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A combined variant of the BEM called in literature the BEM using di-
scretization in time consists in an approximation of the time derivative
appearing in Fourier’s equation by an adequate differential quotient. The
next steps of mathematical manipulations and also the numerical algori-
thm are similar to a typical boundary element approach. In the paper the
method is applied to numerical computations concerning a non-steady
heat diffusion in homogeneous and non-homogeneous spherical domains.
In the final part of the paper the results of computations are presented.
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1. Introduction

At first, the well known linear Fourier equation for 3D domain oriented in
Cartesian co-ordinate system is considered

() NPT (w,t)

e=1 e

= aV?T(z, 1) (1.1)

where © = (z1,22,23), a = A/c is the heat diffusion coefficient (A is the
thermal conductivity, while ¢ is the specific heat per unit volume), T, ¢ denote
temperature and time, respectively. On the outer surface I' of the system
boundary conditions are given, the initial condition is also known.

In this place a time grid with a constant step At must be introduced

0=t"<t'<P<. <t/ '<t/ <. <t <o (1.2)
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Considering the transition t/~! — ¢/ one transforms equation (1.1) to the
form (Curan et al., 1980; Sichert, 1989)

T(x,th) — T(x, /1)

. aV*T (x,t’) (1.3)
or
1 1
2 fy_ f f=1
VT (x,t)) tT(w t )+ tT(a: ') =0 (1.4)

Using the weighted residual criterion one obtains (Brebbia et al., 1984;
Majchrzak and Mochnacki, 1995)

/[VZT(m,tf) - ﬁT(m,tf) + ﬁT(az,tf_l)} Ud)d2 =0 (L5)
(0]

where U™ is a fundamental solution, in particular to the considered task it is
the following function (Brebbia et al., 1984)

1 d 2
U*(d) = — — d= e — &) 1.6
@ = 7o (- =) Yle—gP (10
where & = (£1,£2,&3) is a point at which the concentrated heat source is
applied (Brebbia et al., 1984).
The function U* fulfills the equation
VAU*(d) — —U*( ) =—6(§ ) (1.7)

aAt

where §(&,x) is the Dirac function.
Using the 2nd Green formula and property (1.7) one obtains the WRM
criterion in the form

Etf——/U* q(z,t)) dIr =

where ¢ = —\9T/0n, Q* = —\OU*/on.
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2. Homogeneous spherical domain

According to the idea presented by Brebbia et al. (1984) (the basic variant
of the BEM and cylindrical object has been considered), equation (1.8) must
be integrated assuming that (2 corresponds to the interior of the cylinder,
while I to its surface. The similar approach has been proposed by Bokota
(1989) in relation to the spherical domain.

In the paper this concept is applied in order to obtain the boundary equ-
ation in the case of BEM using discretization in time.

The spherical co-ordinate system should be introduced

r1 =71 Cos psinf 2o = rsinpsin 6 T3 = 1rcosf (2.1)
Additionally, we assume the position of Cartesian system for which & =

(&1,€2,&3) = (0,0,¢) and then that the distance between this point and the
point considered x (see Fig.1) is equal to

d= \/T2 + &2 — 2r&cosb (2.2)

*34

Fig. 1. Spherical co-ordinate system

The surface and volume elements of the sphere can be expressed as follows
dI' = R?sin @ dfdy d2 = r?sin @ dfdedr (2.3)

where R is the radius of the sphere.
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Thus, equation (1.8) takes the form
2r

T(¢, 1) + R;q(R,tf) //U*(d) sin 0 ddp —

0 0
2

= B4y / / Q*(d) sin 6 dodp + (24)

0

or

2

T(E 1) + ST (€ Rya(R, A1) =

(2.5)
R? 7
= Tq*(év R)T(R,tf) + E /7"2T*(£,T)T(T’, tf_l dr
0
where
2w
T (¢, r) = U*(d)sin 6 dfdyp =
[l

1 77 1 ( 7’2—1-52—27*5), o 0

I R GET T A I I A
(2.6)

N B aoT*(&,r)
q(&r) = _)\T
After the integration one obtains
« VaAt Ir — | lr + €|
(&) = 2r¢ {exp(— aAt ) B exp(— aAt )}
(2.7)
* _ A A Ir—¢
¢"(€r) = STHEN) + @[sgn(r - exp(— ) -

\T+§\)}

— sgn(?‘+§)exp(— Y
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The boundary equation (for £ — R) is of the form (cf. equation (2.5))

R2
T(Rt7) + —-T"(R. R)q(R.t/) =
(2.8)

R2

(R, R)T(R,t)) +

R
2k f—1
Y, O/T T*(R,7)T(r,t! ") dr

The first stage of numerical computations consists in determination of the
boundary heat flux (if the boundary temperature is given) or boundary tem-
perature (if the boundary heat flux is given) — equation (2.9). In the second
stage the temperatures at the set of internal points & € (0, R) for time the t!
can be found on the basis of equation
R2
Tt = a6 RT(R ) —
(2.9)
R2

R
1
—SoTE Rya(R )+ — 0/ PTE DT () dr

The solution obtained constitutes a pseudo-initial condition for the next lo-
op of computations. It should be pointed out that the integral appearing in
equations (2.8) and (2.9) can be found using numerical methods e.g. Gaussian
quadratures. The integral over the first internal cell (r € [0, Ar]) is a singular
one, but in a numerical realisation it does not cause essential difficulties.

3. Non-homogeneous spherical domain

The non-steady temperature field in the domain considered is described
by a system of equations

I (r,t) _ am 0 [rzw} (3.1)

Ry1<r<Rpy: —_— = —
mot ST " ot r2 Or or
where m =1,2,..., M.
For r=R,,, m=1,2,..., M — 1 the continuity conditions in the form

0T, (r,t) ) 0T 41 (1, t)
L A0 W a2

_)\m - m
r =Ry o 0T o (3.2)
Tm(n t) = Tm+1(7", t)
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are given. For r = Ry and r = R); the boundary temperatures or boundary
heat fluxes are known. For the time ¢ = 0 the initial temperatures are also
given.

Equation (2.5) for the spherical shell r € (R,,—1, R,,) takes the form

m—1

2 R
Tt + [5=Tn (6 Ban(rt))] " =
i (3.3)
R’!?L
P (61 Ton (1t ) dr

[ r2 Rm 1

2 x f
(6 7) Tt >}Rm71 S—IY

m—1

Equation (3.3) can be written as follows

Tm(éa tf) + Qm(ga Rm)Qm(Rmy tf) - Qm(éa Rm—l)Qm(Rm—la tf) =

(3.4)
= hm(gaRm)Tm(Rmytf) - hm(éa Rm—l)Tm(Rm—lytf) = pm(g)
where
r? . 2 N
qm(§7T) = )\—Tm(f,T) hm(f,T) = )\_qm(fﬂr) (35)
while
T
_ 2% f—1
pal®) = —7 [ PTAEN Tt ar (36)
m—1
For £ — R} | and & — R,,_; one obtains a system of equations
[ gm(R;:,_lva—l) gm(R;:,_lyRm) 1 [ Qm(rm—latf) ‘| -
hm(R;ly—l_lyRm—l) -1 hm(R;:,_lyRm) Tm(Rm—lytf)
_ +(37)
hm(R;m Rm—l) hm(R;m Rm) —1 Tm(Rmatf)
[ pm(Rm—l) ‘|
+
pm(Rm)
or
l gﬁ g{% ‘| [ Qm(Rm—lytf) ] B l ﬁ % ‘| l Tm(Rm—lytf) ] 4 l pin ]
g5t 95 Gm (B, 1) 5 h T (R, t1) Py’
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The final system for multi-layers domain results from the coupling of equations
(3.8) by the continuity conditions given for r = R,,, m =1,...., M — 1.

For example, we consider the two-layer system (M = 2), Figure 2, and we
assume the boundary conditions for r = Ry and r = Ry in the form

r=Ry: q(rt)=q

3.9
r=Ry: qr,t)) = a[la(r,t)) — T>] (3.9)

where « is the heat transfer coefficient and T is the ambient temperature.
The continuity condition for » = R; can be written in the form (cf. equation

(3.2))

e t0) = ao(r 1) = /
e Ry {fh(at) q2(r,t)) = q(Ry, 1)) (3.10)

Tl(T,tf) = Tg(T,tf) = T(Rl,tf)

— - ‘ \ ] |

Fig. 2. Two-layer spherical domain

We put equations (3.10) to (3.8) for m = 1,2. Additionally, taking into
account the boundary conditions for » = Ry and r = Ry we have

[9%1 9t ] l @ 1 B l hir his 1 lTI(RO’tf) ] N l pi 1
93 9% q(Ry, 1) hy1 B T(Ri,t7) P
g It q(Ry,t7) hit his T(Ry,t!)
[ 9 I3 ] [ a[Ty(Ry, t/) — T ] [ h31 h3, ] l Ty(Ry,t)) ]

(3.11)
P}
;|

Well-ordered systems (3.11) can be written in the form
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T1(Ro,t))
—hh _hﬁ 9%2 f —9%1% + p%
Bl hl, gh T(Ri,t') | = abap + ph
—hgp —hao gao —9219p + P2
q(Ry,t))
(3.12)
T(Ry,th)
[ —hi gh gl — hi o(Ry 1) agl, T + pt
1 =
_h2 92 ag2 _ h2 ag2 oo _|_p2
21 921 22 22 Ty(Ro, 1) 22 2
Finally, one obtains the following system of equations
—hi; —hiy g1 0 Ty (Ro, t7) —ghqv + p1
—hjy  —hdy g3 0 T(Ry,t7) B — g5 qp + D
0 —hi g agiy—hiy q(Rq,t)) agf, T + pi
0 —h3 g3 g3y —h3y Ty(Ry, t7) g3, T™ + p3
at the same time
@(Ra,t)) = a[Ty(Ry, t/) — T (3.13)

The knowledge of boundary values for » = Ry, r = R; and r = R allows
one to find the internal temperatures at the time ¢/ using the equation (cf.
formula (3.4))

T (6,17) = gm (&, Rin—1)am(Rm—1,t") — g (&, Rn)@m (R, t7) +

+hm(§7 Rm)Tm(Rmy tf) - hm(fa Rm—l)Tm(Rm—ly tf) + pm(g)

The similar algorithm can be used in the case of non-zero thermal resi-
stance Z between sub-domains considered. Then the continuity condition can
be written in the form

o . - aTl (7’, t) o Tl (T7 t) - TQ(T7 t) _ aTQ(T7 t)
T = R1 : )\1 or == 7 == /\2 787‘ (3.14)
o f ! f
q(r,t)) = qa(r,t7) = q(Ry, 1
. 1(r, 1) = qa(r,t)) = q(Ry, t7) (3.15)
TQ(T, tf) = Tl(T, tf) — Zq(Rl,tf)

It should be pointed out that for Z = 0 the last condition takes form (3.10).
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The resolving system for the problem discussed can be written as follows

—hiy —his 9ia 0 T1(Ro,t/) 9110 + pi

—hy —hy gy 0 T(Rit!) | | —gha+pb

0 —hi gi +Zhi agi — hi q(Ri,t7) agiy T + pi
0 —h3; g5 +2Zh3; agsy—h3y | | To(Re,t)) agsT> +(p% )
3.16

at the same time
To(Ry1,t) = Ty (R, t)) — Zq(Ry, ) (3.17)

As previously, the internal temperatures in successive layers can be found using
equation (3.15).

4. Examplary computations

The first example (Szopa, 1999) concerns a boundary initial problem for
which a constant boundary temperature is known T(R,t) = T, while for
t=0:T(r,0) = 0. The problem can be solved in the exact way (Kacki, 1992).
Test computations show, that a very good accuracy of numerical solutions can
be obtained in a wide range of time steps, and they are practically the same
as the exact result for the dimensionless time interval AFy € [0.001,0.009].

In Figures 3 and 4 the heating curves at selected points (r = 0.05R,
0.5R, 0.75R, 0.95R) are shown. The first solution (Fig.3) was obtained for
R=0.1m, A\ =35W/(mK), ¢ = 4.875-10° J/(m3K), T, = 100° C, At = 4.17s
(AFy = 0.003) and At = 8.35s (AFy = 0.006), while the second solution
(Fig. 4) was obtained for R = 0.2m, A = 1W/(mK), ¢ = 1.75 - 10° J /(m3K),
T, = 100° C, At = 210s (AFy = 0.003) and At = 420s (AFy = 0.006). In
Figures 3 and 4 the exact solution is also marked.

The very good accuracy of numerical solution was also obtained in the case
of the Robin boundary condition: ¢(R,t) = «[T'(R,t) — T°°], where « is the
heat transfer coefficient and T is the ambient temperature.

In Figure 5 the numerical and exact solution (symbols) for R = 0.2, A =
35W/(mK), ¢ = 4.875-10° J /(m*K), o = 350 W/(m?K) (Biot’s number Bi=1),
T = 0, initial temperature 7'(r,0) = 100° C, AFy = 0.002, 0.003, 0.006, 0.01.
The cooling curves correspond to points 7 = 0.05R, 0.5R, 0.75R, 0.95R.

The next examples concern non-homogeneous domains. We consider a
sphere made from cast iron (R; = 0.05m) which is spread within a steel
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Fig. 3. Heating curves (example 1)
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Fig. 4. Heating curves (example 2)
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Fig. 5. Cooling curves

spherical shell of thickness 0.01 m. The initial temperature of the sphere (the
internal radius Ry = 107°m) is equal Tj9 = 20° C, while the initial tempe-
rature of the shell Thy = 300° C. The differentiation of initial temperatures
results from the need of assurring a good contact between the layers at the am-
bient temperature. The following thermophysical parameters of sub-domains
are assumed: \; = 53 W/(mK), ¢; = 3.917 - 105 J/(m*K), A\ = 30 W/(mK),
ca = 4.875 - 105J/(m®K). The heat transfer coefficient on the outer surface
r = Ry : a = 30W/(m?K), ambient temperature T> = 20° C. For r = Ry
the adiabatic condition is assumed. The interior is divided into 25 linear ele-
ments, time step At = 2.5s (Fig.6) and At = 1.25s (Fig. 7).

The results are compared with the numerical solution obtained using a
repeatedly verified FDM program (symbols in Figures 6 and 7). It should be
pointed out that the solutions are similar — a somewhat better agreement one
obtains for the time step At = 1.25s.

The last example concerns the problem of heat conduction in the domain
considered for the case of non-zero thermal resistance between the sphere and
shell. It is assumed that Z = const = 0.001 m?K/W. The geometry of the
domain and the values of thermophysical parameters are the same as previo-
usly. For 7= Ry : q(r,t) =0, for r = Ry : a = 30 W/(m?K), T° = 20° C, the
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Fig. 6. Temperature field in domain considered (At = 2.5s)
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Fig. 7. Temperature field in domain considered (At =1.255s)
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Fig. 8. The solution with thermal resistance (At = 1.25s)

initial temperatures Tyo = 20° C, T5g = 300° C. The results of computations
are shown in Figure 8. The continuous lines illustrate the solution obtained,
while the symbols the FDM solution. The agreement of these results is quite
satisfactory.

Summing up, the algorithms presented in this paper can be used in the
numerical modelling of heat conduction proceeding in spherical domains.
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Model numeryczny przeplywu ciepta w obszarach sferycznych
z wykorzystaniem kombinowanej metody elementéw brzegowych

Streszczenie

Kombinowany wariant metody elementéw skoniczonych, nazywany w literaturze

MEB, z dyskretyzacja czasu polega na zastapieniu wystepujacej w réwnaniu Fouriera
pochodnej temperatury po czasie odpowiednim ilorazem réznicowym. Dalsze etapy
przeksztalcen matematycznych i konstrukcji algorytmu numerycznego nie odbiegaja
od typowego podejscia charakteryzujacego klasyczna metode elementéw brzegowych.
W pracy metode kombinowana wykorzystano do modelowania nieustalonej dyfuzji
ciepta w obszarach sferycznych jednorodnych i niejednorodnych. W koncowej czesci
przedstawiono przyktady obliczen numerycznych.
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