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A thin-walled spherical shell is pivoted at both edges. One of the edges
may rotate around the shell axis. Moreover, it is loaded with a torque.
The problem of shell stability is considered. The system of equations cha-
racterizing the problem consists of a non-linear equation of equilibrium
and non-linear compatibility equation. Both equations are solved with
Bubnov-Galerkin’s method, assuming beforehand the form of deflection
and force-functions. As a result of the solution, an algebraic equation is
obtained, with respect to a dimensionless load parameter. The critical
load parameter corresponding to the minimal critical load value is deter-
mined from this equation. The number m at which the load parameter
has the minimum value determines the mode of stability loss. The paper
is supplied with a numerical example.
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1. Introduction

A thin-walled spherical shell, being a subject of the analysis, is shown in
Figure 1. Its bottom edge is fixed and pivoted. The upper edge is also pivoted,
but may rotate around the vertical axis of the shell. The upper edge is loaded
with a rotational moment. The problem of the loss of stability is considered. In
order to solve the problem, non-linear stability equations are applied, defined
in the monograph by Mushtari and Galimov (1957). The system of equations is
solved with making use of Bubnov-Galerkin’s method with deflection functions
and force functions assumed in advance. The final goal is the determination of
the critical load. As the problem is very complex, only obtaining a numerical
solution is possible.
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Fig. 1.

2. Equations of the stability problem

The system of stability equations takes the following form

∇
2
∇
2Ψ = Eh(κ212 − κ11κ22 − κ11k22 − κ22k11)

(2.1)

D∇2∇2w + 2Sκ12 + T1(k11 + κ11) + 2Sκ12 + T2(k22 + κ22) = 0

where
Ψ – force-function
w – deflection function upon the loss stability
kii – main curvatures
κii, κ12 – curvature variations and surface torsion
D – plate stiffness, D = Eh3/[12(1 − ν2)]
S – tangent force in pre-critical state
Ti, S – critical state forces, and

∇
2 =
1

R2

(

cot θ
∂

∂θ
+
∂2

∂θ2
+
1

sin2 θ

∂2

∂ϕ2

)

Changes in the curvatures and torsions of the spherical shell surface are
the following functions of the deflection
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κ11 = −
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R2
∂2w

∂θ2
κ22 = −
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sin2 θ

∂2w

∂ϕ2
+ cot θ

∂w

∂θ

)

(2.2)

κ12 =
1

R2 sin θ

(

cot θ
∂w

∂ϕ
−
∂2w

∂ϕ∂θ

)

The forces corresponding to the critical state depend on the force functions as
in the following

T1 =
1

R2

( 1

sin2 θ

∂2Ψ

∂ϕ2
+ cot θ

∂Ψ

∂θ

)

T2 =
1

R2
∂2Ψ

∂θ2
(2.3)

S =
1

R2 sin θ

(

cot θ
∂Ψ

∂ϕ
−
∂2Ψ

∂ϕ∂θ

)

On the other hand, the tangent force of the pre-critical state takes the form,
see Łukasiewicz (1976)

S =
M0

2πR2 sin2 θ
(2.4)

Changes in curvatures (2.2) and cross-section forces (2.3), (2.4) should
be introduced into equations (2.1). This gives a system of nonlinear partial
differential equations with respect to w and Ψ .

3. Solution to the stability equations

The stability equations are solved with the help of Bubnov-Galerkin’s me-
thod. This causes the need to adopt a form of the deflection function and
the force-functions that possibly satisfies all the boundary conditions of the
problem. The edges of the shell are characterized by the following boundary
conditions

θ = θ1 w = 0 Mθ = 0

S =
M0

2πR2 sin2 θ1
T1 = 0

(3.1)

and
θ = π − θ1 w = 0 Mθ = 0

S =
M0

2πR2 sin2 θ1
T1 = 0

(3.2)
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The force functions and deflection functions are assumed in the form

Ψ = [bϕ+ c sin(mϕ)] sin2 θ
(3.3)

w = a sin
π(θ − θ1)

π − 2θ1
sin
[π(θ − θ1)

π − 2θ1
+mϕ

]

sin2 θ

where a, b, c are constants and m – an integer number.
Deflection function (3.3)2 meets accurately the first of conditions (3.1),

while the second one is met in an integral sense. The force function satisfies
the third conditions at both edges, with the accuracy to a constant, while the
condition for force T1 remains unsatisfied.
Inseparability equation (2.1)1 is solved with Bubnov-Galerkin’s method.

The function subject to the orthogonalization has of the form

F (θ, ϕ) = ∇2∇2Ψ − Eh(κ212 − κ11κ22 − κ11k22 − κ22k11)

while the orthogonalization conditions are
∫

A

F (θ, ϕ)fi(θ, ϕ) dA = 0 (3.4)

where
fi(θ, ϕ) – orthogonalization factors, i.e. the components of the Ψ

function
A – middle surface of the shell.

The orthogonalization conditions are as follows

π−θ1
∫

θ1

2π
∫

0

F (θ, ϕ)ϕ sin3 θ dθdϕ = 0

(3.5)
π−θ1
∫

θ1

2π
∫

0

F (θ, ϕ
)

sin(mϕ) sin3 θ dθdϕ = 0

An expansion of conditions (3.5) provides two algebraic equations, serving
as a basis for the determination of factors of the Ψ force function. They are
presented by the expressions

b = EhH1a
2 c = EhH2a

2 (3.6)

where: H1, H2 are the constants including θ1 and the number m.
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Finally, the solution to equation (2.1)1 takes the form

Ψ = Eha2[H1ϕ+H2 sin(mϕ)] sin
2 θ (3.7)

In order to apply the Bubnov-Galerkin method to equilibriu equation (2.1)2 its
left-hand side should be considered as the function subject to orthogonaliza-
tion, with the orthogonalization condition duly defined. The function subject
to the orthogonalization is

G(θ, ϕ) = D∇2∇2w + 2Sκ12 + T1(k11 + κ11) + 2Sκ12 + T2
(

k22 + κ22)

while the orthogonalization condition has the form
∫

A

G(θ, ϕ)g(θ, ϕ) dA = 0

with g(θ, ϕ) being the orthogonalization factor corresponding to the right-
hand side of deflection function (3.3)2. Finally, the orthogonalization condition
takes the following form

π−θ1
∫

θ1

2π
∫

0

G(θ, ϕ) sin
π(θ − θ1)

π − 2θ1
sin
[π(θ − θ1)

π − 2θ1
+mϕ] sin3 θ dθdϕ = 0 (3.8)

The mathematical program Derive was used to solve orthogonalization con-
ditions (3.5) and (3.8). Differentiation and integration procedures, and also
procedures for transforming algebraical expressions from Derive were used.
Finally, an algebraical equation was obtained describing the torque M0. The
result of the solution to this equation was an expression for the dimensionless
torque

M =
M0
Eh3
=

1

12(1 − ν2)
C1 + C2

(a

h

)2

(3.9)

where Ci are constants depending on the angle θ1 and the number m. Their
form is very complex.
Equation (3.9) was then converted to the form with a dimensionless tangent

stress

t =
τ0
E
=

M

2π sin2 θ1

( h

R

)2

=

(

h

R

)2

2π sin2 θ1

[ 1

12(1 − ν2)
C1 + C2

(a

h

)2]

(3.10)

where

τ0 =
M0

2πR2h sin2 θ1
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The dimensionless stress written by equation (3.13) depends on the num-
ber m describing the form of the loss of stability. The equation enables one
to find the minimal value tmin with respect to m. The minimal value of the
stress is equal to the critical stress tcr, while the number m determining the
stress is equal to mcr.

4. Example of calculation

The search for the critical load is practically only possible with a nume-
rical method. For this purpose the Ci constants must be calculated for a
pre-determined value of the θ1 angle and some numbers m. The constants
Ci were calculated by the procedures included in the Derive. Table 1 presents
examples of the constants for θ1 = π/12 and θ1 = π/4.

Table 1

θ1 = π/12 θ1 = π/4

M C1 C2 C1 C2

1 64.1419 0.4631 226.1292 0.1896

2 62.2741 3.7563 154.5125 1.9270

3 113.4468 12.4487 170.8259 6.1066

4 221.0470 29.2795 233.6061 14.0478

The mathematical program Derive for Windows was applied to draw the
diagrams shown in Fig. 2. Figure 2 shows the plots against the co-ordinates
t − a/h for θ1 = π/12, h/R = 0.005 and ν = 0.3, with various numbers m.
As shown, the minimal value of t corresponds to m = 2.

Table 2

θ1 mcr t(R/h)
2

π/12 2 13.5497

π/10 2 10.0269

π/8 2 7.4554

π/7 2 5.0503

π/5 2 4.4628

π/4 2 4.5260
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Fig. 2.

Table 2 specifies the dimensionless critical stresses of the shells for some
angles θ1. It is evident that for any θ1 the number determining the form of the
stability loss is equal to m = mcr = 2. It should be noticed that for θ1 = π/6,
θ1 = 3π/10, and θ1 = 5π/14 the problem remains unsolved. This is certainly
a result of the assumed forms of the deflection function and the force-function.
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Nieliniowe zagadnienie stateczności powłoki kulistej obciążonej

momentem obrotowym

Streszczenie

Cienkościenna powłoka kulista jest podparta przegubowo na obu brzegach. Je-
den z brzegów ma możliwość obrotu wokół osi powłoki; do tego brzegu przyłożony
jest moment obrotowy. Rozpatruje się zagadnienie stateczności powłoki. Układ rów-
nań zagadnienia tworzą nieliniowe równanie równowagi oraz nieliniowe równanie nie-
rozdzielności. Oba równania rozwiązuje się metodą Bubnowa-Galerkina, przyjmując
uprzednio postać funkcji ugięcia i funkcji sił. Efektem rozwiązania jest równanie al-
gebraiczne na bezwymiarowy parametr obciążenia. Z tego równania wyznacza się pa-
rametr obciążenia krytycznego, odpowiadający minimalnej jego wartości. Liczba m,
przy której parametr obciążenia osiąga minimum wyznacza postać utraty stateczno-
ści. Praca kończy się przykładem liczbowym.
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