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In this paper the Analog Equation Method (AEM), a boundary-only method,
is presented for solving nonlinear static and dynamic problems in continuum
mechanics. General bodies are considered, that is bodies whose properties
may be position or direction dependent and their response is nonlinecar. The
nonlinearity may result from both nonlinear constitutive relations (inaterial
nonlinearity) and large deflections (geometrical nonlinearity). The quintes-
sence of the method is the replacement of the coupled nonlinear partial
differential equations with variable cocfficients governing the response of the
body by an equivalent set of linear uncoupled equations under fictitious so-
urces. The fictitious sources are estanlished using a BEM-based technique
and the solution to the original problem is obtained from the integral re-
presentation of the solution to the substitute problem. A variety of static
and dynamic problems solved using the AEM are presented to illustrate the
method and demonstrate its efficiency and accuracy.
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1. Introduction

Boundary methods are known for their major advantage to restrict the
discretization only to the boundary of a body. Among them, the most repu-
ted one is the boundary integral cquation or otherwise known as Boundary
Element Method (BEM), a name resulting from the employed technique to
solve boundary integral equations. Although the BEM has been proven to be
a powerful alternative to the so called domain methods, such as FDM and
FEM, when linear problems are encountered, this method has been criticized
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as in capable of solving nonlinear problems, especially in nonhomogeneous bo-
dies where coefficients of differential equations are variable. This is one of the
reasons that many investigators are reluctant to be involved with BEM and
use it as a computational tool.

The effort to develop BEM methods for nonlinear problems has been given
by many BEM investigators. Almost all of these methods have not avoided the
domain discretization. The only method that can be considered as boundary-
only is the Dual Reciprocity Method (DRM) (Patridge et al., 1992). The term
boundary-only is used in the sense that the discretization and integration are
limited only on the boundary, although collocation points inside the domain
may be used to improve the solution. Nevertheless, DRM works when for a non
standard linear partial differential equation or a nonlinear one it is possible
to extract a standard linear partial differential operator L(-) and lump the
remainder together in the right-hand-side as a body-force term

L(u) = b(z,y, U, Uy, Uy, Ugg, Ugyy, Uyyy) (1.1)

where b(-) is, in general, a nonlinear function of its arguments.

Further, DRM can be employed if the fundamental solution to the adjoint
differential equation can be established, namely, a partial singular solution to
the equation

L*(u*) = 6(P — Q) (1.2)

where L*(-) is the adjoint operator to L(-) and §(P — @) is the Dirac delta
function.

On the basis of the aforementioned, it is apparent that DRM cannot be
employed when:

(a) the differential operator cannot be put in the form of Eq. (1.1), e.g.
UggUyy — '”'E:y = f(z,y) (1.3)

(b) the fundamental solution to Eq. (1.2) is not available, e.g. when the ope-
rator L*(-) has variable coefficients.

Apparently, the efficiency of DRM decreases in the case of problems de-
scribed by coupled nonlinear equations. Besides, different DRM formulations,
and consequently, different computer programs are required for different body
force terms as well as for different operators L*(-), even when the order of the
equations is the same.

In this paper a boundary-only method is presented for solving nonlinear
static and dynamic problems. The method alleviates the restrictions characte-
rizing DRM. Simple fundamental solutions are used in it, which depend only
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on the order of differential equations, e.g. for second order differential equ-
ations the fundamental solution to the Laplace equation is employed for both
static and dynamic problems. The method is based on the concept of the ana-
log equation (Katsikadelis, 1994b), according to which a nonlinear problem
is replaced by an equivalent simple linear one under a fictitious source with
the same boundary and initial conditions. The substitute problem is chosen so
that the integral representation of the solution is known. The fictitious source
is established by approximating it with a radial basis function series expan-
sion as in DRM and the solution to the original problem is computed from the
integral representation of the substitute problem, which is used as a mathe-
matical formula. Without restricting the generality, the method is illustrated
by applying it to second and fourth order partial differential equations.

The method has been already successfully employed to solve a variety of
engineering problems described by partial differential equations, among them
potential flow problems in bodies whose material constants depend on the field
function (e.g. temperature dependent conductivity) (Katsikadelis and Nerant-
zaki, 1999b), determination of surface with prescribed mean or total curvature
(Katsikadelis and Nerantzaki, 1999b), the soap bubble problem (Katsikadelis
and Nerantzaki, 2001), nonlinear static and dynamic analysis of homogene-
ous isotropic and heterogeneous orthotropic membranes (Katsikadelis et al.,
2001; Katsikadelis, 2002; Katsikadelis and Tsiatas, 2001b,c), finite elasticity
problems, inverse problems (Nerantzaki and Katsikadelis, 1998), equationless
problems in nonlinear bodies using only boundary data (Katsikadelis and Ne-
rantzaki, 1999a), nonlinear analysis of shells (Yiotis and Katsikadelis, 2001).
The method has been also applied to problems described by coupled nonlinear
ordinary differential equations, e.g. finite deformation analysis of elastic cables
(Katsikadelis and Apostolopoulos, 1995; Katsikadelis, 2001), large deflection
analysis of beams (Katsikadelis and Tsiatas, 2001a) and integration of nonli-
near equations of motion (Katsikadelis, 1994a). Some exemplary problems are
solved to demonstrate the applicability, efficiency and accuracy of AEM.

2. Illustration of AEM for 2nd order PDEs of hyperbolic type

2.1. Problem statement

Consider a non-homogeneous body occupying the two-dimensional doma-
in {2 in the zy-planc (Fig. 1), whose dynamic response is governed by the
following initial boundary value problem
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puge + cuy + N(u) = g(z,y,t) in 2, 0<t¢
Bru + Bouy, = 33 on [
(2.1)
u(r,y,0) =uy(z,y)
in {2
Ut ("L'a Y, 0) = u2($! y)
where u = u(z,y,t) is the unknown field function and
N(u) = N(u,uy, Uy, Uggy Uy, Uyy, T, Y) (2.2)

is a nonlinear second order differential operator defined in £2; I' = UI=K I}
is the boundary where I (z = 1, 2,...,K) are K non-intersecting closed
contours surrounded by the contour Ij. Moreover, §; = fBi(s), i = 1,2,3
are functions specified on the boundary I" with s being the arc length, while
uy(z,y) and wuy(z,y) are given functions denoting the initial deflection and
velocity distributions, respectively. Finally, p = p(z,y) and ¢ = ¢(z,y) are the
mass and damping densities, respectively, and g(x,y, t) is the forcing function.
Boundary condition (2.1)2 is assumed linear for convenience in presenting the
method, although a nonlinear boundary condition could be considered.

Fig. 1. Multiply connected domain {2 and boundary I' = U:z(‘;{ I

2.2. The analog equation method

Let u = u(z,y,t) be the sought solution to problem (2.1). This function
is two times continuously differentiable in 2. Thus, if the Laplace operator
V? = 9?/0z* + 0%/0y? is applied to it, we have

V2u = bz, y,t) (2.3)

Eq. (2.3) is a quasi-static equation and indicates that the solution to Eq. (2.1);
at the instant ¢ could be established by solving this equation under boundary
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condition (2.1), if the fictitious time dependent source b(x,y,t) were known.
Eq. (2.3) is the analog equation, which together with boundary condition (2.1)9
and initial conditions (2.1)3 constitute the substitute problem.

The fictitious source can be established following a procedure similar to
that presented by Katsikadelis and Nerantzaki (1999b) for the static problem.
We assume

M
b= ayf, (2.4)
j=1

where f; = fj(z,y) is a set of approximation functions and a; = a;(t) time
dependent coefficients to be determined.

The solution to Eq. (2.3) at the instant ¢ can be written as a sum of the
homogeneous solution % = %(x,y,t) and a particular solution wu, = u,(z,y,1)
to the nonhomogeneous equation. Thus, we can write

U=TU+ Uy (2—0)

The particular solution is obtained from

M
szu,p — Z ajfj (26)
J=1
which yields
M
Up = Zajﬁj (2.7)
7=1

where %; (j =1,2,..., M) is a particular solution to the equation
Vi = f; ji=1,2,...M (2.8)

The particular solution to Eq. (2.8) can always be determined, if f; is specified.
The homogeneous solution % is obtained from the boundary value problem

V2 — 0 in {2
o y (2.9)
B+ Baq = 3 — (ﬁl 2 =105 + P23 052, G’jaj) on I

where g; = du;/0on.

Boundary value problem (2.9) is solved using BEM. Thus, the integral
representation of the solution % is given as

ca(P,t) = — [ (u*q — Tq") ds Plz,y} € QUT (2.10)
A
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in which »* = In(r/2n) is the fundamental solution to Eq. (2.9); and ¢* = u,},
its derivative normal to the boundary with r = |Q—P| = /(£ — z)? + (y — n)?
being the distance between any two points P(z,y) in 22U I, Q(&,n) on I7
¢ is a constant which takes the values ¢ =1if P € 2 and ¢=o/27if P € [
« is the interior angle between the tangents of the boundary at the point P.
Note, that it is ¢ = 1/2 for points where the boundary is smooth.

On the basis of Eqs (2.5), (2.7) and (2.10), the solution to Eq. (2.3) is
written as

M
cu = — /(u*amﬁq*) ds+ ) ajii; (2.11)
r J=1
Differentiating the above equation for P € 2 (¢ = 1) yields
M

Uy = — / (uhg —ug)) ds + > _(1;)00;

r 5=

. M
Uy = — /(u;("; - Eq;) ds + Z(ﬁj)yaj

r j=1
: M
?Lyy == /(U;Ta - ﬁqzx) dS + Z(aj)xa:aj (212)
r j=1
. M
for = / (uyy = Tyy) ds + ()0
r j=1

M
Ugy = — /(u;ya - Eq::y) ds + Z(a’})-ﬂyaﬂ?
r =1

The final step of AEM is to apply Eq. (2.1); to M discrete points inside 2.
Thus, we obtain a set of M equations
plul, + ctul + N(u') = ¢ i=1,2,..., M (2.13)

Using Eqgs (2.11) and (2.12) to evaluate w and its derivatives at the points
i =1,2,...M and substituting them into Eq. (2.13), the following set of nonli-
near ordinary differential equations, which play the role of the semidiscretized
equations of motion, is obtained

Fi(aj,aj,d5) = ¢' i=1,2,..,M (2.14)

which can be solved to yield the coefficients a;. The AEM can be implemented
only numerically.
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2.3. Numerical implementation

The BEM with constant elements is used to approximate the boundary
integrals in Eqs (2.11) and (2.12). If N is the number of the boundary nodal
points (see Fig. 2), then Eq. (2.11) is written as

N N
cu' = Z Hyak — Z Gikg" (2.15)
k=1 k=1
where
Hi, = /q*(rik) ds Gk = /u*(nk) ds (2.16)
k k
Boundary nodes Interior nodes
Total N / /| Total M

I

=

Fig. 2. Boundary discretization and domain nodal points

Applying Eq. (2.15) to all boundary nodal points and using matrix notation
yields
Hu - Gg =0 (2.17)

where

H=H-C (2.18)

with C being a diagonal matrix including values of the coefficient ¢'. Boundary
condition (2.9)2, when applied to the N boundary nodal points, yields

M M
(BT + (B2)T = (Ba)i — |(B)' Y 4 + (Ba)' Y 053] (2.19)
i=1 j=1

or using the matrix notation
B+ Byg =By — (81U + B,Q)a (2.20)

in which U = ﬁ;} Q= ’q“; are N x M known matrices; B, B, are N x N known
diagonal matrices, and a is the vector of the coefficients to be determined.
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Egs (2.17) and (29) may be combined to express % and @ in terms of a.
Thus, we may write

{;155}{§}=[$}w+{i} (221)

T=-(8U+5,Q) (2.22)

where

Solving Eq. (2.21), yields
u=S,a+d, q=S,a+d, (2.23)

in which S,, S, are known N x M rectangular matrices and d,,, d; known
vectors. Eqs (2.11) and (2.12), when discretized and applied to the M nodal
points inside {2, give

quﬁ—GEJrGa
Uy = HmﬁﬁGma—l—ﬁma

u, =H,u—G,g+U,a
Y y y y (2.24)

Uzy = H:Ea:ﬁ - G:c:ca + Omara
uyy = Hyt — Gyyg + Uyya
ua«;y — Hmyﬁ - Gg;ya + nyﬂ

in which G, H, Gz, Hyy, ..., Hyy are known M x M matrices originating from the
integration of the kernel functions «* and ¢* and their respective derivatives;
U, H, ..., U;, are known matrices having dimensions M x M, the elements
of which result from the functions %; and their derivatives.

Substituting Eqs (2.23) into Egs (2.24), yields

u=Wa+w

u, = Wea+w u, = W,a+w

T o (2.25)
Upy = Wez@ + Wy u,, = Wya + w,,

Uy, = Wyya + wyy

where W, W, ..., W, are known matrices and w, w, ..., W, known vectors.
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Differentiating Eq. (2.25); with respect to time and taking into account
that the vector w is constant, we obtain

4 = Wa i = Wa (2.26)

Finally, writing Eq. (2.13) in a matrix form and substituting Eqs (2.25) and
(2.26) in it, we obtain the typical semidiscretized nonlinear equation of motion

Mi + Ca+ N(a) = g (2.27)

where M and C are generalized mass and damping matrices, respectively. The
initial conditions for Eq. (2.27) are obtained from Egs (2.25); and (2.26); on
the basis of Egs (2.1)3. Thus, we have

a(0) = W (u; — w) a(0) = W luy (2.28)

2.3.1. The dynamic problem
For forced (g(x,y,t) # 0) or free vibrations (g(z,y,t) = 0), Eq. (2.27)

is solved using any time step integration method taking into account initial
conditions (2.28). Once a; are computed, the solution to the problem and its
derivatives are evaluated from Eqs (2.25). For points not coinciding with the
nodal points, these quantities are computed from the discretized counterpart

of Eqs (2.11) and (2.12).
2.3.2. The static problem
In this case it is @ = a = 0, and Eq. (2.27) becomes
N(a)=g (2.29)

from which the coefficients a are established by solving a system of nonlinear
algebraic equations.

3. Examples

On the basis of the numerical procedure presented in Section 2, a
FORTRAN code has been written and numerical results for exemplary pro-
blems have been obtained, which illustrate the applicability, effectiveness and
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accuracy of the AEM. The employed approximation functions f; are the mul-
tiquadrics, which are defined as

fi=Vr2+c? (3.1)

where c¢ is an arbitrary constant and

r=1/(z - 2)% + (y — y;)? j=1,2,., M (3.2)

with z;, y; being the collocation nodal points inside {2. Using these radial
basis functions, the particular solution to Eq. (2.8) is obtained as

¥ 1
i = —(—;— In(cvVr2 + 2 + ) + 5(?"2 +4¢*)Vr? + 2 (3.3)

3.1. Heat flow in bodies with nonlinear material properties

In this case the thermal conductivity k dependson the temperature u(z,y)
(Katsikadelis and Nerantzaki, 1999b). If we assume that k& = ko[l + B(u —
ug)/ugl, where ko, 3 and ug are constants, the governing equation is written as

kV3u+ B(ui +up) =0 (3.4)

Table 1. Temperature in a square plate with temperature dependent con-
ductivity

Position U

T y | DRM | Kirchhoff [ 7 =25 | MAE%/IQ | M = 2925
0.1 0.5 | 314.15 314.00 314.44 314.17 314.19
0.3 | 0.5 | 338.34 337.82 339.23 337.76 338.83
0.5 ] 0.5 | 358.49 358.11 359.51 3568.11 359.00
0.7 1 0.5 | 376.27 376.08 376.62 376.68 375.97
0.9 0.5 | 392.43 392.36 392.24 392.40 391.93

Numerical results for a square plane body with ko = 1, 8 = 3, up = 300
and unit side length 0 < z,y < 1 under the mixed boundary conditions
u(0,y) = 300, u(l,y) = 400, u,(z,0) = 0, uy(x,1) = 0 are given in Table 1
as compared with those obtained using the Dual Reciprocity Method and the
Kirchhoft’s transformation method.
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3.2. Determination of a surface with constant Gaussian curvature

A surface that passes through a skew closed space curve and has given

the Gaussian curvature K is determined from the following boundary value
problem (Katsikadelis and Nerantzaki, 1999b)

u=1u on [ .

where (2 is the domain surrounded by the projection I' of the curve on the z,y
plane. Numerical results for the square domain 0 < z,y < 5 with the boun-
dary conditions u(0,y) = /50 — y2, u(5,y) = /25 — y?, u(z,0) = V/50 — z2,
u(z,5) = V25 — 22 and the Gaussian curvature K = 1/50 are given in Table 2

as compared with the exact ones.

Table 2. Numerical results for u in Example 3.2

v =125 v = 3.75
AEM 1 Exact AEMJ Exact

0.25 | 6.92 6.95 594 | 598
0.75 | 6.82 6.91 5.81 5.94
1.25 | 6.70 6.84 | 5.68 | 5.86
1.75 | 6.56 6.73 5.55 | 5.73
2.25 | 6.40 | 6.58 5.39 | 5.55
2.75 | 6.21 6.39 5.18 | 5.32
3.25 | 6.01 6.15 | 4.91 5.03
3.75 | 5.71 5.86 | 4.59 | 4.67
4.25 | 5.39 5.51 4.20 | 4.22
4.75 | 5.03 5.08 | 3.68 | 3.65

3.3. The problem of minimal surface

This is the problem of determining a surface passing through one or more
non-intersecting skew closed space curves and having a minimal area. The
physical analog is the surface that a soap bubble assumes when constrained
by bounding contours (Plateau’s problem). The condition

min A = [(1 +u? + u?) dady (3.6)
2
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requires that the minimal surface u(z,y) is a solution to the following boun-
dary value problem (Katsikadelis and Nerantzaki, 2001)

(14 ud)uze — 2ugUyugy + (1 + ul)uy, =0 in (37

uU=1u on I’

3.8.1.  The catenoid

The minimal surface supported on two concentric circles lying at different
levels is known as the catenoid. The obtained solution for R = 5, z = 0 and
R =2, z = 3 is determined and it shown in a graphical form in Fig. 3.

Fig. 3. The catenoid

3.8.2.  Cross shaped membrane

The suface of a soap bubble that passes through a space curve, which is
an intersection of the cylindrical surface r = 5(sin? @ 4 cos*9), 0 < 0 < 2,
z 2 0, and the sphere 2% + 3% + 22 = R?, R =5 is determined. The obtained
surface is shown in Fig. 5.

3.4. Large deflections of heterogeneous orthotropic membranes

Consider a thin flexible initially flat elastic membrane consisting of a hete-
rogeneous orthotropic linearly elastic material occupying the two-dimensional,
in general multiply connected, domain {2 in the xy-plane bounded by the
K + 1 nonintersecting contours Iy, /[7,...,Ix. The membrane is prestres-
sed either by the imposed displacement %, v or by external forces Ty, 'fy
acting along the boundary I' = Uiz(‘;{ I;. Assuming nonlinear kinematic re-
lations, which retain the square of the slopes of the deflection surface, while
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4.0}

20 0 40

Fig. 4. Plan form of a cross-shaped membrane

Fig. 5. Cross-shaped membrane

the strain components remain still small compared with the unity, we obta-
in the following three coupled nonlinear differential equations in terms of the
displacements (Katsikadelis and Tsiatas, 2001c)

C C
(Cluarc +CU1y )9:1: +(Cl Qu:y +012U1m )1y = ("é—l'wai +§Tﬂ,§ ) )T “(Cl2w:m 'w:y )!y
C C
(Cg'v,y +CU,y ),y +(012u,y +C120,2 ),m =— (—23111,3 —}-Ew,z.. ),y —(Clgw,m W,y ),m
(33)
1 1
[Cl (uaz +§wai ) + C('U:y +"2'w132; )]wux:n +2[012(Uay +Vyz W,z W,y )]wmy +

+ [Cg (’u,y +%w,§ ) + (.?'(u,m +%w,£ ﬂw,yy = —g

subjected to the boundary conditions
T, =T, or u=1u
T, = Ty or V=70 (3.9)

Tew,g +Tyw,y =V or w=w



974 J.T. KATSIKADELIS

where v = u(z,y), v = v(z,y) are the in-plane displacement components
and w = w(z,y) — the transverse deflection produced when the membrane
is subjected to the load g = g(z,y) acting in the direction normal to its
plane. The position dependent coefficients C; = Ci(z,y), Cy = Cs(x,y),
C = C(z,y) and Cy9 = Cjo(z,y) characterize the stiffness of the orthotropic
membrane and are given as

Eh Esh
Clzl—ixu C2=1 ?/V
S =
C = ioh 21 Ciy = Gh

N 1—U1L/2 1 —1uw

in which FEy, E and vy, vy are the elastic moduli and the Poisson coefficients in
the z and y directions, respectively, constrained by the relation Fiv; = Fauvs,
and G is the shear modulus.

The analog equations in this case arc three uncoupled Poisson’s equations,

namely
V2u = by (z,vy) V2v = by(z,y) 3.11)
V2w = by(z, ) |

The fictitious sources are established using the same procedure with that for
one analog equation, and the displacements as well as their derivatives are
computed from the integral representations of the solution to the respective
Poisson’s equations.

3.4.1. Membrane of an arbitrary shape

In this example, a heterogencous orthotropic membrane of an arbitrary
shape is analyzed (N = 80, M = 61). Its boundary is defined by the cu-
rve 7 = 5|sinf|® + 6| cos 0|3, 0 < @ < 27. The membrane is prestressed by
U, = 0.05m in the direction normal to the boundary, while u; = 0 in the
tangential direction. The employed data are h = 0.002m, g = 3kN/m?
Ey = E/VA, Ey = EVA, v; =03, vy = Ay and G = E/2(1 + 11V)) whe-
re £ = 110000 + kr?, r = /22 + y? and k a constant. The contours of the
principle stress resultants N; for various values of k and A are shown in Fig. 6.

3.5. Nonlinear vibrations of membranes

The free and forced vibrations of a homogeneous isotropic membrane is
studied. The governing equations result from Eqs (3.8) by setting C| = Cy =
Eh/(1 —v?), Cy2 = Evh/(1 — v?), and including the inertia force pi in the
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L A R R e = oW B

R SR R S FO R P
¥

Fig. 6. Contour of N;j in an orthotropic heterogeneous membrane of an arbitrary
shape; (a) A =2,k =0; (b) A =2, k = 5000

third equation. Thus we have the following initial boundary value problem
(Katsikadelis, 2002)

1—v_. 1+ v 1—v 14+v
2 Vu + 2 (U +0,y )z = —Wg (w::.'::c T W,y ) - _Q—way W,zy
I-v_, I +v 1—-v 1+v
5 Ve + 5 (u3$ +0,y ):y = T W,y (wsyy +*””“§'"“'w=a:a: ) - 9 W, Wyay
. 1 1
pwa’{(u,z-l—?w,x) +v(fu —f-zw,ynw,m— (3.12)
_"C(l - V)(u:y +U;a: +w,, W,y )}U’amy -
1 I 5 .
C’[('U,y+2'w,y) +u( ,$+§w,$)]w,yy=g in {2
Tz = ﬁ. or U =1
T, = f or v=10 on I
Tow,e +Tyw,y = V. o w=1u (3.13)
w(z,y,0) = w
w(y ) ! in (2
'UJ'(.ZI?, y? = w@

3.5.1.  Square membrane

A uniformly prestressed (N; = N, = 2.514kN/m, N, = 0) squa.re
membrane (0 < z,y < a) is studied. The employed data are: a = 5.0m,
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h = 0.002m, E = 1.1 x 10°kN/m?, v = 0.3 and gy = 1.934kN/m?. The
results obtained with N = 100 and M = 49 are compared with those from
the one-term approximate series solution (Ivovich and Pokrovski, 1991), which
assumes w(z,y,t) = wo(t)sin(rz/a)sin(my/a). In Fig. 7 and Fig. 8 the results
for natural vibrations are shown for (i): w(z,y,0) = wosin(rz/a)sin(ry/a)
and w(z,y,0) = 0, (wg = 0.446); (ii): w(z,y,0) is the deflection surface
produced by the static load go and w(z,y,0) = 0.

s {——OMRFE&MPOKL(IWI)’_
d o A A A
s N R S /l
NANEAN SN
A RVARVEIRVARLVENLY,

-1.5
0 10 20 30 40 50
t[s]

Fig. 7. Central deflection. Case (i)

--@--[v.& Pokr.(1991)
AEM

1.0 b 17 ~
N (A I /\ WA
0.5[y /- I - — \
0 :: l‘ /L\*‘ ': ] " / ‘E '!l

-0.5-\ | ﬁ*; 3 / o ‘{ '\
Lo "Gr X:}L‘ Uf’ f‘.: W\

-1.5
0 10 20 30 40 50
r[s]

1.5

Wo / Winax

Fig. 8. Central deflection. Case (ii)

Moreover, in Fig. 9, the dependence of the period 7' (7j is the period of the
linear vibration) on the maximum amplitude is shown for both cases. It should
be noted that the approximate solution gives very good results in case (i).
Finally, the forced vibrations have been studied under the so-called ”static”
load g = got/2t; for 0 < t < t; and g = go/2 for ¢; < t, (¢, = 10s) with
zero initial conditions. The response ratio R(t) = w(0,0,t)/ws of the central
deflection is shown in Fig.10 as compared with that obtained by the one-
term approximate solution; wsg; is the central static deflection obtained by the
AEM solution. Apparently, the "static” load produces smaller deflections in
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the AEM solution than in the one-term series solution. Therefore, the increase
of the period in the AEM solution has been anticipated on the basis of Fig. 9.

Lo - - @--[v.& Pokr.(1991)
b K AEM case (i)
'S —*— AEM case (ii)
—~ 0.9 S0

08l - \\\

0.7 \“\k‘\,

NN

0.6 | '

0 50 100 150 200
wy /h

Fig. 9. Period versus maximal central deflection
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Fig. 10. Response ratio under "static” load

3.6. Plate with variable thickness on nonlinear biparametric elastic foun-
dation

Consider a plate with variable thickness h = h(z), @ : {z,y} € {2, resting
on nonlinear biparametric elastic foundation occupying the two-dimensional
multiply connected domain §2 of the z,y-plane, bounded by the K + 1 curves
Io, I, I, ..., 'k (Fig. 11). Its response is described by the following boundary
value problem (Katsikadelis and Yiotis, 2003)

DV'w + 2D, (V*w),; +2D,, (V?w),, +V2DVw — 314
3.14

—(1 = V)(D oz Wyyy —2D 3y Wy +D gy Wiza ) + p(w, Vw) = g(x)

arw + aV* (w) = ag Brw,, +B2M™(w) = B3 (3.15)
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where w(z) is the deflection, g(z) is the transverse load, p(w,V?w) a
nonlinear function of its arguments describing the subgrade reaction and
D = ER3/12(1 — v?) the variable flexural stiffness of the plate. Moreover,
a; = ai(z), Bi = Bi(z), x € I', are functions specified on I'; M*(w) and
V*(w) the normal bending moment and the effective shear force on the bo-
undary. The boundary conditions (3.15) are the most general linear boundary
conditions for the plate bending problem including also transverse and rota-
tional elastic support. All types of conventional boundary conditions can be
derived from (3.15) by specifying appropriately the functions «; and ;.

corner

domain £2
TN

corner
o

~corner k

Fig. 11. Plate gecometry and notation

Taking into account that the flexural rigidity D is a position dependent
function and using boundary curvilinear coordinates n and s, the operators
M*, V* appearing in Eqs (3.15) are written as

. 0? 0
MY = —D[V2+(V—1)(@+na—n)] 16)
. 0 a , 02 0
= _D[EEVQ_(”_l)%(anas“’*é})h
oD d? 0 oD 9? 0
+ %(U—*l)(anab—R-a-;)—a—n[vz'f'(y——-l)(@—{’ﬁ:%)]

in which k = k(s) is the curvature of the boundary.
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In the case of free or transversely elastically restrained edges, the boundary
conditions (3.15) must be supplemented with the corner condition

cpw + e [T (w)]) = ¢ co # 0 (3.17)

where ¢;;, are specified constants at the corner point a; and 7™ is the operator

s 0 ) (3.18)

T =D(1 - v)(—v‘——asan - n%

Thus, T*(w) is the twisting moment along the boundary and [T™(w)]; its
jump of discontinuity at the corner point z;.

It should be emphasized that for the biparametric foundation the free
boundary, in contrast to the clamped or simply supported, allows interaction
between the deflections of the foundation area under the plate and that of
outside it. Therefore the boundary condition (3.15); should be appropriately
modified on the following physical considerations (Katsikadelis and Kallivokas,
1988):

a) The deflection is continuous across the boundary I", while its normal de-
rivative is discontinuous.

b) The bending moment M*(w) vanishes on I

c) The jump of the shear force in the shear layer on I' is equal to the effective
shear force of the plate V*(w) on I.

The stress resultants at a point inside (2 are given as

My = —D(W,zz +vw,yy ) My = —D(w,yy +vW,zz )
May = D(1 ~ v)w, 510
Qs = —DV*w, —D,, (Wyzz +rw,yy ) — Dy(1 = v)w,gy
Q= *DVQw,y =D,y (w,yy +vW 50 ) — De(1 — v)W,qy
The analog equation of Eq. (3.14) is
Viw = b(z) (3.20)

Equation (3.20), indicates that the solution of the original boundary value
problem can be obtained as the solution of a linear bending problem for a
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plate having unit stiffness and subjected to fictitious load b = b(z) under the
given boundary conditions.

The unknown load distribution b = b(z) is established using the direct
BEM for thin plates with constant thickness based on the Rayleigh-Green re-
ciprocal identity after modifying it to include the natural boundary quantities,
i.e. the normal bending moment and the reaction force along the boundary.

The solution of Eq. (3.20) is written in integral form as

w(z) = / vb d2 + f WV (W) = wV (0) = vy M(w) + w, M(v)] ds +
1o r

(3.21)
L
+ Z[[’UT(w) —wT(v)];
=1
where
- i 2 _ _ T e 2
V=T Inr r =&~z { ccrl (3.22)
is the fundamental solution of the biharmonic equation and
0 o o, 0* 0
V=—[5" - =05 (5 7))
1L o ok %)
M=5M =-[v +(u—1)(5§+n%)] (3.23)
1., 02 %)
T =51 =0-9(55 ~*5)

are the operators that produce the boundary reactions of the fictitious plate,
i.e. the effective shear force, the normal bending moment and the twisting
moment along the boundary. Note that
1 1

V(w) = "“[‘)‘V*(w) - (V - 1)(111 D),s (wgsn “K’was) - 5(11’1 D)jn IVI*(TU) (324)
The fictitious load b(z) for the biharmonic operator is established following a
procedure analogous to that for the 2nd order operator. The particular solution
corresponding to Eq. (3.3) is obtained from the biharmonic equation

V4’lﬁj = f; j=12,...,. M (3.25)
which f; = V72 + ¢? yields
‘ : 1
W; = ‘“é In(eVr? + c2 + )3 (r? + ) + %05 In(evr? + ¢+ c*) - Eca *
(3.26)

l P G ]- v v 2 ‘ .
+ —=cr? - %c‘l\/r? + 4 —(r? + A2 4 —?\/(r2 + c2)3

225 45
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3.6.1.  Elliptic simply supported plate with quadratic thickness variation law

(a) Contours of h (b) Contours of ¥

Fig. 12. Simply supported elliptic plate with quadratic thickness variation on
nonlincar biparametric clastic foundation

A simply supported elliptic plate resting on nonlinear biparametric ela-
stic foundation, p = kow — kjw? — GV?w, has been analyzed. Its boundary
is defined by the ellipse z = acosf, y = bsinf, 0 < 6 < 27w. The thick-
ness variation law is specified by the function h(r) = (hg — ho)(r/R)? + hg,
0 < r < R, where hy is the plate thickness at the center of the plate and hp its
constant thickness along the boundary; R = /22 + 42 is the radial distance
from the center of the plate to the boundary. The contours of the plate thick-
ness are shown in Fig. 12a. The curvature of the elliptic boundary is obtained
as k(s) = ab/[a® + (b* — a®) cos 62]*/2. The plate is subjected to uniform load
g = go. The numerical results have been obtained for £ = 2.1 - 10°kN/m?,
v =203 X =211, \y = 3,5 =17, (AN = a/a/Dy/ki, s = a/a\/Dy/G,
i=0,1), ho =0.15m, hg =0.10m, N =80, M = 85. The computed deflec-
tions @ = w/(gob?/Dy), bending moments M, = M, /gyb* and the subgrade
reaction p = p/go are presented in Table 3. Moreover, the contours of the
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computed deflections @ = w/(gob*/Dy), bending moments M, = M,/gob?
and M, = M,/gob?* are shown in Fig. 12b,c,d.

Table 3. Deflections W = w/(gob?*/Dy) and bending moments
M, = M,/gob? at the center of an elliptic simply supported plate with quadra-
tic thickness variation (v = 0.3) on nonlinear biparametric elastic foundation

a/b Ao, A1, S ho/hp
1.0 1.2 1.5

Ao =211 | w |0.004384 | 0.004427 | 0.004455
1 A =3 | M, |0.012250 | 0.012060 | 0.011880
s=1T P | 0.997900 | 0.984400 | 0.970900
Ao =211| @ |0.013270 | 0.013590 | 0.013830
75/5| A\ =3 | M, |0.022110 | 0.020280 | 0.018550
s=17 p | 0.977400 | 0.9557600 | 0.937100

4. Conclusions

e As the method is boundary-only, it has all the advantages of the BEM,
i.e. the discretization and integration are performed only on the boun-
dary.

e Simple static known fundamental solutions are employed for both static
and dynamic problems. They depend only on the order of the differential
equation and not specific differential operator which governs the problem
under consideration.

e The computer program is the same for both static and dynamic problems
and depends only on the order of the differential equation and not specific
differential operator which governs the problem under consideration.

e The deflections and the stress resultants are computed at any point using
the respective integral representation as mathematical formulas.

e Accurate numerical results for the displacements and the stress resul-
tants are obtained using radial basis functions of multiquadric type.

e The concept of the analog equation in conjunction with radial basis
functions approximation of the fictitious sources renders BEM a versatile
computational method for solving difficult nonlinear static and dynamic
engineering problems for non-homogeneous bodies.
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Metoda analogowych wytacznie-brzegowych réwnan catkowych
w zagadnieniach statyki i dynamiki cial uogélnionych

Streszczenie

W pracy przedstawiono metode¢ réwnan analogowych (AEM), metode wylacz-
nie brzegowa, do rozwigzywania problemoéw statyki i dynamiki w mechanice oérodka
cigglego. W rozwazaniach uwzgledniono ciala uogélnione, tzn. obiekty, ktérych wia-
sciwosci mogg zaleze¢ od polozenia i predkoscei, a ich odpowiedz jest nieliniowa. Nieli-
niowos¢ moze wynika¢ z réwnan konstytutywnych (nieliniowo$é materialowa) lub by¢
nast¢pstwem duzych przemieszezen (nicliniowos$é geometryczna). Sednem prezento-
wanej metody jest zamiana nieliniowych i sprzezonych czastkowych réwnan réznicz-
kowych o zmiennych wspélezynnikach, decydujacych o odpowiedzi obicktu, ukladem
ekwiwalentnych zlinearyzowanych i rozprz¢zonych réwnan z fikcyjng funkcjg wejscia.
Funkcja ta okredlana jest za pomoca metody elementéw brzegowych, a rozwiazanie
pierwotnego problemu jest otrzymywane na podstawie catkowej reprezentacji rozwia-
zania problemu zast¢pezego. W celu demonstracji efektywnosei i dokladnosci metody
AEM zamieszczono szereg réznych przyktadéw z dziedziny statyki i dynamiki, ktére
rozwiazano tg metoda. '
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