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In the paper two kinds of uncertainty: randomness and imprecision are
proposed to be considered in a structure description. Imprecise experts’
opinions can be described using fuzzy numbers. As a result, the reliability
analysis of a structure can be based on the limit state function with fuzzy
parameters. As a consequence, the structural failure or survival can be
treated as fuzzy events. The probabilities of these fuzzy events can be
the upper and the lower estimations of the structural reliability. They
can be achieved using well-known reliability methods (e.g. Hasofer-Lind
index and Monte Carlo simulations). They can be used as a base for the
calibration of partial safety factors in design codes.
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1. Introduction

There are two kinds of uncertainty associated with civil engineering (Bloc-
kley, 1980) — and all engineering activities — randomness and imprecision
(Gasparski, 1988).

The randomness is the unpredictability of events. The randomness is de-
scribed by the probability distributions based on the observation of the event
frequency. It is a task of the probability theory.

The imprecision is a lack of certainty of experts’ assessments. An expert
of a given domain formulates his opinion arbitrary based on his knowledge,
experience and intuition, using words like ”big”, ”small”, "medium” instead
of precise numbers. Modelling and processing of imprecise data is a task of the
fuzzy set theory.
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As it is known, according to the fuzzy set theory (Zadeh, 1965, 1978) the
two-value logic is extended to the multi-value logic. As a result, the conventio-
nal notion of a set A (a crisp set) is extended to a fuzzy set A by the extension
of the two-value characteristic function, Eq. (1.1), to the multi-value member-
ship function, Eq. (1.2). The notion of a real number is extended to a fuzzy
number which is defined as the fuzzy set satisfying several conditions (Piegat,
1999). Fuzzy numbers can be processed using the rule of extension (Kacprzyk,
1986)

e cy(x): R—{0,1}

Ve € R ca(z) = { (1.1)

e xa(z): R—<0,1>

1 if x belongs to A
Ve € R xa(x) =< a€(0,1) if z belongs to A to some degree
0 if x does not belong to A

(1.2)

Similarly, the conventional notion of an event A (a crisp event), which can
be defined as the crisp subset of the sample space X and described by the
characteristic function, Eq. (1.1), is extended to a fuzzy event A described
by the membership function, Eq. (1.2). The fuzzy event can occur, or not
occur and also can occur to some degree because any element x of the sample
space X can match up to a given event, or not, and also can match up to it
to some degree. In other words, the fuzzy event is a fuzzy subset of the sample
space X. The boundary between that event and its complement is fuzzyfied,
not crisp.

Two kinds of probability of fuzzy events are defined (Kacprzyk, 1986):

e the probability according to Zadeh — a real number from the interval
< 0,1 > — for a continuous random variable defined as follows

PA) = [ f(a) do = [ xa(@)f(@) do (13)
A R

where f(x) is the probability density function of the random variable X



STRUCTURAL RELIABILITY — FUZZY SETS THEORY APPROACH 653

e the probability according to Yager — a fuzzy subset of the interval
< 0,1 > — for a continuous random variable defined as a set of pro-
babilities of crisp events A,

P(a) = [ f@) do (14)
A

with the following membership function

Xp(4) =« (1.5)

where A, is a-level of a fuzzy set A defined as follows

Va € (0,1 > Ay ={x € R: xa(z) >a} (1.6)

The probabilities mentioned above make the measure of two kinds of un-
certainties: the randomness of the variable X and the imprecision (fuzziness)
of the event A definition, Fig. 1.

UNCERTAINITY:
RANDOMNESS IMPRECISION
MULTI-VALUE
2-VALUE LOGIC LOGIC
EVENT FUZZY EVENT
PROBABILITY PROBABILITY
OF EVENT OF FUZZY EVENT

Fig. 1. Randomness and fuzziness

As it is known, according to the reliability theory, only uncertainty due to
randomness is expressed (PN-ISO 2394, 2000; Nowak and Collins, 2000). The
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structural failure or survival is treated as an event. The probability of failure
is a measure of structural reliability and is calculated as follows

Py = P(g(X1, ... X)) < 0) :/.../flmn(:cl,...,xn) drr.de, (17
(z)<0

where
X ={Xy,..,X,} - n-dimensional random variable, which represents na-
tural randomness of loads, environmental influences,
material properties, geometry etc.
fron(zy,.yzy) — joint probability density function of the n-
dimensional random variable X
g=g9(X1,...X,) — limit state function of load capacity or serviceabili-

ty, which divides the n-dimensional sample space X
into the following subsets:

e the area of structural failure — g(X1, ..., X;,) >0
e the area of structural survival — g(X1,..., X;,) <0
e the limit state — ¢g(X1,..., X,,) =0.

That probability is used e.g. for the calibration of partial safety factors in
design codes.

In the paper, two kinds of uncertainty will be modelled and taken into
consideration in the limit state function (Szeliga, 2000):

e the randomness will be still represented by random variables and proba-
bility density functions

e the imprecision will be represented by fuzzy numbers and membership
functions.

As a result, the structural failure or survival will be treated as fuzzy events.
Partial safety factors will include ”variability of fortune” and mistakes of
experts’ opinions (Fig. 2).

The purpose of the paper is not to prove that the structural reliability
problem in fuzzy sets approach is better — but to show that it is possible.

2. Reliability of structure as a fuzzy event

Let us consider a linear limit state function. The resistance consists of
two parts: the random part X; of normal distribution N(ui,01) and the
imprecise part described by a fuzzy number a; = {about a{ in < ai,a] >},



STRUCTURAL RELIABILITY — FUZZY SETS THEORY APPROACH 655

sources of descriptions of information causes of
information erToTS
observation probability variability

of event > density function |- of fortune
frequency Sy (x)
experience, membership mistakes
lfntovatl_edgef, - function s of experts'
intuition o -

opinions
experts LAY P
Y
probability of fuzzy event

Fig. 2. Probability of a structural failure or survival as fuzzy events

ay = 0. The load also consists of the random part X3 of the normal distribution
N (p2,02) and the imprecise part a, = {about a9 in < ay,a3 >}, aJ =0

ar € a

X1, Xo)=(X — (X 2.1
9(X1,Xo) = (X1 +a1) — (X2 +ag) as € a, (2.1)
where a1, a; — fuzzy numbers of membership functions X, , Xa,-
The limit state function can be expressed as follows:
9 Z)=Z+b bebd (2.2)

where Z = X; — X5 is the random safety margin, b = a; — a9 and b — fuzzy
number of membership function xp.

b= {about b’ in <b~,b" >} =0 (2.3)

If the parameter b was not fuzzy number, the following three crisp sets
could be found in the axis Z: the failure area F', the limit point L and the
survival area S (Fig.3a). They could be described — by the characteristic
functions — as follows

(2) = 1 for Z <0 (2) = 1 for Z=0
FETY0 0 for 220 LTV 0 for Z#0
(2.4)

cs(z) = 1 for Z>0
=Y o for Z<0
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Because of fuzzy numbers in the limit state function, the axis Z is divided
into 3 fuzzy areas: the failure area F, the limit state area L and the survival
area S (Fig.3c)

1 for Z <b~
xr(z) =19 1—xp for b~ <Z<t°
for °<Z
XL(z) = xp (2.5)
0 for Z <t°
xs(z) =4 1—xp for B0 < Z < bt
for bT<Z

It should be understood as follows: not all values of the random margin
of safety Z are completely sufficient yg(z) = 1 or completely insufficient
XF(z) = 1. Some values of Z in the fuzzy survival area close to the limit point
(0 < xs(2) < 1,0 < xz(z) < 1) are sufficient to some degree and some values
of Z in the failure area close to the limit point (0 < x1(z) < 1,0 < xz(2) < 1)
are insufficient to some degree.

The structural survival or failure can be treated as fuzzy events, when the
variable Z hits the following areas:

e the fuzzy failure area F

e the fuzzy not survival area —S — the complement of the survival area S
(Fig. 3e)
X=s(2) =1 —=xs(2) (2.6)

The measure of structural reliability, taking into account both types of un-
certainty — the randomness and the imprecision, can consist of the probabilities
of these events:

e the probabilities according to Zadeh

+o00o
Pr—P(ZcF)— / YE(2)f2(2) dz

(2.7)
+o0o

P.g=P(Zec-8)= / X-5(2)fz(2) d=

—00

where fz(z) is the probability density function of the random variable Z
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Fig. 3. The axis of the random variable Z of the normal distribution fz(z) and the
axis of the standardised random variable Z’ of the standardised normal distribution
©(z") divided into crisp and fuzzy areas of the failure, survival and limit state

e the fuzzy probabilities according to Yager with member functions x p,
and xp ¢ as shown in Fig. 4.

Because
FcFc-S (2.8)

in other words
Xp(2) < Cr(z) < x=s(?) (2.9)

SO
Pr<P;<P.g (2.10)
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Fig. 4. Examples of the fuzzy probability according to Yager

The probabilities Pr and P_g are the lower and the upper estimations of
the failure probability Py. That ”estimation” not ”calculation” is a consequ-
ence of the fuzzy numbers introduced to the limit state function.

3. Reliability index as a fuzzy number

In order to determine the probabilities mentioned above, the Cornell relia-
bility index can be used. After standardisation of the variable Z

7 _
e (3.1)
oz
the limit state function takes the following form
gz =2"+p Bep (3.2)
where [ is the fuzzy number of membership function x and
B = {about 8% in < 3,5" >}
o (3.3)
py + b0 _ uz+b” pz + bt
/80 — — O ﬁ e /8+ =
oz oz oz

Thus, one Cornell reliability index (Fig.3b) is replaced by a fuzzy set
of such indexes (Fig.3d). Each of them represents the limit state to some
degree xg.
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The probabilities according to Zadeh of the fuzzy events F and —S can
be calculated as follows (see Fig. 3f)

+o0o
Pe=P(Z €F)= [xe()pl) d =0(=8H) + [ xul)ez) d

+o00
P s=PZ €-9)= /Xﬁ(z’)go(z') dz' = &(—p°) + / x=s(Z)p(2') d2'

The fuzzy probabilities according to Yager can be calculated as follows

+00 —B(a)
Pra=P(Z' € Fa) = [ cral)el() &2/ =0(-") + [ () a2
—00 -3+
(3.5)
+o0 —B(e)
Posa=P(Z' €=S0) = [csal)ple) a2 =00+ [ ¢() d
N 0
and
XPp = Xpg =« (3.6)
The following equivalent reliability indexes can be also defined
Bp = —&~(Pp) B_g = - '(Pg) (3.7)

They determine two crisp areas in the axis Z’: (—oo,—fr > and
(—o00, —f_g > so that the random safety margin Z hits them with the proba-
bilities PE_and P_g, respectively.

Because these areas satisfy

(=00, =B >C F C (—00, —f_g > so  Pp=2B>p5 (3.8)

The equivalent inderes Br and [_g are the upper and the lower esti-
mations of the reliability index (. That ”estimation” not ”calculation” is a
consequence of the fuzzy numbers introduced to the limit state function.

Let us consider an n-dimensional limit state function with fuzzy parame-
ters. Let us take the following assumptions:

e the random variables X; have normal distributions N(u;,0;) and are
uncoreleted
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e the limit state function is linear and one of its parameter, not multi-
plied by the random variable X, is a fuzzy number described by the
membership function x,,, .,

g(X) =1 X1+ ... +a, X, + An+1 Apt1 € Apt1 (39)

where a,1 is the fuzzy number of membership function xq,. -

The limit state function determines the fuzzy sets of limit states surfaces
parallel to each other (Fig. 5a). Each of these surfaces describes the limit state
more or less precisely. It represents the limit state to some degree X g(z)=o-

According to the extension rule, each of these surfaces represents the limit
state to the same degree as each number of fuzzy set a,y; represents the
parameter a,41 -

Xg(w) = Xan+t1 (310)

The X space is divided into 3 fuzzy areas: the failure F, limit states L
and survival S area

1 for Xg(z)=0 =0 g9(X) <0
xe(@) =4 1= Xg@=0  for Xgw=o#0
0 for  Xg(@)=0 =0 9(X)>0
XL(T) = Xg(z)=0 (3.11)
1 for  Xg(@=0 =0 g9(X) >0
xs@) =1{ 1= Xgw=0  for Xg@=o#0
0 for  Xg(=0 =0 9(X) <0

Now, the measure of reliability cosists of the probabilities of hitting by the
random variable X the following areas:

e the fuzzy area of failure F
e the fuzzy area of no survival —S (Fig. 5a)

X-s(@) =1 - xs(z) (3.12)

The probabilities according to Zadeh are the following
+oo +oo

Pp=P(X €F) / /XF )f1..n(x) dz

(3.13)
+oo

P g¢=P(Xec-8) = / /Xs )f1..n(z) dz



STRUCTURAL RELIABILITY — FUZZY SETS THEORY APPROACH 661

G(ui,u2)=0 y

,L / | :"/~ |
U

%

£ | -] .
X, o |4 g
[ G(uy, up)=0 ~ / B
| //,f / A
B Tl
= = 1)
T 8(xi.x)=0 '\\ Y
ol
b
|
/ 0
| X U)
My : ‘/

Fig. 5. Fuzzy areas of the failure F, limit state L and survival S in the variables

)

X1, X5 and standard variables U, Us coordinate systems
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They can be calculated by transformation of the problem of n random va-
riables to the problem of one variable. After standardisation of the variable X,
the equation of limit state takes the following form

G(u) = arur + ... + apty + 5= 0 Bep (3.14)
where
a;= —2 i=1,...n
n
(a;o;)?
i=1
(3.15)
n
2. Qifli + Gnyl
ﬁ = Hn— ap+1 € Q1
> (aiai)Q
i=1

and 3, a,y1 — fuzzy numbers of membership functions x g, Xa,.,, respectively.

Equations (3.14) and (3.15) describe the fuzzy set of the limit state surfaces
parallel to each other (Fig.5b) of a distance 3 € 8 to the origin of coordian-
tes U. Thus, one reliability Hasofer-Lind index is replaced by the fuzzy sets
of indexes. Each of these indexes represents the limit state surface in coordi-
nates U to some degree xg. According to the extension rule, each of these
indexes represents the limit state to the same degree as each number of fuzzy
set any1 represents the parameter a1

X8 = Xanis (3.16)

After rotation of the Uxy,...,U, axes around the point of origin into
7', 7", ..., Z™ axes so that Z’ axis is perpendicular to the limit state sur-
faces (3.14) and others are parallel to them (Fig. 5b), the probabilities of the
fuzzy events F and —S according to Zadeh can be calculated according to
(3.4), and the fuzzy probabilities according to Yager — according to (3.5).

The linear limit state function with at least one variable of X4,..., X,
multiplied by the fuzzy number

9(X) = a1 X1 + ... + an Xy + ans1 aj € a; (3.17)

describes the fuzzy set of surfaces (line in Fig. 5c) and a; — fuzzy numbers of
membership functions x,;, j =1,...,n + 1. Each of them represents the limit
state to some degree o

Xg(a)=0 = gr(g?fo(j:r{{i”r{m Xa;) (3.18)
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The limit state surfaces (Fig.5d) are not parallel to each other, so the
probabilities calculated using the Hasofer-Lind index are approximated.

The nonlinear limit state function of n random variables Xi, ..., X,, and
m fuzzy parameters aq, ..., G,

9(X) = g(X1, .0, Xy a1, ooy a) aj € a; (3.19)

can be approximated by fuzzy sets of linear functions, see Fig. e,f (a; — fuzzy
numbers of membership functions xg;, j = 1,...,n +1). o

Thus, the structural reliability analysis based on the limit state function
with fuzzy parameters is similar to well known methods. In some cases, the
Hasofer-Lind indexes can be used.

4. Fuzzy Monte-Carlo methods

Monte-Carlo simulations can also be used in the case of fuzzy events. The
probabilities according to Zadeh can be estimated as follows

Ng . N_g

F=N SN 1)

where N is a number of experiments. Ngp and N_g are numbers of hitting
the fuzzy areas F and —S§ in particular trials calculated as follows

n u707l
Np = NE+XE(U)L*>
on(u, U 1)
(4.2)
©n(u,0,1)
N_¢=N_ _ T D
=5 —S+X—S(u)<ﬁn(u,U*,|)

The membership functions xp(u) and x_g(u) are equal to degrees of hitting
the fuzzy areas F and —S by the n-dimensional standardised random va-
riables u generated according to the importance sampling method (Melchers,
1987; see Fig. 6).
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Fig. 6. Generation of random values according to the importance sampling method

These functions can be defined as follows

0 for 0<GY
XE(U) = 1-— XG(u)=0 for G°<0 <GT
1 for Gt <0
(4.3)
0 for 0<G™
x-s(u) =< XaG(u)=0 for G- <0<GY
B 1 for G°<0

where X (u)=o 1S the membership function of a fuzzy value of the limit state

function G(w) with fuzzy parameters (Fig. 7)

G(u) = {about G’in <G~,G" >} (4.4)

X(;(u)(“)
X__Z(u) ’_‘,"f Xi(u)
i‘/a
- G |0 @ G' G(w)

Fig. 7. A fuzzy number as a value of the limit state function with fuzzy parameters
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The probabilities according to Yager can be estimated as follows

Pro = ch XPp — &
4.5
~ N su (4.5)
—Sa = N XE =«

where Np, and N_g, are the numbers of hitting the a-levels of the fuzzy
areas F and —S calculated as follows

10.

u, 0, |
Npo = Npo +1- %
e (4.6)
on(u,0,1)
N_g,=N_ 1. =~
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Niezawodno$¢ konstrukcji w ujeciu teorii zbioréw rozmytych

Streszczenie

W niniejszej pracy proponuje sie uwzgledni¢ w opisie konstrukcji dwa rodzaje
niepewnosci: losowos$¢ i nieprecyzyjnosé. Nieprecyzyjne oceny ekspertéw dotyczace
konstrukcji proponuje sie opisywaé za pomoca liczb rozmytych. W rezultacie, nieza-
wodno$¢ konstrukeji okresla¢ sie bedzie w oparciu o funkcje stanu granicznego z roz-
mytymi parametrami. W konsekwencji, awarie konstrukcji lub jej brak traktowaé
sie bedzie jako rozmyte zdarzenia losowe. Prawdopodobienstwa tych zdarzen stano-
wi¢ beda dolne i gérne oszacowanie niezawodnosci konstrukeji. Mozna je wyznaczad
za pomocg metod stosowanych juz w niezawodno$ci (np. wskaznik Hasofera-Linda
lub metody Monte Carlo). Moga one stuzy¢ jako podstawa kalibrowania czeSciowych
wspolczynnikéw bezpieczenstwa w normach projektowych.
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