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This elaboration considers the crack problems for infinite thermoelastic
solids subjected to steady temperature or heat flux. The crack faces are
assumed to be insulated. Green’s functions are obtained for the thermal
stress intensity factors of modes I and II. The Green’s functions are defi-
ned as a solution to the problem of a thermoelastic transversely isotropic
solid with a penny-shaped or an external crack under general axisymme-
tric thermal loadings acting along a circumference on the plane parallel
to the crack plane.
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1. Introduction

The penny-shaped crack in a temperature field was treated by Olesiak
and Sneddon (1960); the problem was symmetrical with respect to the crack
plane. The features of antisymmetry were presented by Florence and Goodier
(1963) in the linear thermoelastic problem of uniform heat flow disturbed by
a penny-shaped insulated crack.

In this paper, we consider the steady thermal stress in a cracked solid. The
problems of the crack treated here are solved by using two types of axisymme-
tric ring thermal loadings as fundamental solutions: a uniform heat flux and
temperature. The research is aimed at the assessing of the effect of dissimilar
thermal conditions on the stress intensity factors. The stress intensity factors
of modes I and II are derived in this study in terms of elementary functions.
The results presented for general cases are new, but some of those related
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to special cases of isotropic or transversely isotropic solids with crack surface
thermal loadings have been already known (cf. Olesiak and Sneddon, 1960;
Florence and Goodier, 1963; Rogowski, 1984).

2. Basic equations

The basic equations of axisymmetric thermal stress problems for homo-
geneous transversely isotropic bodies are the equilibrium equations (in the
absence of body forces)

1 1
Oppyr + Orzz + ;(O-rr - 000) =0 Orzg + 0222+ ;O-rz =0 (21)
the strain-displacement relations
Uy
Erp = Upy €0 = —
T (2.2)
€zz = Uz,z 267“2 = Up,z + Uz,
the constitutive equations
Opr = C11€pr + C12€99 + C13€2; — 1T
099 = C12€rr + C11€99 + C13€, — (1T (2.3)

0z = C13€rr + C13€00 + C33€22 — 03T
Orz = 2Cq46;2
and the heat conduction equation (steady state without heat generation)
Tyr+r7 T+ 57Tz =0 (2.4)

where partial differentiation is indicated by the comma followed by the va-
riables, c¢;; are the elastic constants of a transversely isotropic material,
81 = (c11 + c12)an + ci30,, B3 = 2¢1304 + ¢330, are the thermal stress coef-
ficients, «,. and «, are the coefficients of the linear thermal expansion in the
radial and axial direction, 5(2) = Ar/Az, Ar and A, are the thermal conductivi-
ties in the radial and axial direction. By substituting Eq. (2.3) into equilibrium
equations (2.1) and using relations (2.2), we obtain

1 1
C11 (ur,rr + ;ur,r - ﬁur) + CaqUy 2z + (013 + 044)uz,rz - ﬂlT,r =0
(2.5)

1 1
C44 (uz,rr + ;uz,r) + C33Uz 22 + (Cl3 + 644) (ur,rz + ;ur,z) - ﬁ3T,z =0
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To solve partial differential equations (2.4) and (2.5) we introduce potential
functions which relate to the displacements as follows (Rogowski, 1978)

= (k(pl + @2 + (PO),T Uy = (@1 + k<P2 + lﬁPO),z (26)
and the Hankel transforms defined as follows
uy = /u,«rjl(fr) dr /quJo &r) d (2.7)
0 0

where ¢ is the Hankel parameter and J,({r) denotes the Bessel function of
the first kind of order v. The Hankel transform is its own inverse.
The potential functions must satisfy the following equations

irr + %Soi,r + siz%‘,zz =0 1=0,1,2
‘ (2.8)
P02z = Mng
where s = \./\., s? (i = 1,2) are the roots of the equation
c33cans® — [er1css — ciz(e1z + 2caa)]8 + cr1c44 = 0 (2.9)
and k, [, M are the material parameters defined as follows
b - 3387 — Cua - 51(0132-1- Caq) — 53(0121 — steaa)
€13 + Caq B1(ca3s5 — caa) — Pasg(ciz + caa) (2.10)

_ B1(c33s3 — cas) — B3st(c1z + caa)
83(613 + c44)? — (11 — 8(2)644)(63383 — C44)

The thermal stresses components o, and o,, are represented as follows

0. = G(k+ 1) (57201 + 85 202) 20 + G M(1 +1)T o)

Orz = Gz(k + 1)(801 + 302),rz + Gz(l + Z)SOO,rz

where GG, = cyq is the shear modulus along the z-axis.

The stress components o, and oy may be similarly expressed.

Consider an infinite transversely isotropic elastic solid containing a penny-
shaped crack with its diameter 2a or an external crack covering the outside of
a circle of the radius a, as shown in Fig. 1. Denote by (7,0, z) the cylindrical
co-ordinate system with its origin at the middle point of the penny-shaped
crack face or of the bonding region, respectively. The thermal loading con-
ditions (Fig.2 and Fig. 3) may be decomposed into symmetrical (Fig.4) and
antisymmetrical (Fig. 5) with respect to the crack plane.
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Fig. 1. Thermoelastic solid with a penny-shaped or external crack under thermal

loadings
z4
T,
3 O(r-b) S(z-h)
nl 2
0 i

Fig. 2. Temperature loading acting along a circle

zA 0y

3oy S(r-b) S(z-h)

-
0 2

Fig. 3. Axial heat flux acting along a circle



FUNDAMENTAL SOLUTIONS RELATED TO THERMAL STRESS...

245

2
h ‘lQ"
————————— To/2
________ | 1}3—7
_________ To/2
h
Q,/2

2

h gQQ/

""""" To/2
-------- —
a b "

iQO/Z

""""" -To/2

i To/

Fig. 5. Antisymmetric thermal loadings

3.

Temperature field

For a uniform temperature and heat flux applied along the circumference
r = b on the plane z = h, the thermal loading conditions are

T(r,h+0)—T(r,

T.(r,h+0)—T,(r,h—0)=

h—0)= 4T—O (r—10)
o (3.1)
Qo
477)\Z7“5(r -t

where &(r — b) is the Dirac delta function and Tj, Qo are the constant tem-

perature and heat flux, respectively.
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Applying the Hankel transforms to Egs (2.4) and (3.1 a,b), we find the
temperature as follows

_ / Ay (€)e50% Jo(¢r) de +
0

o0

1

-, / EvoHo(€502) — v H (E502)] Jo (€0) Jo (€7) dé 23>0
0

where
Ho(€s9z) = sgn (z — h)e &0z _ (_1)iHie=Eso(zth)

Hl(fsoz) = e—fso\z—h\ + (_1)i+je—§so(z+h)

1 for z>h
sgn(z—h):{ -1 for z<h
Y :E v = @o

0 47 ! 47T)\ZSO

for symmetric (¢ = 1) and antisymmetric (¢ = 2) thermal loading conditions,
and where A;;(§) are unknown functions which may be determined by using
the mixed thermal boundary conditions on the plane z = 0, where the penny-
shaped crack (j = 1) or the external crack (j = 2) appear.

It is assumed that the crack faces remain insulated. The thermal conditions,
therefore, are

T.=0 re A =0 (3.3)
and N

T.=0 re A z2=0 (3.4)
or -

T=0 re A z2=0 (3.5)

where A, and A, are the crack region and its complement, respectively.
Condition (3.4) corresponds to the symmetric problem, while condition
(3.5) corresponds to the antisymmetric one.
Thermal conditions (3.3) and (3.4) or (3.5) yield:

(i) For the penny-shaped crack and symmetric temperature field

An(f) =0 (3-6)
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(ii) For the penny-shaped crack and antisymmetric temperature field
[ @ hler) ds == [ g + e eI 0(en . 0<r <a
0 0
[ An(€)o(er) d =0 r>a
0
(iii) For the external crack and symmetric temperature field

A2(&) = — (1€ + v1)e 50 Jo (€b) (3.8)

(iv) For the external crack and antisymmetric temperature field

[ Aaa(©her) de = [ +m)e () (e ds 0<r<a
0 0

[ €42 an(6r) de =0 r>a
’ (3.9)
Both solutions (3.6) and (3.8) give the temperature field
T(r,2) = 5 [ Jo(€0)Io(er)
’ (3.10)

.{(yog sgn(z —h) — yl)e%so\z—h\ — (vo€ + 1/1)67530(”’1)} de

related to the symmetric thermal loading conditions of the solid with the
penny-shaped or an external crack.

Dual integral equations (3.7) are converted to the Abel integral equation
by means of the following integral representation for As;(£) (Noble, 1963)

Ay = \/g/ago(x) sin(éx) dx (3.11)
0

on the assumption that go(x) — 0 as z — 07.
This representation of Ay (€) identically satisfies Eq. (3.7)2 (see Appendix,
Egs (A.1) and (A.9)).
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Substituting Ag;(€) into Eq. (3.7); leads to the following Abel integral
equation in an auxiliary function go(z)

\f/ ) Ny )dx— /5 W€ + 1) Jo(€r) Jo(Eb)e ™M dE (3.12)

Applying the Abel solution method to invert the left hand side of Eq.
(3.12) gives the formula for go(x)

—@ [ (€ + 1) sin(€a) Jo(€b)e €0 d (3.13)
0

The improper integrals appearing in Eq. (3.13) are calculated analytically
(see Appendix, Egs (A.1) and (A.2)). Consequently, the auxiliary function
go(z) is obtained in terms of the oblate spheroidal co-ordinates (y and 7y,
defined in the Appendix, as

go(x) = \/2[ dw(CO ) - <l77700)} - (3.14)

2
= _\/;{Vom[(l — )R — ) + 231+ )]+ Do}

where
Do = z(¢5 +n3)

Finally, the temperature field is obtained as

2 7 ¢
T(T’Z):;/{yd (DOO) (g—%)}%du’c—i—

(3.15)

[ / [vosgn (z = h) — vale” S0 g (v + wn)emS0CT g, (6b).Jo (€r)de
0

where
D =u(C®+n%)

and where the oblate spheroidal co-ordinates (, n are associated with r, sgz
and z, while (y, o are associated with b, sph and x (see Appendix).
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Dual integral equations (3.9) are converted to the Abel integral equations
by means of the following integral representation of Agq ()

Aga (& \/7/]"0 ) cos(éx) dx (3.16)

In this representation the auxiliary function fo(z) is assumed to be conti-
nuous over the interval [0, a]. This representation of Ag (&) identically satisfies
Eq. (39)2

Substituting Asy(§) into Eq. (3.9); leads to the following Abel integral
equation in an auxiliary function fy(x)

\/7 / m dx = 0/ (Vo€ + v1)e 5" Jo (7). Jo (£D) dE (3.17)

Applying the Abel solution method, give the formula for fo(z)

x) = \/%O/(Vof + vy)e 550N cos(€x)Jo (£D) dE (3.18)

Substituting the integrals (A.1) and (A.2) (see Appendix), gives the final
solution for fy(x)

2r d q
fo(w)Z\[[ dm(g(;)* DOO}_ (3.19)

2
. \/;{Vom[(l + (G —mp) + 265 (1 —m3)] + Vlé_oo}

For the external crack in the antisymmetric temperature field the tempe-
rature is obtained as

T(r,z):g/[ d‘i(ﬁo>+ ZCDOO} $ e+

(3.20)

+1 / [WoEsgn (z — h) — 1y]e 80 =R — (e + yl)e*580<z+h>}Jo(gr)Jo(gb)dg
0
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By using the superposition of two thermal fields (3.10) and (3.15) or (3.20),
we obtain

T(r,z) = %/[1/0%(]3—00) - 1/1]_77)—00}% dx +

’ (3.21)
+ [[Ioo€sgn (= = ) = wilem =My (€) o er) ds 220
0
for the penny-shaped crack and
2 fr o d 70 G1¢
T(r,z) = ;/[VO@(D—O) + VlD_O}B dx +
’ (3.22)

+ / {Ivo€sen (= = h) — wile S0l — (g 4 wy)e €04 Lo (eb) Jo ) de
0

where z > 0, for the external crack.

4. Thermal stresses

Considering Eqgs (2.8) and (3.2), we find the potential functions (z > 0)

polr,2) = M [ €2{ (e 0 +
0

+ 500 Ho(Es02) — 11 H(€507)]Jo(€0) } Jo(er) de

52

k + 1)(81 — 82)

oir7) = g [ Bu© e aen & @)
0

S1
k + 1)(81 — 82)

oa(r,2) = & / €V By (€)e 62 Ty (€r) de
0

Substituting Eqgs (4.1) into Egs (2.6) and (2.11), we obtain (z > 0)
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(ryz) = —M/f —§s0z 4
+%[V05H0(5802) - V1H1(580z)]J0(§b)}J1(§r) dé —
1 [ —G8S1%2 —£s2z
R R E— O/ (ks Brj (€)™ — 1 By (€)o7 | (6r) d

(4.2)

uy(r,z) = —Msol/ﬁ_l{Aij(f)e_gsoz +

50 H (E02) — 11 H (€502)1J0(€0) } Joer) d ~

5152

TGL(k+ 1) (51— 52) [ [Bs@e e kB @] e de
0

o
0.:(r,2) = G, M(1+1) / _5502
0

4500 Ho(Eso2) — 11 Ha(€502)1Jo(€0) } Joler) dé +

[ €lsaBui@re 1" = siBoy(©e¢ (e de

o 0 (4.3)
ors(r,z) = G.M(1+1)sg —€s0z
[t
1[1/051{0(580»2) - V1H0(5802)]J0(§b)}J1(§7a) dg +
Yo a / €[ Buy ()05 = Boj(€)e™*= | Tu(er) d
where
H}(€s0z) = e &olz=hl _ (_1yitig=Eso(=+h) »

H{(g.SOZ) = sgn (Z — h)e—fso\z—h\ + (_1)i+je—§80(2+h)
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The crack problem must be solved under the following conditions

2 (r,0) = 0 r>0
0..(r,0) =0 re 4,3 (4.5)
uy(r,0) =0 re A,

for the symmetric thermal condition and

0..(r,0) =0 r>0
0. (r,0) =0 re A (4.6)
up(r,0) =0 re A

for the antisymmetric thermal condition.
Conditions (4.5); and (4.6); yield, respectively

Bay(§) = Biy() + G:M(1+ (2 = 2)¢™!
S (4.7)
{4150 + 5 00€ + )1+ (~17]Jp(b)ee0"}
Baj(€) = ZBij(€) + G- M1 +1)(1 - 2)e !
*1 *1 (4.8)

{A25(0) = S0 + )1+ (~1)7]Jp(b)e 40"}

The displacements and stresses meeting mixed boundary conditions (4.5)2 3
and (4.6)2,3 on the plane where the crack appears are

o0

MS()(k—l)
k+1

JO f?“ df"i‘
0

61 {A15(6) + € + )L+ (—1)7Je SR (€)oo er) de

0\8

[e.9]

0.2(r,0) /531] ) Jo(€r) dé + G M(1 +l>0/{(1 - 2) 44,06 -
— €+ )14+ 2 — (1= ) (a7 fen ety (e) () de

(4.9)
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w(r,2) =~ g / Biy (€)1 (er) de
R e g6 — vt + )L+ (1P Je o (e0) |6 de
0

UTZ(T z —82/531] Jl(fr) dé+ G, M 1+l / So — S92 Agj
0

—i—%(l/oﬁ + v1)[s0 + s2 — (s0 — 32)(—1)]]e_§5°hJ0(§b)}Jl(@“) dg

where
(kﬁ + 1)(81 — 82)

¢= (k‘ — 1)8182

(4.10)

5. Mode I loading

The Mode I crack problem corresponds to the symmetric thermal loading.
The penny-shaped crack problem is obtained for j = 1 and the external crack
problem is obtained for j = 2.

5.1. The penny-shaped crack problem

Substituting Eqs (4.9)1 2 into boundary conditions (4.5)2 3 and using that
A11(§) = 0, the following dual integral equations are obtained

[ eBu@nler) ds =

0 - 0<r<a(51)

= ~GM(1+1) [[(n€ + )0 Ty (6b) ofer) de
0

/BH@NM&ME:O r>a (5.2)
0

Dual integral equations (5.1), (5.2) are converted to the Abel integral equ-
ation by means of the following integral representation of Bjj (&)
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Bue) = /2 / o(a)sin(¢x) di (53)
0

on the assumption that g(z) — 0 as z — 07.

This representation of Bji(§) identically satisfies Eq. (5.2). Substituting
By (€) into Eq. (5.1) leads to the following Abel integral equation in an auxi-
liary function g(x)

S L

— _G.M(1+1) / Vo€ + v1)e S0 T (€b) Jo () de
0

(5.4)

Applying the Abel solution method to invert the left hand side of Eq. (5.4)
gives the formula for g(z)

—\EGZMQ +1) / vo + 1€ 1)e 800 1o (6b) sin(Ex) dE (5.5)
0

The improper integrals appearing in Eq. (5.5) are calculated analytically
(see Appendix, Egs (A.1) and (A.3)). Consequently, the auxiliary function
g(x) is obtained explicitly in terms of the oblate spheroidal co-ordinates (o
and 7y (see Appendix) as

\/7GM1+Z ) [vo (Co PRI 1(§—tan 16)] (5.6)

The singular part of the axial stress is given by the formula

0..(r,0) =

e

Defining the stress intensity factor of Mode I as

K= lim+ \/2(r —a) o,,(r,0) (5.8)

r—a

one obtains

- o T ian!
Ky = G.M(1+1) [”Oa@g = + y1(2 tan~" Go )| (5.9)
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where (), 7, are obtained from (g, 7o for z = a (see Appendix).

Solution (5.9) contains three other problems as special cases, namely:
(i) h=0and b < a, (i) h = 0and b > a, (ili)) b = 0. We can dedu-
ce the results for these three cases from equations (5.9), (A.8) and (A.9) for
x = a. The results are given in Table 1.

5.2. The external crack

The dual integral equations of the external crack problem are

/312(5)J0(5r) dé =0 0<r<a (5.10)
[ Bu(©dnler) de =
0 r>a (5.11)

= -G, M(1+1) / Uo€ + v1)e S50 T (€b) Jo (€) dE
0
For the temperature loading we use the integral representation of Bja(€)
2 a
Ba(€) = \/j/f(x) cos(éx) dx — G, M (1 + Dge 550" Jo (€b) (5.12)
0
0

and find the Abel integral equation in an auxiliary function f(x)

\E(ﬂ%) dr = G.M(1 +l)uo/e*€sohJo(5b)Jo(5r) ¢ (5.13)

0

The solution for this equation is
2 oo
_ \/;GZM(l + D / o €90 T, (€b) cos(€x) de (5.14)
0

Substituting the analytical expression for the improper integral (Eq. (A.2)
in the Appendix), we get

o

2
f(z) = \/;GZM(l + l)VOm

(5.15)
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The stress transmitted through the neck is found to be

0..(r,0) \/7 / —_— 5.16
= T L (.16
Defining the stress intensity factor of Mode I as
Ky = lim y/2(a —71)0,.(r,0) (5.17)
r—a~

one obtains _

2 Co
Kr = ——=G.M(1 + l)ry—;y (5.18)

ma a(Co +713)

where (, 7, are the values of (p, 1o for = a (see Appendix).
For the heat flux problem we use the integral representation of Bia(§)

Bu© =2 [ hiw) [ cos(ea)] e — GM(1+ g~ )
0

(5.19)
This representation identically satisfies Eq. (5.11) associated with the heat
flux and converts Eq. (5.10) to the Abel integral equation

a2 T ] -

(5.20)
=G, M1+ 1) fg—le—fsohJo(gb)Jo(gr) d¢
Applying the Abel solition method we obtain
i)+ 2 / Si(u / sin éu);OS(Sw) dg} du —
(5.21)
\f M(1+4 Dy / £ teE%0h Jo(€b) cos(Ex) dE
We use the integral
7Sin(fu)€COS(€$) it — gH(“ — ) (5.22)

0
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where H(-) is the Heaviside unit function.
Then we have

—fi(x)+ / ! 115“) du = \EGZM(HZ)V1 / £ le50n Iy (€b) cos(Ex) dE (5.23)
T 0

It is seen that the integrand in the improper integral is unbounded as
& — 0. This improper behaviour at ¢ — 0 can be removed by adding to both
sides of Eq. (5.23) the value of f;(0), obtained formally from this equation.

After adjusting the improper behaviour at £ — 0, Eq (5.23) becomes

/—— o fi(z)] dz = \[G M(1+1) 1/1/ CZS(’S”C) e S0k o (eb) de (5.24)
0

The improper integral in Eq. (5.24) has an analytic expression given by Eqs
(A.5) and (A.6) in the Appendix.
We use the following relationships

xT

1 —cos(&x . 1d sin(&x
% = O/sm(ﬁx) dx = /5@[2( 5(:6 ) _ cos(ﬁx))} dx  (5.25)

and integral (A.4) from the Appendix.
Then, the solution to Eq (5.24) is obtained in the form

_ \/gGZM(l + D1 - go(g —tan"! ¢y )| (5.26)

It is noted that fi(z) tends to zero as z — 0.
The stress transmitted through the neck is found to be

: X
T @{w% [ (2) \/xgﬁ -

(5.27)
5 filz) dx }
T 2
The stress intensity factor of Mode I is given by
2 _ = (T 1=
Ki= =G M(1+ D[ 1 - 40(5 — tan~' )| (5.28)

where (,, 7, are the values of (o, 7o for z = a (see Appendix).
In special cases, K7 takes the values which are shown in Table 1.
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6. Mode II loading

6.1. The penny-shaped crack

The dual integral equations are:
—for 0<r<a

[eBu©nien s -

’ (6.1)
_ ! 50 ,—&soh

— G.M(1+1) / o = 1) An(€) + (o€ ) e I(ED) | T er) de

0
—for r > a

[ Bu@nen ag = -EEEL (&) / A1 () dE (6
0

The integral representation of Bii(§)

%(3—1—1)5_1&1(5) (6.3)

52

Buu(©) = VE [ Vah(a)Jya(6e) da -
0

on the assumption that /zh(z) — 0 as x — 0T, satisfies identically Eq. (6.2),
while Eq. (6.1) is converted to the Abel integral equation

\/7/ d[zh(z 1_962)‘“:

—GMT{[ 5(5—1—1) (1+5)——1 /A21 )J1(Er) dE — (6.4)

-1

~(1+1) z—g 0/ vo€ + v )M Jo (€0). 1 (€r) dé }
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The solution to this equation is

h(z) = \EGM{[%(% —1) -1+ l><§—§ -1

7 d ;—sin(&x)

[ A ()Y e (65
/ (=2

-a +-Z>§§-gf<uo<+»ulg1>e580th<5b>[Sif§§“” — cos(éa)] e}

Integrating the first integral in Eq. (6.5) by parts, substituting A (§) and
go(z) from Eqs (3.11) and (3.13) and substituting for the second integral the
analytical formula (see Appendix, Eqs (A.2), (A.3) and (A.4)), lead to the

following exact formula for h(x)

h(z) = \EGZMQ +z)8—“2 :

(6.6)
v (T 1 o m -1
4— = —tan — +v — — tan -1
{x(2 <o C§+U8) 1770[C0(2 Co) H
where
k—1 S1 — S92
A Ry (6.1)
The singular part of the shear stress is given by
2 h
orz(r,0) = — ;77“82*:2 (—azﬁ as r—a’ (6.8)
The stress intensity factor of Mode II is obtained as follows
K= 2 G, M(1+1)
vy (T 1= ZO —_ |= 7T —17
Vo5 —tanT (o — + g |Gol 5 —tan™ " (o) — 1
26 ) REUUCIC ) -1}

In special cases Ky, takes the values which are shown in Table 1.
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6.2. The external crack

The dual integral equations are: — for 0 < r < a

[ Bua(&)her) dé =
0 (6.10)
= - CEED (2 0) [ [Aaale) — (06 + m)e S (&) T (er) e
0
—for r>a

[ Bu©n(er) d =

0 (6.11)

— _G.M(1+1) / 20— 1) Aa(€) + (o€ + 1r)e Mo (€b) | J1 (€r) de

0
The integral representation of Bja(€)
Bi12(§) = \/g/t(:c) sin(éx) dx —
0 (6.12)

—GM(1+DE (22 = 1) An(€) + (v + 1) 0" o (€1)]

52

gives the Abel integral equation

\[/ m =G

'{[H(_—l) (1+l)(8—0—1 /f YAgo (&) J1(€r) d€ —  (6.13)

—{% ——1 +1+l /1/0+1/1§ )e 5500 Jo (€b) Jy (€7) dﬁ}
0
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The solution to this equation is

e
s

.{[ﬁ(z_;_l) a+0(2-1)] / ¢ A (&) sin(éa) dE — (6.14)

k1 52
_ [ﬂ (22 -1)+1+1 71/0 + €S o (€b) sin(Ex) dé |
kE—1\sy 0

Substituting Ags(€) from Eq. (3.16) and fo(z) from Eq. (3.19), integrating
and using Eqgs (A.1) and (A.3) from the Appendix, we obtain

\/7(; M1+ [yo (Co )+y1(g—tan 140)} (6.15)

The singular part of the shear stress is

2 rt
our(r,0) = ;a\r/% as r—a (6.16)

The stress intensity factor of Mode II is obtained in the form

2 o ™ 1=
Kip=——GM(1+1 _— — — 6.17
n RGOl (G e G e

where the oblate spheroidal co-ordinates ¢, 7, are calculated for = = a.
In special cases K7y, takes the values presented in Table 1.

7. Applications

The exact solutions have been presented for the stress intensity factors
of Mode I and II at the tips of the penny-shaped crack and external crack
under thermal loadings. These solutions are obtained explicitly in terms of
elementary functions. For any axisymmetrical distribution of thermal loadings
of the medium with internal or external cracks the integration and/or simple
superposition of the obtained results can yield the stress intensity factors.
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When the cracked solid is subjected to temperature T'(r,z) = Tot(r, z)
and/or heat flux Q(r,z) = Qoq(r, z), then the components K; (i = I,I1) of
the stress intensity factor may be calculated as follows

K; = /[t(r, 2)Kio(r,z) + q(r, 2) Ki1 (r, 2)] AV (7.1)
|4

where V denotes the domain volume of the thermally loaded region and
Kio(r,z), K;1(r,z) denote the stress intensity factors when the temperatu-
re and heat flux ring loading (index 0 or 1, respectively) act along a circle
(r,z) of the radius r on the plane z (the co-ordinates b, h should be replaced
by r, z in the obtained results).

We now proceed to consider some specific cases of thermal loadings, when
the temperature T/2 and the heat flux (y/2 are applied on the planes z =
+h in an annular region b < r < ¢ symmetrically or asymmetrically with
respect to z = 0 plane.

Then, equation (7.1) yields

c

K; = 27r/[KZ-0(r, h) + K1 (r, h)]r dr (7.2)
b
where

in the oblate spheroidal co-ordinates 2 = a?(1 + ¢?)(1 — n?), soh = a{n and
Kio(r,h), Ki1(r,h) are presented in those co-ordinates.

Example 1: Consider the case of the temperature loading T(/2 on the planes
z = +h in the annular region b <r < c.

From equation (5.8) and (5.18) we obtain:
— for the penny-shaped crack (0 <r < a)

n(c)
Tt
K[:_ OﬁGZM(l—'—l)/CQZUQ(

T
n(b)

RSEE/s
1

)in-

(7.3)
— TO*/EGZM(l +0)[n(b) —n(c)]

™
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where

1
n(r) = o2 \/\/(r2 + s3h2 — a?)? + 4a?s3h? — (r? + sih? — a?) (7.4)
a

— for the external crack (r > a)

10
_ Tya ¢ G+t
K[— u GZM(1+Z)££ <2+772 C dC_
(7.5)
— _TOfGZM(l +1)[¢(c) = ¢(b)]

where

1
C(r) = —\/5 \/\/(r2 + s3h2 — a?)2 + 4a2s3h? + r? + s3h2 — a2 (7.6)
a

Since for real materials G,M (14 1) < 0, the cracks open if Ty > 0.
In special cases, K assumes the values:

— for the penny-shaped crack

1 for b=0 c¢— o0
I for b=0 c finite

K —Al 1 for h=0 b=0 c=a (77
\/a2—b2—\/a2—02 for h=0 b<c<a
0 ’ for h=0 b>a  c>a

— for the external crack

C(c)—M for b=0 c finite
a
_ 2 _ g2 — /12— 2
Kp=Ay Ve —a a\/b T for h=0 a<b<e (7.8)

0 for h=0 b<a c<a

where T

A= - OﬁGZM(Hz)
T

When the temperature change takes place in the plane of the crack but
outside of the crack surface, then K are zero. For the penny-shaped crack
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and temperature change over the crack surface 0 < r < a, h = 0 or on the
plane z = h, r > 0, the stress intensity factors are equal. Note that, if the
temperature is applied in an infinite region r > 0 on the planes z = +h, the
K7 is independent on h for the penny-shaped crack problem.

Example 2: Consider the case where the heat flux of the intensity Qo/2 is
applied on the plane z = h in the annular region b < r < ¢, and the
opposite heat flux (—Qy/2) acts on the plane z = —h.

From equations (5.8) or (5.18) we obtain:
— for the penny-shaped crack (0 <r <a)

Qo GZM(l—H)/C m 1
K = — — =
I T/a 5o (2 ta C)r dr
(7.9)
Qoan/a G.M(1+1
- - e CE0)
™ 250
where )
T -1 ¢ 1—n
—_ (2 _ . 1
F) = 55 (5 — tan C+1+§21+n> (7.10)
and (, n are defined by equations (7.4) and (7.6), respectively
— for the external crack (r > a)
B QOGM1+l/soh . B
Kr=- ra .50 — tan C) n}rdr—
’ (7.11)

:_%mﬁaﬂﬂrwqﬂgﬂ@_ﬂm+q@—qm+

T =S80 a

where f(r), n(r), ((r) are defined by equations (7.10), (7.4) and (7.6), respec-
tively.

Example 3: Consider the case of the temperature loading Tj/2 on the plane
z =h and (—Tp/2) on the plane z = —h applied in the annular region
b<r<e.

From equations (6.9) or (6.17) we obtain:
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— for the penny-shaped crack (0 <r < a)

ToVa G M1+ DKL) — FB) — C(@) + ¢ (712)

™

Kir=—

where f(r) is defined by equation (7.10) and ((r) by eqation (7.6)

— for the external crack (r > a)

Krr = TG M 4 Dsoln(®) — n(o)] (7.13)

7r
where 7(r) is defined by equation (7.4).
Example 4: Consider the case where the heat flux of the intensity Qo/2 is

applied on the planes z = +h in the z-direction over the annular region
b<r<e

From equation (6.9) and (6.17) we obtain:
— for the penny-shaped crack (0 <r < a)

Ko = = PG a1 P (10) - £6) + <))+ 20— 0]}
(7.14)

— for the external crack (r > a)
K7 = LG M+ DslF(0) - F0) (7.15)

where f(r), n(r), ((r) are defined by equations (7.10), (7.4) and (7.6), respec-
tively.

In above examples, the loading was either symmetric or asymmetric with
respect to the crack plane.

Thus, one can superpose solutions to obtain the solution for a thermal
loading on one half-space only.

Defining the stress intensity factors as follows

™

2G.M(1 + 1)v/a

Ki=Krr (7.16)

the formulae for the special cases of thermal ring loadings are summarized in
Table 1.
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Table 1. Values of the stress intensity factor in [K/m?] (x is defined by
Eq. (6.7))

K Ky,
Case of loading
To y Qo y Ty " Qo
4dma? AT\ ,s00a 4dma? AT\, S0a
. J0.Qo _a o _T. \/"41,{
b a V ./41 2 2 a
Ty,Q0 T0,Q0 a
° . 0 —A K _ A 0
g — 2 ( — 2)
2
e a soha soh
nTo,Q0 h I A, ,.;( o —A4) ,.@(1 _ 7A4)
TOJ.QO To.,Qo 0 VAL asgo ESO
ab ba a VA
75,Q0 a
- 0 0 spA
ab v—=A1 022
. ha soh S0a>
h)TOJQOh —SO 1 i LA 0 s A
a ./43 a 4 “43 034
where
Ay =a® = v? A3:a2+s%h2
. —1 a —1
— — — t -
Ag = sin 2 Ay = tan o

All of the results obtained before are valid for isotropic solids, provided
that we take

so=81=8=k=1 ap =y =«
E
51:53:1 O; l=—-3+4v
X e ) (7.17)
M:m o— ¥
2(1—-v) 1-2v
1—2v
M(1 =——F
G.M(1+1) 50 =) a

where F is the elastic modulus, and v is Poisson’s ratio.
The limits were computed according to de L’Hospital’s rule.
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A. Appendix

The following integrals are used to evaluate the auxiliary functions appe-
aring in this paper

T . —&soh _ o

0/ () sn(er)e €0 de = s (A1)
I —Esoh e Co

O/Jo(fb) cos(&x)e d¢ = 730((3 ) (A.2)
/ %Jo(gb) sin(£x)e %M d¢ = g —tan"' ¢ (A.3)
0

71 sin(&x) —esoh ™ ~1

| g0(en) (FE — coste))em " dg = mo[1 - o — tan” )| (A)
0

11— cos(€x) _en 1 T4 L=

0/ ) dg—gln(l_nol_ir%) (A.5)

(A.6)

The oblate spheroidal co-ordinates (p, 19 are related to b, sg, h, by the
equations

I x2(1 + Cg)(l — 778) soh = x(ono (A.7)

where —1 <1np <1 and (y > 0.

The surfaces (p = 0 and ny = 0 are the interior and exterior of the circle
b=z, h = 0, respectively; here therefore

0 for h=0 b<zx
b2
Co = —2—1 for h=0 b>z (A.8)
z
Soh for b=0
x
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b2
1—— for h=0 b<zx
x
=30 for h=0 b>ux (A.9)
1 for b=0

The co-ordinates (g, 19 for = a are denoted by ZO, 7o The co-ordinates

for b =r, h = z are denoted by (, n and those for x = a by (, 7.
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Rozwigzania podstawowe dla termicznych wspoétczynnikéw intensywno$ci

naprezenia typow I i I1. Zagadnienie osiowo symetryczne

Streszczenie

W pracy rozpatrzono zagadnienia szczeliny dla nieograniczonego termosprezyste-

go ciata stalego poddanego dziataniu ustalonej temperatury lub strumienia ciepta.
Zalozono, ze powierzchnie szczeliny sa termicznie izolowane. Otrzymano funkcje Gre-
ena dla wspélezynnikéw intensywnodci naprezenia typéw I i II. Funkcje Greena zde-
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finiowano jako rozwiazanie zagadnienia termosprezystego, poprzecznie izotropowego
ciala z kotowa lub zewnetrzng szczelina, gdy na plaszczyznie rownoleglej do plasz-
czyzny szezeliny dzialaja dowolne osiowo symetryczne termiczne obciazenia w postaci
ustalonej temperatury lub strumienia ciepta, roztozonych na okregu.
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