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In the paper, theorctical fundamentals of stabilisation of a rotating shaft by
making usc of piezoclectric elements arc presented. The shaft is made of an active
piezoclectric fiber composite - the state-of-the-art structural material which has
just emerged in the field of "smart” engineering. Irrespective of the kind of
material the rotating shafts are made of, they exhibit flutter-type instability
brought about by the presence of internal friction. At a certain critical rotation
speed the system loses its stability and starts to perform self-excited vibrations.
The paper discusses a method protecting the shaft from such a phenomenon or,
at least, shifting it away by incorporation of piezoelectric fibers embedded in a
polymer matrix and eclectrodes bonded to each lamina of the active composite.
The constitutive equations of the laminate are derived and used in formulation
of equations of motion of the rotating shaft. The analysis of stabilisation reveals
that the desired effect can be achieved by application of three and more pairs of
the electrodes enabling generation of a constant bending moment regardless of
the rotary motion. Proportional and velocity feedbacks in the control system are
examined and compared. The critical threshold is determined by investigating
the eigenvalues corresponding to the governing equations linearised around non-
trivial equilibrium position. The equations themselves were carlier found via a
uni-modal Galerkin’s discretisation of the partial differential equations of motion.
The applied method proves to be cfficient as, an increase in the critical speed
by two and more times is observed after activation of the proposed stabilisation
method.

Key words: rotating shaft, stabilisation, active composites, piezoelectric elements

1. Introduction

Problems of rotor dynamics have been thoroughly examined by numero-
us authors but one of the most complete descriptions can be found in works
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by Muszynska (1971, 1976) and Tondl (1965), who paid attention to the mo-
delling and analysis of flexible shafts undergoing force, parametric, and self-
excitations. Those works give also a plenteous literature survey and feature
generality of non-linear models of rotor supports as well as models of internal
friction.

Rotating shafts, even when perfectly balanced, exhibit self-excited vibra-
tion brought about by internal dissipation due to internal friction, structural
friction in articulated joints, etc. The instability occurs while exceeding the
critical rotation speed (over the first eigenfrequency corresponding to flexural
vibration of the given shaft as a beam), and is manifested by sudden growth in
the amplitude of transverse vibration for a slight change of the rotation speed.
It is to be emphasised that the mentioned critical speed is definitely different
from that classically understood and being related to the resonance of rotors
undergoing excitation by an unbalanced inertia (Przybylowicz, 1999b; Kurnik,
1988).

From the point of view of design of fast-rotating shafts, the critical speed
(the dynamic instability threshold) is of the greatest importance. The critical
threshold can be passively controlled, to some extent, by a suitable choice
of structural parameters of the given shaft system. Equally important is the
behaviour of the shaft in the neighbourhood of the critical point. The self-
excited vibration can be of soft or hard character. In the first case the growth
of the vibration amplitude is continuous, in the latter one exceeding of the
criticality leads to a rapid jump of the amplitude. The phenomenon of the
near-critical amplitude hysteresis is observed in that case.

The last several years have been characterised by an animated interest of
scientific researchers and engineers in the so-called smart materials and struc-
tures that, in contradistinction to the classical ones, can adapt their properties
to varying operating conditions according to the given algorithm. Smart sys-
tems combine mechanical properties with non- mechanical ones, most often
with electric, magnetic, thermal, or sometimes optical fields of interaction.
The most popular smart structures employ elements controllable by ecasy-to-
transduce electric signals. Predominantly, piezoelectric elements made of lead
zirconate titanate or polyvinylidene fluoride are applied.

The concept of piezoelectric stabilisation of rotating shafts was described
by Przybytowicz (1999b), who investigated the efficiency of making use of the
bending action of piezoelements glued around the perimeter of the considered
shaft. The idea of actuation was adopted from formerly elaborated approaches
toward control of the bending modes in tubes and pipes with axi-symmetric
cross-sections (Przybylowicz, 1996). In the following papers the author puts
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emphasis on the non-linear response of a rotating shaft with piczoelectric sta-
bilisation system, as it occurred that the derived equations of motion contain
coetlicients corresponding to active control next to the non-linear terms, which
do not vanish for zeroed bifurcation parameter, i.e. rotation speed, and which
is the necessary condition of Hopf’s theorem of the existence of a bifurcating
solution, see Iooss and Joseph (1980), Kurnik (1988) and Przybytowicz (1999a,
2000)

Recent developments in the field of smart structures and appearance of
active composites have opened new possibilitics to the control of rotating sha-
fts. Composite shafts, due to low specific weight, anisotropic properties, and
excellent torsional stiffness are very competitive materials with respect to the-
ir traditional steel counterparts. The application of active piezoelectric fibers
makes them even more competitive. Main features of the piezoelectric fiber
composite (PFC) shafts and the concept of their actuation was signalled by
Przybylowicz (2001a,b, 2002). The use of PFCs to rotating columns subject
to follower loads and their efficient operation was confirmed by Kurnik and
Przybytowicz (2001, 2002).

In this paper, fundamentals of active control of rotating shafts made of
smart laminates containing piezoelectric fibers will be given in detail. The
theoretical grounds as well as earlier considerations on the criteria for designing
optimal shaft structures by Kurnik (1995a,b) and Tylikowski (1980, 1993) will
be very helpful in reaching this goal.

2. Constitutive equations of active composites with piezoelectric
fibers

2.1. Introduction

The integration of piezoceramic (PZT) fibers within composite materials
represents a new type of material evolution. Tiny PZT fibers of 30 um in dia-
meter can be aligned in an array, electrodized with interdigital electrodes and
then integrated into planar architectures. Such architectures are embedded wi-
thin glass or graphite fiber-reinforced polymers and become piezoelectric after
being poled (Sporn and Schoencker, 1999). The idea of combining piezocera-
mics with polymers occurred in the 1980s (Newnham et al., 1980) and several
years later it evolved towards smart composite materials. Piezoelectric Fiber
Composites (PFCs) have a large potential for controlling. Matrix and ceramic
combinations, volume fractions, and ply angles contribute to the tailorability
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of PFCs (Bent et al., 1995), which make them applicable to structures requ-
iring highly distributed actuation and sensing. Manufacturing technologies of
PFCs have been adopted from graphite/epoxy manufacturing methods.

Composites with embedded active fibers are more resistant to damage and
less obtrusive in active control. Active composites can essentially be formed
from two types of piezoelectric fibers: short and long ones. Short-fiber com-
posites have very high frequency response but generally produce low displa-
cements. They are used for ultrasonic applications. On the other hand, long
fibers can be used to create large sheets or lamina which produce extensional,
bending and twisting motion of the composite. Such structures are suitable
for low and mid-frequency vibration and acoustic control applications.

Looking for even more pronounced clectromechanical efficiency of acti-
ve composites, Xiang-Dong Chen et al. (1998) reported that special fabrica-
tion techniques and poling procedures considerably affect the final piezoelec-
tric coefficients. They observed that appropriate solvent treatment in cera-
mic/polymer lamina increases the dsg constant by up to 5 times with respect
to virgin specimens. Admittedly, their work dealt with PZT powder 3 um par-
ticles sustained in a dielectric gel polymer (PVDF) instead of PZT fibers.

The integration of laminated composites with piezoelectric materials en-
joys considerable practical interest. A study on the effect of stretching-bending
coupling in PFC plates was investigated by Wang et al. (2000), who concen-
trated on the problem of proper placement of sensor/actuator pairs to achieve
robust vibration control and avoid accidental instabilities. Control of coupled
bending and twisting in PZT /epoxy laminas was discussed by Aldraihem and
Wetherhold (1997). A shear-deformable beam theory was used by the authors
to approximate the bending and twisting behaviour. By making use of FEM
analysis they confirmed that the PZT/Ep layers rapidly and effectively sup-
press such a vibration mode in beam structures.

2.2. Theoretical grounds

Consider a single PFC lamina with piezoelectric fibers poled along the
normal direction by manufacture as shown in Fig. 1.

In accordance with the constitutive equations of piezoelectricity (Nye,
1985; Damjanovic and Newnham, 1992), the stress-strain-electric field rela-
tion is

€i = 8§05 + d:JTEj (2.1)

where ¢; denotes the strain, s;; — compliance coefficients, d;; — electromecha-
nical coupling constants, E; — electric field. Writting (2.1) explicitly
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Fig. 1. Geometric configuration of active fibers and the poling direction
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where the form of the compliance matrix {s;;} as well as the electromechani-
cal coupling {dj;} is typical for lead zirconate titanate (PZT) piezoceramics
incorporated with active composites. The superscript ”*” is used to emphasise
that PZT elements operate together with a polymer matrix they are embed-
ded into. In fact, pure PZTs exhibit the same effect in both perpendicular
directions: dsz; = dga2.

Naturally, equations (2.1), (2.2) describe a general case, in which the given
active material can be used. As the considered single lamina undergoes an
in-plane stress-strain state and, furthermore, the electric field is applied along
the 3rd axis, equation (2.2) assumes a simpler form

&1 IS]] 512 0 (o] 0 0 d§1 0
gg | = | 812 s22 0O oy | +10 0 d;Q 0 (23)
g 0 0 S66 T6 0 0 0 E3
or simply
e=So+dE (2.4)

where s11 = 1/Y1, S99 = I/Yg, 812 = —Vlg/Y;, 866 = 1/2012 with Y;, Y5
being Young’s moduli in the principal anisotropy axes 1, 2, G2 — Kirchhoff’s
modulus, and vj2 — Poisson’s ratio. Transforming (2.3) in such a way so that
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the stress vector o could be expressed in terms of the mechanical strain € and
the electric field E, one obtains

06=51e-S'd""E=Q—-Qd""E=Qe-EE (2.5)
where
Q=5" E=d""E (2.6)
or explicitly
a1 Qi Q2 0 €1 0 0 Zi3 0
gy | = | Q2 Qa2 0 gg |+ |10 0 Zo 0 (2.7)
76 0 0 Qﬁﬁ '75/2 0 0 O E3
where v v
Qn = ——— Qoo = ——+
1-— VfQ% 1- szTY;?'
v12Ys (2.8)
Q12 = V%2% Qo6 12
Z13 = d3; Q11 + d3pQ12 Zo3 = d31 Q12 + d3 Q22

Equations (2.3)-(2.8) describe the stress-strain-electric field state in the whole
single PFC lamina, provided that the Young, Kirchhoff moduli and Poisson
ratios are referred to the entire structure, i.e. the complex structure consisting
of the matrix reinforced with c¢.g. glass or graphite mixed with PZT fibers.
Approximate values of Yj, Yo, G2 and vjo can be found in numerous pa-
pers on mechanical properties of composites, see e.g. Ashton et al. (1969),
Jones (1975), Kurnik and Tylikowski (1997), or can be calculated from the
rule of mixtures (Hahn, 1980). The same remark refers to the problem of fin-
ding the effective, say, equivalent electromechanical constants d; of the active
piezoelectric material hosted by the matrix in an active composite. Fortuna-
tely, there is a lot of substantial information regarding this issue. Jiang and
Batra (2002) discussed the equivalence energy principle to derive the effecti-
ve thermo-elasto-mechanical properties of a four-phase composite consisting
of an elastic matrix, shape memory alloy, piezoelectric and inert inclusions.
They found that the inclusions highly affect the electromechanical coupling
constants as well as they shift the stress threshold required to indicate the
phase transformation in the SMA fibers. A three-phase model was earlier exa-
mined by Jiang and Cheung (2000) who developed a self-consistent approach
for predicting the effective electro-elastic moduli of PFCs via a micromechanics
model, see also Yu (1999).
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2.3. Transformation of the constitutive equations

Apply now an active lamina, the principal anisotropy axes of which (1,2)
are skewed by the angle 6 with respect to the main axes (z,y) of the given
host structure, see Fig. 2. The main matrix operator corresponding to such a
transformation contains cosines of angles between the axes of the original and
rotated co-ordinate system. Denoting the stress and strain vectors in the new
co-ordinate system by & = [04,0y,7:y) and € = [e4,y,72y/2], respectively
(the overbars mean relative to the rotated system), one writes down

[1

c=Qe- (2.9)

where, in fact, E = E (the electric field is applied along the 3rd axis, which
remains unchanged during transformation: z = 3).
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Fig. 2. Rotation of the co-ordinate system (1,2) — (z,y) by €

In order to find the transformed matrices Q and -E'? one incorporates the
formula for transforming tensors via rotation
Qu = Qijaray (2.10)
where a,,, = cosZ(e,,.h,) and where e, is the mth base vector of the
original co-ordinate system, and h, - the nth base vector in the rota-
ted system. Substituting o, = 711, 0y = T2, Tzy = 012 and &; = &3,
€y = €22, Yy = 2€12 into (2.10) one obtains

.2 a2
O Cf)bg g bln‘zg blI'l 299 o1 o1
o, slln lcos —sin2 o =T| oy (2.11)
Ty —5 sin 20 5 sin260  cos 26 o12 012
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and
Er €1
€y =T €2 2.12
1 1 ( )
2’}’3:3; 2‘712
In that case the stiffness matrix contains no more the zero coefficients
B Z2&11 ajm zjlfs
Q = TQT_1 — Ql‘z Qz'z Qzﬁ (2-13)
Qi Qo Qus

where the coefficients @ij = @ij (0) are explicitly given in the paper by Kurnik
and Tylikowski (1997) or Ashton et al. (1969). The new form of the transfor-
med electromechanical coupling matrix Z is

- 0 0 E3
E=TE=TQd"=| 0 0 Zg3 (2.14)
0 0 =33
where
213 =Z13 cos® 0 + =03 sin? 6
Zo3 = Z138in% 0 + g3 cos? 6 (2.15)

= s T
Z33 = —2-(.:.23 — =13) sin 26

2.4. Constitutive equations of an active laminate structure

Derive now the constitutive equations for laminated panels with active
piezoelectric fibers based on Mindlin’s assumption of constant transverse di-
splacement along the plate thickness, where the strain-displacement relations
(first order deformation theory) are given by

6’&(} 32100

Ex = O -z 972 = €40 + 2Kz
(9'UU (92'w{)
€y = oy z 57 = €y0 + 2Ky (2.16)
v ou O%w
=~ =0 20 9, L. Vey0 + 22Ky

Ty = B dy Oxdy

or simply
E=E€)+ 2K (2.17)
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where €, €y, Y2y denote the longitudinal strains in the z, y directions and the
shear strain, respectively, z is the co-ordinate measured through the thickness
of the panel, v and v — longitudinal displacements in the z and y directions,
respectively, k; and &, - curvatures with respect to the z and y, and kg is
related to torsional displacement. The index ”0” refers to the middle surface
of the panel. The transverse displacement is denoted by w (wyp).

Find now the internal forces and moments acting per unit length in a
N-layer laminate

N-— f ordz—z / (Quex — ErEy) dz (2.18)

k12L1

where k is the layer number. Substitution of (2.16) into (2.18) yields

N N N
_ 1 _ _
N=¢) Qulzk—2k-1)+ % > Qi(zi—22-1) — ) ExEi(zk — 2-1) (2.19)
k=1 k=1 k=1
where

_ 1
Ep = {Emssy: 5')&3;} N = [N:raNyaN:ry]

€ = [5.1:05 €40, %’rmyo] (2.20)

. [_62’11)0 ~Pwy 82100]
S Looa? oy? Toxoy

Proceeding in a similar way one determines the moments

M = fa'z dz = Z f 2(QuEx — ExEy) dz (2.21)
zk 1
which, after some transformatlons, assume the form
. N N 1N
M=) Quzi—2i_)+ 26> Qulz —z0_1) — = Y EkBr(zi — Z2_))
2 = S Bl i k=1
(2.22)
By denoting
N | N
= Qilzk — 2k-1) 5 Z Qx (i — 24-1)
k=l = (2.23)

3 3
k(zk — 2k-1)

(w)

I
o] =
WE
Ol

o=
Il
—
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and
e r o =(9)
NA = Z SpEr(zk — 21-1) oo NA=SN B7E (2 — 2z1-1)
k=1
MA= S BEGE - ) o MA= S EDE(GE - )
(2.24)
one finally obtains the constitutive equations for the active laminate structure
N A B £ NA
[M}*{B DHH]‘[MA] (2:25)

3. Simplified theory of bending in an active composite shaft

In the following considerations the state of loading and displacement of
a thin-walled cylindrical laminated shell will be assumed in such way that
the deflection of the geometric axis remains plane. Neglecting the effect of
shear strains and assuming Kirchhoft’s and Mindlin’s simplifications one can
consider the balance of internal forces and moments, see Fig.3, in order to
obtain equations of transverse motion of the shaft element.

M

y

Fig. 3. Bending moments and transverse forces acting on an infinitesimal element of
the shaft
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These equations are

52
(3.1)
0%z T
'OAB? = —8—51n5+q

where p is the mass density of the laminate, A - cross-sectional area,
y, z — transverse co-ordinates, 71" — transverse force, § — angular position of the
plane of bending, ¢ — external load per unit length. By balancing the moments

one concludes

T=F = (M+M ) (3.2)

where the tildes refer to total quantltles, i.e. the sums of internal forces and
moments resulting from pure mechanical shear and bending, plus the respec-
tive values coming from action of piezoelectric fibers, hence: M =M+ MA
and T =T + TA.

Now, the most important task is finding an explicit formula for the bending
moment M. Like in the work by Kurnik and Tylikowski (1997), Bauchau’s
(1980) simplifications will be assumed. They are as follows:

o the elements Aig and Agg of the stiffness matrix are negligible (which
is true for a greater number of layers in symmetric composites). In anti-
symmetric structures Ag, Agg are always zero;

e couplings between curvatures kg, Ky, Kgy and internal forces N, IV,
and N, are omitted. This is always true for symmetric laminates, and
admissible in anti- symmetric ones with numerous layers;

e perpendicular component y can be neglected with respect to the tensile
force N, during bending along the z-axis (by M,).

By applying the above assumptions to the constitutive equations of an
active composite (2.25) one obtains

Ny = Aj1€20 + A12640 — N2

(3-3)
0= A12€x0 -+ A22€y0 - N;
what yields
_ A A_ aadn
N, = N, — N — 3.4
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Although the energy dissipation due to application of active elements and
an appropriate control strategy are the key factors for further considerations,
the internal damping resulting from natural properties of laminates is a very
important problem which cannot be disregarded.

Assuming a simple rheological model of a single lamina, e.g. Kelvin-Voigt’s
one, the Young and Kirchhoff moduli get operational forms

Y;*:Y;—(1+ﬁ,;§%) i=1,2 -
3.5

Gy = Glz(l + ﬁm%)

Taking into account that, predominantly, Y5 < Y7, one finds that all elasticity
constants in a transformed (rotated) co-ordinate system have a similar first-
order (K-V-like) form

@:j =Q; + @ﬁ% (3.6)

where —@ij = @@‘j(---anh ...y #) and @g = Gij(...,Qk;, ey Bkiy -y @), Explicitly,
the operational Young modulus of the entire laminate is

2
14+ 515 + o

Yn =Y, 3.7
B B 1+ c% (3.7)
where
i —— _2 — — — — F— —
Yp = Q11Q2 — Q12 B, = Qquz + Qz:zQ?x - 2@12@?2
B 0 - = =~ 2
Q22 @11Q2 — Q12
5 - Qe — @) Ty
Quln-0Ql, Q12
(3.8)
and where
Q?} = B11Q11 cos® 0 + BoaQ2nsin 6 + (512@66 + 5522@12) sin” 20
yaly | 4 1 . 2
Qoo = B11Q11 8" 0 + [22Q22 cos™ O + (ﬁleﬁﬁ + -Q-ﬁgngg) sin?20 (3.9)

_ 1 1 ,
Qe = (ZﬁuQu + $12Qe6 + Zﬁzz@zz) sin” 20 + % 22(3 + cos 46)

For further simplification of (3.7), i.e. for finding a local K-V model of the
entire structure, the operator Y} is expanded into Taylor’s series with /0t
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replaced with iw just before. This should be done in the neighbourhood of
a chosen frequency, say, the first eigenfrequency w; — a characteristic one,
probably close to the expected frequency of self-excited vibration the control
system is made to fight against. All of that implies the following local and
equivalent operational Young’s modulus

Y5 =Yo(1+ ﬁg%) (3.10)

where

1+ 2cwy + ([31(2 - ﬁg)w%

Yo=Y
0s (1 + cwp)?
(3.11)
B — ¢+ wifB2(2 + aw) w2 [YgJ
fo = 5 Wi = 3\~
14+ 2cwp + (ﬁlc = ,82)0.)1 l pA

where J and [ are the geometric cross-sectional moment of inertia and length
of the shaft, respectively.

:‘ Z‘

Eyp=-K(Ycosd +Zsind)

13)
e \ "'J';‘

Fig. 4. Tensile strain at an arbitrary point of the shaft cross-section

Return now to the question of bending moment in order to close the equ-
ations of motion. To this end, consider the tensile strain at a given point fixed
on the midsurface, see Fig.4. Taking into account the ovalisation effect of
the circular cross-section under bending, i.e. the so-called Brazier’s effect, see
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Kurnik (1993), Birman and Bert (1987) as well as Reisner (1959), one writes
down
ez0 = —k(1 — y6%)(Y cos § + Z sin §) (3.12)

where the coefficient of the ovalisation is

. 3T‘4YO
B 2Q22h? + 8ripuw?

v (3.13)

Furthermore, regarding moderate deflections of the shaft axis during transver-
se motion, i.e. the first non-linear approximation of the curvature

K =

%tzq 82'w[ B 3(811})2}

\/ -
the strain will be

0 9?2 31,0 2 52 52,
o 252G GG G

as y = wcosd and z = wsind, see Fig. 4. The purely mechanical component
M of the bending moment M (M = M + M%) is

M=[%§ } :Af[lz,]odi=;!'[lz,}(1+ﬁ0%)swdA (3.16)

(3.14)

where it should be taken into account that: V = —-wZ, Z = wY,
J4YZ dA =0 and JaY2dA=[,Z%dA=].

4. Actuation of the rotating shaft

In this section the problem of actuation in a rotating shaft is to be analysed.
Consider a single layer of a composite shaft with an electrode covering a single
bunch of piezoelectric fibers embedded right beneath the electrode, see Fig. 5.

The bending moment M;;‘ produced by the jth actuator in the ith com-
posite layer is

MA = [ 62PSdA= | E,E;rsingp dA 4.1
J J

Aij Aij
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Fig. 5. Actuator patch controlling a part of piezoelectric fibers

where E;; is the electric field applied to the jth electrode on the ith layer,

and Z, = Z13 — Z23Q12/Z22. The integration area A;; appearing in (4.1) can
be described as follow

h o o
A,-J-={('r,ap): ri€r§7'¢+-N—, goj—-z-‘éfpénpj+~2—} (4.2)
where 7; is the inside radius of the 7th layer, h-thickness of the laminate shaft,
N — number of layers, ¢; — current angular position of the middle point of the
jth electrode patch (actuator), a — angular width of the electrode (assumed
to be the same for every actuator). Hence

rit vit3
M,{; — i [ r? dr f sin ¢ dg (4.3)
i

¥

Yi—z

if the electric field and composition of the embedded piezoelectric fibers are
homogeneous. Assuming that h/r <1
M = 25, Eyjr? 2 sin g sin & 4
ij = 2= Eijri ; sing;sin o (4.4)
According to the law of an ideal piezoelectric sensor (i.e. having negligible
width), the measured voltage is directly proportional to the slope of the shaft
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axis at the point x; where the sensor ring is glued to the shaft surface

h 0%w(x
Usij = 41— 5(2 )?tbmtp_}.
€s T
(4.5)
Ys .
A]' = 1 I/Q [Sll'l2 es(dsij? + V312d33]) <+ COS2 G‘g(dsal - U312d332)]
— VYs12

where 6, is the angle through which the main anisotropy axes of the sensor
are rotated with respect to the axis of the host structure, ¢ is the dielectric
permittivity, g2 — Poisson’s ratio, Ys — Young’s modulus, ds32 and ds3;
electromechanical coupling constants of the sensor material.

Assuming a control strategy as a combination of the proportional and
velocity feedback, one puts down

dUg;;
dt

Knowing that E;; = Uai;j/(h/N) and dsing;/dt = wcos @;, the electric field
controlling the ijth actuator will be

Uaij = cpUsij + ¢4 (4.6)

NArihsp 0%w(zs,t) | d Ow(zs,t) |
E;; = he [cp 5oz Si@; - Cd (W sin ij)] (4.7)
and, finally, the actuating moment

M;; = QEUAIT‘]?S sin ¢; sin% :
€s
‘ (4.8)

0%w(zs, t) A3w(xs,t)y . O*w(xy, t)
[(C-PT CdW) 8111 24 + CdUJ"""'aT—;‘— Ccos (1‘93]

The resultant moment is N
n
A A
MA=>"%" M (4.9)
i=1 j=1
where N is the number of layers the composite shaft is made of, n — number
of electrode patches (actuators) along the perimeter of a single layer. Hence

Ar3h ! O*w(zs,t) Pw(Ts, 1)\ e 4
A _ o= 17gfes . & 51 8 3 a2
M‘Lj‘ — 2n——lg €5 Sin 2 [(Cp 33}2 + Cd 8:1:26f' ) ; Ti ; S1I1 (PJ +
(4.10)

N n

%w(zs,t : ,
+ de_w_g_lis_) E ?‘f E SIn @5 coscpj]
i=1  j=I
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Let r denote the average radius of the thin-walled shaft structure, thus

h ..
=r[1+m(2z—N)} (4.11)
Since h/r <« 1 (and additionally divided by 2N > 1) it is reasonable to

assume 7; = 7, which entails

21— N
ri=r+h

N . .
Z(r+h21;rN)d¢z N3 (4.12)

i=1

Have a closer look now at the sums in (4.10) involving the expressions of the
angular position ;. Note, that the angular distance between the jth and
(7 + 1)th electrode patch is ¢;4+1 — ¢; = 2m/n. Denoting the position of the
first patch by ¢1 = ¢ one finds the locations of the subsequent electrodes to
be: ¢; = ¢ + 2mj/n. Studying the properties of the sums in (4.10) one states

sin? @ for n=1
T ' '"- 2 .
Y osin?g; =Y sin?(p; +570) =4 i’y for m=2 (433
=1 =1 L for n>3
2
and
1.
0 Lo o 58111299 for n=1
Zsmcpj cosp; = ZSIIlz((,Oj +J-;1“) =9 sin2p for n=2
5=1 7=1
0 for n>3
(4.14)

It is a very important conclusion that the application of 3 or more electrode
patches ensures generation of a constant bending moment, i.e. a non-pulsating
one, despite the discrete distribution of the patches along the perimeter and
rotary motion of the shaft. Finally

MA=%

NAr3hy ((‘ O%w(x4,t) Pw(zs,t)

.
R Cd~ 535 ) nsin — (4.15)

€s

where sin(a/2) has been replaced with sin(w/n), which holds true for negli-
gible gaps separating and insulating the electrode patches.

Except for the material and structural parameters, the actuating moment

is directly proportional to the curvature and its first time derivative. There

yet appears another parameter responsible for the magnitude of M4 — the
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number n of the actuator electrodes per each layer. The question is to what
extent M4 depends on n (what is the limit value of M4, what is the minimum
one?). To answer this, draw a diagram of the function nsin(7/n) standing in
(4.15). The moment M is proportional to this function, see Fig. 6.

3.0
2.5k
2.0F
1.5¢
1.0}
0.5F

0
2 4 6 8” 10

Fig. 6. Actuating moment vs. number of electrode patches
i

Fig. 7. The least number of electrodes generating a constant bending moment

The maximum bending moment produced by the piezoelectric fibers is
strictly related with the following limit
lim nsin~ = 7 (4.16)
n—o0 n
It is clearly seen (Fig.6) that infinite increasing of the number of electrode
patches is useless. A fine segmentation of the electrodes yields results incom-
mensurable with the degree of unavoidable technical complication of the con-
trol system. It is rather recommended to use possibly the least number of the
actuators along the perimeter in achieving the desired effect, i.e. smooth ope-
ration of the stabilising system (constant counter-bending). This amounts to
incorporation of a 3-electrode control set, see Fig. 7.
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5. Equations of motion

Having derived the resultant bending moment generated by the active
piezoelectric fibers, see (4.16), one substitutes it into (3.2) and then (3.1).
Before doing this, notice however that (4.15) applies to the moment calculated
with respect to the neutral bending axis. It has to be then decomposed into
the y- and z-elements. Knowing that y = wcosd and z = wsind (see Fig. 3)
and M,j‘ = MAsind, M = M* cosd, one finds

A 0?z(xs,t) P z(zg,t) ]
2
[ M; ] = (k:p 2 62;3, f +kq 8‘2;3&'3?:::‘) ){H(a:—m)—H(m—:m)}
o2 Ozt
(5.1)
where
kp 3\/— NAhgr3 | Cp -
o | =T | (5.2)

The presence of Heaviside’s step functions H(-) results from the fact that
the electrodes may not necessarily cover the entire length of the shaft, but
only a part of it, e.g. between =z = z; and = = z5. Substituting (5.1) into
(3.2) and (3.1) yields (in a dimensionless form)

Py By 'y dy\2 3,0
PAGE g Y‘]{a“{l_g(ai) 5(55?)2‘

980 32 e+ ) ~ () + (5] -

Ox Oxz0t  Ox Ozt Ox? Ox?
2. a3 2, 93 2, 92
_2507(2 i 862& * g:rg aiz%t T2 ga"g 23:2 ) }
0° 0 0 0%y 92
+hgas{1-2(z) - 5(5) ~%lGa) + G T+

o] S5 {1 2(2)7 - 32 (G2 + (53]}

5‘2 (92 82 5‘5 (93
_3(53;%)23; 8;; ox3 (783: I gy g)

8 0 8’* 0z 83z DBy 2 o3
O B o 2%y m[(24) +3(33) ) -
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+

Oz, Oy 0%z Oy 03z By 9%z
_9 : R ‘
ﬁo’y{gaxs(a&:&at oz2 ' Ox3 Bs;gat) 013 020t
Oy 0%z 0z &y 0Py 2 Pz\2 0%z 0%z
323 972 030t | 0720t [3(83:3) (5‘.{:3) +@§5¥]
0%y s 3y Oy 83z 0z Pz 2 0%z 0z
+527 (5523 5036t * 2555 5550 * a7t 001 T 527 5wigt) )
33y O%y\2  0%z\2 _Oyddy 0z0%
~360{ 5,25 *(522) * (522) +355 525 * 52557
83y( 2z 0%z N 0z &z )
Ox3 \OxOt Ox? = Ox Ox?0t
oty %622 Bzy( 9%y 3y 10 9y oty "
0x30t Ox Oxz2  Ox%2\ O0xz0t 0z3 3 Ox O0x30t
8%z O3z 0%z 932 9z 8z
392797 T 3T 553 )}_
Ox? 0x*0t  OJxOt Oz  Ox Ox°0t
By %203z %y . By\2 0%2\2 0%z0%
3(5:3) + (523) I}

+2 (5.3)

+2

+2

+2

—2v132 . - .
’Y{ Oz3 0x? O3 g Ox2 L\ Qx3 dz3 i Oz2 Oxt

y(zs) , By(zs)1706(x —z1) 05(z — z2) 1 /0y\2
o thgaa e~ a1 3(G) |
829’(553) . 83@'(1:‘:) dy agy
1= a2 T M 5,20, ]ﬁaﬁ 0@ —a1) = o@ —w2)] = 0

where 7 denotes the coefficient of external damping and §(-) is Dirac’s delta
function. The second equation of motion (for z) can be directly obtained from
the above by replacing y with z and vice versa, and by exchanging the sign
" =" for ”+” and "+” for " =" before the terms multiplied by w.

6. Stability analysis

In the following study the considerations will be focused on stability analy-
sis of a PFC rotating shaft. A schematic representation of the shaft structure
to be dealt with is shown in Fig. 8.

In order to examine the stability of the assumed system, the equations
of motion, see (5.3), will be transformed into a set of ordinary differential
equations by making use of a unimodal Galerkin’s discretisation (orthogona-
lisation). The discretisation will be done with the first eigenform of a simply
supported shaft taken as the base function. Let (5.3) be represented in the
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single fiber

PZT + reinforcing fibers
Fig. 8. Scheme of a PFC shaft with transversely poled piezoelectric fibers

form of differential operators L;[y(z,t),z(x,t)], ¢ = 1,2. Let the solution to
(5.3) be predicted as y(z,t) = wi(t)F(z) and z(z,t) = wy(t)F(x), where
F(z) = sin(maz/l) and w;(t), wo(t) — arbitrary time functions. Galerkin’s di-
scretisation implies

l

| / Li{y[F(m), wi ()], 2[F (2), wa (t)] } F(z) dz = 0 i=1,2  (6.1)
0

which leads to a set of two second-order ordinary differential equations with
respect to w; and ws.

As the shaft undergoes a constant transverse load due to the force of gravity
q = pAg, its static equilibrium is a deflected plane curve representing the so-
called non-trivial equilibrium position. It can be determined from discretised
equations of motion by substituting w; = 0, wy = 0, w; = 0, Wy = 0 and
wy] = wig, we = wyg. In fact wig and wygy depend on the angular velocity of
the shaft and create a kind of equilibrium curve against the function of w.

The knowledge of the non-trivial equilibrium position is fundamental for
further stability analysis. It is to be done in terms of eigenvalues corresponding
to the matrix of the equations of motion linearised around the non-trivial
equilibrium position. To make the analysis easier, introduce now new variables
enabling transformation of the second-order ordinary differential equations of
motion into four first-order ones, but linearised around the trivial position. It
is possible when: u; = w; —wyg, ue = w;, ug = w9 — weg, ugq = we. The final
but implicit form of the approximate equations of motion can be expressed as

follows
= A(w; kp, ka)u + N(u,w; ky, kq) = f(u,w; ky, ka) (6.2)

where A denotes the matrix of the linear part of the equations of motion, N
— non-linear part, f full representation of their right-hand sides. Naturally:
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u = [ul,...,u4]T, N = [N],...,N4]T, f = [fl; ...,f4]T and A = Agxq. In (6.2)
the angular velocity as well as the gains k, and kg have been inserted into
parentheses to emphasise that both linear and non-linear parts depend on
these factors. To show this, find an explicit form of A

0O 1 0 0

A= | 321 OG22 a3 G4 _
0 0 0 1 (6.3)
aqr Q42 Q43 G4
where
. £79
agy = —m (7 + 2k, sinwzs) + wipm® h(l + 725) + 3k, sin frms} +
3 3 ;
+ gwgoﬂ'ﬁ(l + 212y) + §w10w207r°w£(1 + 72)
azp = —1— Tr‘l{ — 218k sin g + _
3 3
+ wiym® [Z?rf(Q + 37%y) + kq sin 71‘:1:3] + gwgowﬁﬁ(l + 2727)
3 ' 9 ‘ .
agy = —miéw+ Zw%r"&w(l + 772']/) - -éw%o?rb{w(l + 272)
3
asy = -11)10’(02071'66(1 + 271“2'7) (64)

4
4 9 9 2 3 2 ¢ 2
ay = mlw— ngoﬂ' Ew(l + 2m%y) — Z’ww?f §w(l + 7%y)
agy = a4

ags = —7(m + 2k, sin ) + gw%oﬂ‘ﬁ(l + 272) +

+ “’%0775 [g(l -+ 71‘27) + 3kp sin wms] - gmmwgo'frﬁwﬁ(l - 7r2*y)
agqg = —1— 71'4§ — 23k sin g + gwfnﬂ-ﬁg(l + 2;—;27) +

+ whon [ 2mé(2 + 3%9) + kysina

Application of Hurwitz’s criterion to the linearised part of the governing
equations leads to the characteristic equation of the fourth order. Its solution
yields four complex eigenvalues (two conjugate pairs) which decide about sta-
bility of the system. Concentrate now on the eigenvalue having the greatest
real part. It is the decisive eigenvalue, and will be denoted by 7. The system
is said to be stable if Re{r;} < 0.
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A blow-up of the trajectories of the decisive eigenvalue is presented in Fig. 9
and Fig. 10. The eigenvalue moves rightwards for increasing rotation speed. It
starts from the area where Re{r;} < 0, then intersects the imaginary axis, and
finally gets positive real part (which entails loss of the stability and initiates
flutter-type vibration). The ordinate, i.e. imaginary part, corresponds to the
initial frequency of the self-excited vibration. As it can be seen, however, the
application of control shifts the trajectories leftwards, i.e. stabilises the system
(for moderate w Re{r;} becomes negative again). This effect is observed for
both control strategies (proportional and differential). The differential appro-
ach (kq) does not affect the initial flutter frequency and the proportional one
(kp) increases it (additional damping is introduced in the first case, additional
stiffness in the second one).

~ 11.5}
S
£
® 110f
10.5F 4 oo
10.0+
9.5i . .
) 0 2

. Re {f‘-l}

Fig. 9. Trajectories of the decisive eigenvalue for velocity feedback
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Fig. 10. Trajectories of the decisive eigenvalue for proportional feedback
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The effect of both strategies on the increase of the critical rotation speed, at
which self-excitation appears, is shown in Fig. 11 and Fig. 12. These diagrams
disclose we, as the function of the gains k, and kq as well as the lamination
angle.

Fig. 12. Critical rotation speed for proportional feedback

This effect is even more visible on the plane stretched over the angular
velocity and lamination angle, see Fig. 13 and Fig. 14.
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80 unstable
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0 2000 4000 6000 8000 ,

Fig. 13. Stability domain for disabled control system

80 - : unstable
60- k;a=0-1

40H -

0 2000 4000 6000 So'oow 10000
Fig. 14. Enlargement of the stability domain for enabled control system

7. Concluding remarks

In this paper the fundamentals of active flutter suppression, i.e. stabilisa-
tion and reduction of transverse vibration in a rotating shaft have been presen-
ted. A novel method has been incorporated. It consists in making use of active
composite materials containing piezoelectric fibers able to produce mechani-
cal stress and strain under an electric signal. Piezoelectric fiber composites
are state-of-the-art modern "smart” materials which have freshly emerged in
the field of mechatronics. They combine the advantages pertaining to lami-
nates with new adaptive and controllable properties featured by piezoelectric
elements.

Two degressive non-linearities have been taken into account: moderate cu-
rvature and ovalisation of the shaft cross-section during bending (Brazier’s
effect). The principle of generation of a bending moment in a rotating shaft
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and governing equations have been discussed in detail. It occurred that the
application of only three actuating clectrodes around the shaft perimeter is
enough to produce a constant counter-bending moment, despite the rotary mo-
tion of the entire structure. Such a moment opposes the internal interactions
in the shaft that lead directly to self-excitation while exceeding the critical
angular velocity. Closer analysis has confirmed that both proposed methods
of stabilisation, i.e. these based on the proportional and velocity feedback,
are effective in increasing the critical threshold. Irrespective of the electrode
arrangement (transverse or interdigitated), it has occurred that smaller lami-
nation angles are most efficient in reaching this goal, i.e. increasing w, twice
as much or even more.
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Statecznos¢ wirujacych watéow wykonanych z aktywnego laminatu
zawierajacego wldkna piezoelektryczne

Streszczenie

W pracy przedstawiono teorctyczne podstawy stabilizacji wirujacego watu za po-
mocy elementéw piezoelektrycznych. Wal jest wykonany z aktywnego laminatu zawie-
rajacego widkna piezoclektryczne — najnowszego osiagniecia inzynierii materiatowej
na polu mechatroniki. Niezaleznie od rodzaju materialu, z ktérego wykonano wal,
wykazuje on niestatecznos$c typu flatter wywolang obecnodceig tarcia wewngtrznego.
Przy pewnej krytycznej predkosci wirowania ukliad traci statecznoéé, stajac si¢ narazo-
nym na drgania samowzbudne. W artykule przeprowadzono dyskusje nad mozliwoscig
ochrony wirujacych waléw przed takim zjawiskiem lub przynajmnicj odsunigciem pro-
gu krytycznego poprzez zastosowanic widkien piezoelektrycznych zatopionych w ma-
teriale osnowy kompozytu wyposazonego w elektrody sterujace polem elektrycznym
w kazdej warstwic laminatu. Analiza zaprezentowanej metody stabilizacji pokazala, ze
wprowadzenie trzech i wigcej par elektrod wystarcza do gencrowania stalego momentu
gnacego mimo ciaglego wirowania. W ukladzie sterowania zastosowano petle ze sprze-
zeniem proporcjonalnym i predkosciowym. Wartoéé krytycznej predkosci wirowania
znaleziono poprzez Sledzenie trajektorii warto$ei wlasnych réwnan dynamiki zline-
aryzowanych wokét nietrywialnego polozenia réwnowagi. Réwnania te wyprowadzono
wychodzac z czgstkowych rézniczkowych réwnan ruchu walu po ich jedno-modalnej
dyskretyzacji Galerkina. Pokazano, ze zastosowana metoda stabilizacji jest efektywna
i pozwala na ponad dwukrotne zwigkszenie progu krytycznego.
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