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In the paper two kinds of uncertainty: randomness and imprecision are
proposed to be considered in a structure description. Imprecise experts’
opinions can be described using fuzzy numbers. As a result, the reliability
analysis of a structure can be based on the limit state function with fuzzy
parameters. As a consequence, the structural failure or survival can be
treated as fuzzy events. The probabilities of these fuzzy events can be
the upper and the lower estimations of the structural reliability. They
can be achieved using well-known reliability methods (e.g. Hasofer-Lind
index and Monte Carlo simulations). They can be used as a base for the
calibration of partial safety factors in design codes.
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1. Introduction

There are two kinds of uncertainty associated with civil engineering (Bloc-
kley, 1980) – and all engineering activities – randomness and imprecision
(Gasparski, 1988).

The randomness is the unpredictability of events. The randomness is de-
scribed by the probability distributions based on the observation of the event
frequency. It is a task of the probability theory.

The imprecision is a lack of certainty of experts’ assessments. An expert
of a given domain formulates his opinion arbitrary based on his knowledge,
experience and intuition, using words like ”big”, ”small”, ”medium” instead
of precise numbers. Modelling and processing of imprecise data is a task of the
fuzzy set theory.
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As it is known, according to the fuzzy set theory (Zadeh, 1965, 1978) the
two-value logic is extended to the multi-value logic. As a result, the conventio-
nal notion of a set A (a crisp set) is extended to a fuzzy set A by the extension
of the two-value characteristic function, Eq. (1.1), to the multi-value member-
ship function, Eq. (1.2). The notion of a real number is extended to a fuzzy
number which is defined as the fuzzy set satisfying several conditions (Piegat,
1999). Fuzzy numbers can be processed using the rule of extension (Kacprzyk,
1986)

• cA(x) : R→ {0, 1}

∀x ∈ R cA(x) =

{
1 for x ∈ A

0 for x /∈ A
(1.1)

• χA(x) : R→< 0, 1 >

∀x ∈ R χA(x) =





1 if x belongs to A
α ∈ (0, 1) if x belongs to A to some degree
0 if x does not belong to A

(1.2)

Similarly, the conventional notion of an event A (a crisp event), which can
be defined as the crisp subset of the sample space X and described by the
characteristic function, Eq. (1.1), is extended to a fuzzy event A described
by the membership function, Eq. (1.2). The fuzzy event can occur, or not
occur and also can occur to some degree because any element x of the sample
space X can match up to a given event, or not, and also can match up to it
to some degree. In other words, the fuzzy event is a fuzzy subset of the sample
space X. The boundary between that event and its complement is fuzzyfied,
not crisp.

Two kinds of probability of fuzzy events are defined (Kacprzyk, 1986):

• the probability according to Zadeh – a real number from the interval
< 0, 1 > – for a continuous random variable defined as follows

P (A) =

∫

A

f(x) dx =

∫

R

χA(x)f(x) dx (1.3)

where f(x) is the probability density function of the random variable X
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• the probability according to Yager – a fuzzy subset of the interval
< 0, 1 > – for a continuous random variable defined as a set of pro-
babilities of crisp events Aα

P (Aα) =

∫

Aα

f(x) dx (1.4)

with the following membership function

χP (A) = α (1.5)

where Aα is α-level of a fuzzy set A defined as follows

∀α ∈ (0, 1 > Aα = {x ∈ R : χA(x) ­ α} (1.6)

The probabilities mentioned above make the measure of two kinds of un-
certainties: the randomness of the variable X and the imprecision (fuzziness)
of the event A definition, Fig. 1.

Fig. 1. Randomness and fuzziness

As it is known, according to the reliability theory, only uncertainty due to
randomness is expressed (PN-ISO 2394, 2000; Nowak and Collins, 2000). The
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structural failure or survival is treated as an event. The probability of failure
is a measure of structural reliability and is calculated as follows

Pf = P (g(X1, ..., Xn) < 0) =

∫
. . .

∫

g(x)<0

f1...n(x1, ..., xn) dx1...dxn (1.7)

where
X = {X1, ..., Xn} – n-dimensional random variable, which represents na-

tural randomness of loads, environmental influences,
material properties, geometry etc.

f1...n(x1, ..., xn) – joint probability density function of the n-
dimensional random variable X

g = g(X1, ..., Xn) – limit state function of load capacity or serviceabili-
ty, which divides the n-dimensional sample space X
into the following subsets:
• the area of structural failure – g(X1, ..., Xn) > 0
• the area of structural survival – g(X1, ..., Xn) < 0
• the limit state – g(X1, ..., Xn) = 0.

That probability is used e.g. for the calibration of partial safety factors in
design codes.
In the paper, two kinds of uncertainty will be modelled and taken into

consideration in the limit state function (Szeliga, 2000):

• the randomness will be still represented by random variables and proba-
bility density functions

• the imprecision will be represented by fuzzy numbers and membership
functions.

As a result, the structural failure or survival will be treated as fuzzy events.
Partial safety factors will include ”variability of fortune” and mistakes of
experts’ opinions (Fig. 2).
The purpose of the paper is not to prove that the structural reliability

problem in fuzzy sets approach is better – but to show that it is possible.

2. Reliability of structure as a fuzzy event

Let us consider a linear limit state function. The resistance consists of
two parts: the random part X1 of normal distribution N(µ1, σ1) and the
imprecise part described by a fuzzy number a1 = {about a

0
1 in < a

−

1 , a
+
1 >},
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Fig. 2. Probability of a structural failure or survival as fuzzy events

a01 = 0. The load also consists of the random part X2 of the normal distribution
N(µ2, σ2) and the imprecise part a2 = {about a

0
2 in < a

−

2 , a
+
2 >}, a

0
2 = 0

g(X1, X2) = (X1 + a1)− (X2 + a2)
a1 ∈ a1
a2 ∈ a2

(2.1)

where a1, a2 – fuzzy numbers of membership functions χa1 , χa2 .
The limit state function can be expressed as follows:

g(Z) = Z + b b ∈ b (2.2)

where Z = X1 −X2 is the random safety margin, b = a1 − a2 and b – fuzzy
number of membership function χb.

b = {about b0 in < b−, b+ >} b0 = 0 (2.3)

If the parameter b was not fuzzy number, the following three crisp sets
could be found in the axis Z: the failure area F , the limit point L and the
survival area S (Fig. 3a). They could be described – by the characteristic
functions – as follows

cF (z) =

{
1 for Z < 0
0 for Z ­ 0

cL(z) =

{
1 for Z = 0
0 for Z 6= 0

(2.4)

cS(z) =

{
1 for Z > 0
0 for Z ¬ 0
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Because of fuzzy numbers in the limit state function, the axis Z is divided
into 3 fuzzy areas: the failure area F , the limit state area L and the survival
area S (Fig. 3c)

χF (z) =





1 for Z < b−

1− χb for b− ¬ Z < b0

0 for b0 ¬ Z

χL(z) = χb (2.5)

χS(z) =





0 for Z < b0

1− χb for b0 ¬ Z < b+

1 for b+ ¬ Z

It should be understood as follows: not all values of the random margin
of safety Z are completely sufficient χS(z) = 1 or completely insufficient
χF (z) = 1. Some values of Z in the fuzzy survival area close to the limit point
(0 < χS(z) < 1, 0 < χL(z) < 1) are sufficient to some degree and some values
of Z in the failure area close to the limit point (0 < χL(z) < 1, 0 < χF (z) < 1)
are insufficient to some degree.

The structural survival or failure can be treated as fuzzy events, when the
variable Z hits the following areas:

• the fuzzy failure area F

• the fuzzy not survival area −S – the complement of the survival area S
(Fig. 3e)

χ−S(z) = 1− χS(z) (2.6)

The measure of structural reliability, taking into account both types of un-
certainty – the randomness and the imprecision, can consist of the probabilities
of these events:

• the probabilities according to Zadeh

PF = P (Z ∈ F ) =

+∞∫

−∞

χF (z)fZ(z) dz

(2.7)

P−S = P (Z ∈ −S) =

+∞∫

−∞

χ−S(z)fZ(z) dz

where fZ(z) is the probability density function of the random variable Z
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Fig. 3. The axis of the random variable Z of the normal distribution fZ(z) and the
axis of the standardised random variable Z ′ of the standardised normal distribution
ϕ(z′) divided into crisp and fuzzy areas of the failure, survival and limit state

• the fuzzy probabilities according to Yager with member functions χPF
and χP

−S
as shown in Fig. 4.

Because
F ⊂ F ⊂ −S (2.8)

in other words
χ
F
(z) ¬ CF (z) ¬ χ−S(z) (2.9)

so
PF ¬ Pf ¬ P−S (2.10)
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Fig. 4. Examples of the fuzzy probability according to Yager

The probabilities PF and P−S are the lower and the upper estimations of
the failure probability Pf . That ”estimation” not ”calculation” is a consequ-
ence of the fuzzy numbers introduced to the limit state function.

3. Reliability index as a fuzzy number

In order to determine the probabilities mentioned above, the Cornell relia-
bility index can be used. After standardisation of the variable Z

Z ′ =
Z − µZ
σZ

(3.1)

the limit state function takes the following form

g(Z ′) = Z ′ + β β ∈ β (3.2)

where β is the fuzzy number of membership function χβ and

β = {about β0 in < β−, β+ >}
(3.3)

β0 =
µZ + b

0

σZ
= 0 β− =

µZ + b
−

σZ
β+ =

µZ + b
+

σZ

Thus, one Cornell reliability index (Fig. 3b) is replaced by a fuzzy set
of such indexes (Fig. 3d). Each of them represents the limit state to some
degree χβ.
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The probabilities according to Zadeh of the fuzzy events F and −S can
be calculated as follows (see Fig. 3f)

PF = P (Z
′ ∈ F ) =

+∞∫

−∞

χF (z
′)ϕ(z′) dz′ = Φ(−β+) +

−β0∫

−β+

χF (z
′)ϕ(z′) dz′

(3.4)

P−S = P (Z
′ ∈ −S) =

+∞∫

−∞

χ−S(z
′)ϕ(z′) dz′ = Φ(−β0) +

−β−∫

−β0

χ−S(z
′)ϕ(z′) dz′

The fuzzy probabilities according to Yager can be calculated as follows

PFα = P (Z
′ ∈ Fα) =

+∞∫

−∞

cFα(z
′)ϕ(z′) dz′ = Φ(−β+) +

−β(α)∫

−β+

ϕ(z′) dz′

(3.5)

P−Sα = P (Z
′ ∈ −Sα) =

+∞∫

−∞

c−Sα(z
′)ϕ(z′) dz′ = Φ(−β0) +

−β(α)∫

−β0

ϕ(z′) dz′

and
χPF = α χP

−S
= α (3.6)

The following equivalent reliability indexes can be also defined

βF = −Φ
−1(PF ) β−S = −Φ

−1(P−S) (3.7)

They determine two crisp areas in the axis Z ′: (−∞,−βF > and
(−∞,−β−S > so that the random safety margin Z hits them with the proba-
bilities PF and P−S , respectively.
Because these areas satisfy

(−∞,−β
F
>⊂ F ⊂ (−∞,−β−S > so βF ­ β ­ β−S (3.8)

The equivalent indexes βF and β−S are the upper and the lower esti-
mations of the reliability index β. That ”estimation” not ”calculation” is a
consequence of the fuzzy numbers introduced to the limit state function.
Let us consider an n-dimensional limit state function with fuzzy parame-

ters. Let us take the following assumptions:

• the random variables Xi have normal distributions N(µi, σi) and are
uncoreleted
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• the limit state function is linear and one of its parameter, not multi-
plied by the random variable Xi, is a fuzzy number described by the
membership function χan+1

g(X) = a1X1 + ...+ anXn + an+1 an+1 ∈ an+1 (3.9)

where an+1 is the fuzzy number of membership function χan+1 .
The limit state function determines the fuzzy sets of limit states surfaces

parallel to each other (Fig. 5a). Each of these surfaces describes the limit state
more or less precisely. It represents the limit state to some degree χg(x)=0.

According to the extension rule, each of these surfaces represents the limit
state to the same degree as each number of fuzzy set an+1 represents the
parameter an+1

χg(x)=0 = χan+1 (3.10)

The X space is divided into 3 fuzzy areas: the failure F , limit states L
and survival S area

χF (x) =





1 for χg(x)=0 = 0 g(X) < 0

1− χg(x)=0 for χg(x)=0 6= 0

0 for χg(x)=0 = 0 g(X) > 0

χL(x) = χg(x)=0 (3.11)

χS(x) =





1 for χg(x)=0 = 0 g(X) > 0

1− χg(x)=0 for χg(x)=0 6= 0

0 for χg(x)=0 = 0 g(X) < 0

Now, the measure of reliability cosists of the probabilities of hitting by the
random variable X the following areas:

• the fuzzy area of failure F

• the fuzzy area of no survival −S (Fig. 5a)

χ−S(x) = 1− χS(x) (3.12)

The probabilities according to Zadeh are the following

PF = P (X ∈ F ) =

+∞∫

−∞

...

+∞∫

−∞

χF (x)f1...n(x) dx

(3.13)

P−S = P (X ∈ −S) =

+∞∫

−∞

...

+∞∫

−∞

χ−S(x)f1...n(x) dx
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Fig. 5. Fuzzy areas of the failure F , limit state L and survival S in the variables
X1, X2 and standard variables U1, U2 coordinate systems
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They can be calculated by transformation of the problem of n random va-
riables to the problem of one variable. After standardisation of the variable X ,
the equation of limit state takes the following form

G(u) = α1u1 + ...+ αnun + β = 0 β ∈ β (3.14)

where

αi =
aiσi√
n∑
i=1
(aiσi)2

i = 1, ..., n

(3.15)

β =

n∑
i=1
aiµi + an+1
√
n∑
i=1
(aiσi)2

an+1 ∈ an+1

and β, an+1 – fuzzy numbers of membership functions χβ, χan+1 , respectively.

Equations (3.14) and (3.15) describe the fuzzy set of the limit state surfaces
parallel to each other (Fig. 5b) of a distance β ∈ β to the origin of coordian-
tes U . Thus, one reliability Hasofer-Lind index is replaced by the fuzzy sets
of indexes. Each of these indexes represents the limit state surface in coordi-
nates U to some degree χβ. According to the extension rule, each of these
indexes represents the limit state to the same degree as each number of fuzzy
set an+1 represents the parameter an+1

χβ = χan+1 (3.16)

After rotation of the U1, ..., Un axes around the point of origin into
Z ′, Z ′′, ..., Z(n) axes so that Z ′ axis is perpendicular to the limit state sur-
faces (3.14) and others are parallel to them (Fig. 5b), the probabilities of the
fuzzy events F and −S according to Zadeh can be calculated according to
(3.4), and the fuzzy probabilities according to Yager – according to (3.5).
The linear limit state function with at least one variable of X1, ..., Xn

multiplied by the fuzzy number

g(X) = a1X1 + ...+ anXn + an+1 aj ∈ aj (3.17)

describes the fuzzy set of surfaces (line in Fig. 5c) and aj – fuzzy numbers of
membership functions χaj , j = 1, ..., n + 1. Each of them represents the limit
state to some degree

χg(x)=0 = max
g(x)=0

( min
j=1,...,m

χaj ) (3.18)
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The limit state surfaces (Fig. 5d) are not parallel to each other, so the
probabilities calculated using the Hasofer-Lind index are approximated.

The nonlinear limit state function of n random variables X1, ..., Xn and
m fuzzy parameters a1, ..., am

g(X) = g(X1, ..., Xn, a1, ..., am) aj ∈ aj (3.19)

can be approximated by fuzzy sets of linear functions, see Fig. 5e,f (aj – fuzzy
numbers of membership functions χaj , j = 1, ..., n + 1).

Thus, the structural reliability analysis based on the limit state function
with fuzzy parameters is similar to well known methods. In some cases, the
Hasofer-Lind indexes can be used.

4. Fuzzy Monte-Carlo methods

Monte-Carlo simulations can also be used in the case of fuzzy events. The
probabilities according to Zadeh can be estimated as follows

P̂F =
NF
N

P̂−S =
N−S

N
(4.1)

where N is a number of experiments. NF and N−S are numbers of hitting
the fuzzy areas F and −S in particular trials calculated as follows

NF = NF + χF (u)
ϕn(u,0, I)

ϕn(u,U
∗, I)

(4.2)

N−S = N−S + χ−S(u)
ϕn(u,0, I)

ϕn(u,U
∗, I)

The membership functions χF (u) and χ−S(u) are equal to degrees of hitting
the fuzzy areas F and −S by the n-dimensional standardised random va-
riables u generated according to the importance sampling method (Melchers,
1987; see Fig. 6).
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Fig. 6. Generation of random values according to the importance sampling method

These functions can be defined as follows

χF (u) =





0 for 0 ¬ G0

1− χG(u)=0 for G0 < 0 ¬ G+

1 for G+ < 0

(4.3)

χ−S(u) =





0 for 0 ¬ G−

χG(u)=0 for G− < 0 ¬ G0

1 for G0 < 0

where χG(u)=0 is the membership function of a fuzzy value of the limit state

function G(u) with fuzzy parameters (Fig. 7)

G(u) = {about G0 in < G−, G+ >} (4.4)

Fig. 7. A fuzzy number as a value of the limit state function with fuzzy parameters
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The probabilities according to Yager can be estimated as follows

P̂Fα =
NFα
N

χPF = α

P̂−Sα =
N−Sα
N

χP
−S
= α

(4.5)

where NFα and N−Sα are the numbers of hitting the α-levels of the fuzzy
areas F and −S calculated as follows

NFα = NFα + 1 ·
ϕn(u,0, I)

ϕn(u,U
∗, I)

(4.6)

N−Sα = N−Sα + 1 ·
ϕn(u,0, I)

ϕn(u,U
∗, I)
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Niezawodność konstrukcji w ujęciu teorii zbiorów rozmytych

Streszczenie

W niniejszej pracy proponuje się uwzględnić w opisie konstrukcji dwa rodzaje
niepewności: losowość i nieprecyzyjność. Nieprecyzyjne oceny ekspertów dotyczące
konstrukcji proponuje się opisywać za pomocą liczb rozmytych. W rezultacie, nieza-
wodność konstrukcji określać się będzie w oparciu o funkcję stanu granicznego z roz-
mytymi parametrami. W konsekwencji, awarię konstrukcji lub jej brak traktować
się będzie jako rozmyte zdarzenia losowe. Prawdopodobieństwa tych zdarzeń stano-
wić będą dolne i górne oszacowanie niezawodności konstrukcji. Można je wyznaczać
za pomocą metod stosowanych już w niezawodności (np. wskaźnik Hasofera-Linda
lub metody Monte Carlo). Mogą one służyć jako podstawa kalibrowania częściowych
współczynników bezpieczeństwa w normach projektowych.
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