9% (-), w*(-)
we obtain the approximation formulae

‘19;(27, t) = h”(ml)(-)g(:c, t)
(4.6)
w*(za t) gQA(xl).[')[’”j‘(a::ﬂ t)
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only if ©2(-,z9,t) and WA(-,z9,t) are slowly varying functions
5 (s w2,1), WA(, 22,1) € SV(T) (4.7)

Substituting the right-hand sides of (4.5) into (4.4), using (4.7) and as-
suming that wve = h®(y1)@y, 7 = gA(yl)WA, where @), W™ are arbitrary
constants, after some transformations we obtain equations for the unknowns
@4(-), WA(-), which also depend on the unknowns 95(-) and w°(-). Simi-
larly, substituting the right-hand sides of (4.6) into (4.3) by means of (4.7)
we obtain equations involving 95(-), w°(-) and ©%(.), WA(:) as the basic
unknowns. Obviously, in both cases the tolerance averaging assumption has to
be taken into account. Assuming that h%(z;) € O(l), g%(z,) € O(l) we shall
also introduce the functions

Eﬂ-:l—lha §A :z—].gA

the values of which can be treated as independent of the period [. Setting
aside rather lengthy calculations, we can prove that the resulting system of
equatious can be represented by the equations of motion

Mg — Qo — (J)92 =0

(4.8)
NogwShs + Qaja — ()i +p =0
by the following system of equations for ©%, W4
(TRR)EY + M2 —IM2, =0
(4.9)

PluggPyW P + Q* —1Q4 — INgs(g* s — 1(g*p) = 0
and by the constitutive equations
Mog = (Gapyo)9fy 5 + (4 Gap1s)Of + (A" Gapas)Of
Qo = (Dag)(®5 + w) + Uk  Dup)O% + (g7 Dot )W + UG Daa) W5
My = (h%h%Ga11s)O5 + (h1Goaays)9(, ) + LRGP Gal%)@g,i! +
+ (AR’ Dap)0% + LR Dog) (95 + w's) +
+ UR'g1Da)W A + 2 (R"g* Dag) Wy (4.10)

—a7h
M§ = (R'hYGu215)03 + (R Gunys)95, 5y + LR R G nzs) O3
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Q" = (g1g5D1)WE + (g1D15) (95 + w) + g h" D) 05 +

+ Ugig" D)W}

Q% = (G Da)WP + (g Dag) (95 + w%) + G h* Dag) O +
+ Ug'gPDa)W5h

Equations (4.8)-(4.10) have the physical sense only if the basic unknowns
are slowly varying functions

O, x2,), w(, 22, 1), OF(, @, t), WA, 22,1) € SV(T) (4.11)

Equations (4.8)-(4.11) together with formulae (4.1), (4.6) constitute the pro-
posed averaged 2D-model of a uniperiodic plate. It can be seen that the co-
efficients in (4.8)-(4.10) are independent of the z;-coordinate; at the same
time the dependence of some from these coefficients on the period [ is shown
in the explicit form. It means that (4.8)-(4.11) represent the averaged model
of the uniperiodic plate under consideration which depends on [, and hence
the modelling problem formulated at the end of Section 2 has been solved. If
the functions Gogys(-); Das(-), 67 (), 67(-) describing the plate under con-
sideration are independent of the zs-coordinate then the obtained model is
governed by the equations with constant coefficients.

Comparing equations (4.8)-(4.10) for the uniperiodic plates with the equ-
ations derived by Baron and Wozniak (1995) for the plates with periodic struc-
ture with respect to the coordinates z, and z9, it can be easily seen that the
averaged equations for the uniperiodic plates are more complicated. It follows
from the fact that the definitions of the slowly varying and periodic-like func-
tions introduced for the modelling of uniperiodic structures are less restrictive
than those introduced for the modelling of structures which are periodic in
two directions, cf. Wozniak and Wierzbicki (2000).

At the end of this section it has to be emphasized that the definition of
a slowly varying function depends on the mapping &(-), and hence on the
choice of the tolerance parameters assigned to the calculation of values of the
unknowns 95, w°, @%, W4 and their derivatives.

After obtaining the solution to the initial-boundary value problem for equ-
ations (4.8)-(4.10) the tolerance parameters can be determined directly from
(4.11). It means that conditions (4.11) can be treated as certain a posteriori
estimates of the solutions to the problems described by averaged equations
(4.8)-(4.10). It also means that the heuristic conformability assumption intro-
duced in Section 4 can be verified (within a certain tolerance) in every problemn
under consideration.
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5. Asymptotic model

By the asymptotic 2D-model of a uniperiodic plate under consideration
we shall mean the model derived from (4.8)-(4.10) by the formal limit passage
[ = 0. In this case, from (4.9) and (4.10) we obtain the following system of
linear algebraic equations for the functions @%(-), W4

(% h%Ga115)05 + (h Gaiys)DE, 5) = 0
(5.1)
(9795 D1YW P + (g1 D) (95 + w) =0

It can be shown that the linear mappings determined by (h% h‘:’lelg)

and (g:‘{ g:Ef Dy,) are invertible and hence the solutions to (5.1) are unique and
can be written in the form

O% = —K%(h" G 518)9¢
& '3 3L ki (756) (5-2)

W = —L4%(g5D1) (95 + wp)

where Kg%, LAB represent the corresponding inverse mappings. Thus, we

conclude that the unknowns ©%, W4 can be eliminated from the model
equations, and after the denotations

éa,@ry& = (Gaﬁf;«z‘}) - (h'?l Gaﬂ1u>Kﬁg(h,ble175> (5.3)
J.

Deg = (Dag) — (9 Da1) LB (g5 D)

we obtain the governing equations of the asymptotic model in the form of the
equations of motion

Maﬁ,ﬁ - Qo — <J>"9?x =0
(5.4)

Nopwips + Qaje — (1)W° +p =0
and the constitutive equations
Map = Gapra¥(y )
Q(x = Daﬁ(ﬁ% + 'wf’ﬁ)

If the functions describing the material properties and geometry of the
plate are independent of the zs-coordinate (i.e. they are periodic functions
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—~—

of z) then material modulae (5.3) are constant. In this special case G,g4s,
}505 represent a certain approximation of the well known effective modulae of
the homogenization theory. The aforementioned approximation is caused by
the approximate form of solutions (4.5) to the periodic cell problem; this cell
problem in the framework of the asymptotic approximation [ — 0 reduces
to the periodic cell problem of the homogenization theory provided that the
plate properties depend only on the z)-coordinate.

The advantage of the asymptotic model is the relatively simple form of
equations (5.4), (5.5) in coutrast to general equations (4.8)-(4.10) derived by
the tolerance averaging approach. However, in the framework of the asymptotic
model we are not able to investigate the effect of the periodicity cell size [
on the overall behaviour of the plate. Moreover, for the homogenized model
the initial and boundary conditions can be imposed only on the averaged
fields 7, w°® in contrast to the model derived in this contribution where the
initial conditions can be imposed also on the oscillations 97, w* by means of
formulae (4.5). It can be shown that by using the proposed model the boundary
conditions for the oscillations ¥, w* can be formulated on the boundaries
z9 = 0, 9 = Lo.

6. Conclusions

An averaged 2D-model of a nonhomogeneous medium thickness elastic
plate with a uniperiodic structure has been obtained using the tolerance ave-
raging procedure and is given by:

e equations (4.8)-(4.10) for the unknown functions 92(-), w°(-), @4(-),
WA('):

e physical applicability conditions (4.11), on the basis of which the to-
lerance parameters £(-) related 95(-), w°(-), ©(-), WA(-), and their
derivatives can be calculated,

e approximate relations (4.1), (4.6) for the displacements 9,(-) and w()
of the Reissner-Mindlin plate.

Equations (4.8)-(4.10) cannot be obtained as a special case of equations
derived by Baron and Wozniak (1995) for the medium thickness plates with
two-directional periodic structure. The equations for the uniperiodic plates
are more complicated. It follows from the fact that the conditions for the
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modelling of the uniperiodic plates are less restrictive than those introduced
for the modelling of the plates with two-directional periodic structure.

The main feature of the proposed model of the medium thickness unipe-
riodic plate is that it describes the effect of the repetitive cell size [ on the
plate behaviour.

Comparing equations (4.8)-(4.10) with equations of the asymptotic model
(5.4) and (5.5) it can be easily seen that the tolerance averaging model enables
analysing a large class of problems. In the framework of the asymptotic model
we are not able to investigate the effect of the repetive cell size on the plate
behaviour. For this model the initial and boundary conditions can be imposed
only on the averaged fields 3(:), w°(-) in contrast to the model derived
in this contribution where the initial conditions can be imposed also on the
oscillations 9%(-) and w*(-).

Examples of applications of the proposed model to some dynamic stability
problems will be given in a forthcoming paper.
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Modelowanie $redniej grubosci pltyt o strukturze uniperiodycznej

Streszcezenie

Celem pracy jest przedstawienie nowego, u$rednionego dwuwymiarowego mo-
delu niejednorodnych, $redniej grubosci (wg hipotezy Reissnera-Mindlina) liniowo-
sprezystych ptyt o jednokierunkowej strukturze periodycznej. Dotychczas zagadnienia
plyt tego typu byly najczeciej rozwigzywane metoda homogenizacji asymptotycznej.
Metoda ta pomija jednak wplyw powtarzalnego segmentu plyty na jej makromecha-
niczne wlasnoédci. Dlatego tez zastosowano metode uéredniania tolerancyjnego rownan
plyty, ktéra ten wpltyw uwzglednia, a opisana jest np. przez Wozniaka i Wierzbickiego
(2000). Wplyw wymiaru powtarzalnego segmentu pltyty odgrywa istotng role nie tylko
w dynamice, ale rowniez w niektorych zagadnieniach quasi-stacjonarnych i zagadnie-
niach stateczno$ci. Uzyskane réwnania poréwnano z réwnaniami wyprowadzonymi ta
samg metoda modelowania dla ptyt o éredniej grubosci o dwukierunkowej strukturze
periodycznej oraz z modelem zhomogenizowanym asymptotycznie.
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