JOURNAL OF THEORETICAL
AND APPLIED MECHANICS
43, 2, pp. 277-296, Warsaw 2005

APPLICATION OF WAVELET TRANSFORM TO
IDENTIFICATION OF MODAL PARAMETERS OF
NONSTATIONARY SYSTEMS

TAaDpEUSZ UHL
ANDRZEJ KLEPKA

Department of Robotics and Machine Dynamics, University of Science and Technology, Cracow

email: tuhl@uci.agh. edu.pl

In the paper an application of a time-frequency signal analysis technique
for modal parameters identification is presented. Procedures of wavelet
filtering, which allow estimating mechanical parameters for systems with
non-constant parameters have been shown. The wavelets are used to de-
tect natural frequency of the system and transform system time response
into the time-scale domain. Presented method has been verified on si-
mulation data for a two degrees of freedom discrete system. Two cases
have been considered, with a constant and with a varying damping. The
procedure has been applied to a real data recorded during a flight of
ISKRA airplane.
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1. Introduction

Many practical engineering systems change dynamic parameters during
their operation. One possible reason of the parameter changes is occurrence
of damage. The problem of damage detection can be defined as identification
of parameter changes in a model of a given system. In literature, that ap-
proach is named model based diagnostics, see Batko and Ziétko (2002). The
classical approach to the model based damage detection is formulated with an
assumption that the system is stationary during an identification experiment.
But nonstationary behaviour due to system damage is expected for different
experiments. In reality, operational parameters of the system can be changed
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during a particular experiment, then the system should be treated as nonsta-
tionary. Identification and analysis of nonstationary systems are more difficult
then in a stationary case.

There are several damage detection techniques based on model parame-
ters identification (Batko and Zidtko, 2002), but very widely used in practical
applications is the modal model based method (Uhl, 1997). In original formu-
lation, the modal model can be identified only if a system is linear, stationary
with small or proportional damping. These facts seriously limit the application
of techniques for modal model parameters identification for damage detection
and localization.

In this approach, damage is detected by tracking modal parameters of the
structure during its operation (Uhl, 2004). Nowadays, different systems are de-
dicated for damage detection during operation of mechanical structures; such
systems are called the Structural Health Monitoring (SHM). The applicability
of modal model for damage detection in SHM has been reported by many au-
thors whose review is available by Uhl (2004). But practical application of the
techniques is limited because of lack of efficient methods for the identification
of modal models based on operational measurements for nonstationary data.

The paper presents two different approaches for the identification of modal
model parameters for a nonstationary mechanical system. As a nonstationary
system, a system with varying modal parameters is understood in the paper.
The classical methods give incorrect results in presence of system nonstatio-
narity (Klepka and Uhl, 2004). It was proved on simulated data for a two-
degrees-of-freedom system with varying stiffness and damping. The stiffness
was changed during the simulation and a signal sample with this disturbance
due to the system parameters change was used as input data for estimation of
the parameters. Time history of the nonstationary system response excited by
white noise (stationary) is shown in Fig. 1. The spectrum of the response signal
for the signal sample including the time of the parameter change is shown in
Fig.2. As it can be easily seen from the plot, the spectrum has three maxi-
ma which suggest three resonances (natural frequences) in the system. But,
as predicted from the stationary model responses, the spectrum should have
only two maxima. The interpretation can be missed due to system nonstatio-
narity and it should be taken into account if the method of signal analysis is
formulated.

To solve the problem of identification inaccuracy due to system nonstatio-
narity, an algorithm for modal parameters identification based on the wavelet
transform has been formulated and applied. The accuracy of the method will
be proved by simulation results. The method described in the paper has been
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Fig. 2. An identified amplitude frequency characteristic

applied for identification of modal model parameters of an airplane from flight
vibration data. The aero-elastic behaviour of the airplane was modiefied due
to changes of flight parameters like speed and altitude.

2. Properties of wavelet transforms and their application to
structural health monitoring

To SHM procedures classical FFT algorithms are commonly applied as
a basic signal processing tool. But FFT-based identification methods do not
give correct results for nonstationary and nonlinear systems. In practical ap-
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plications of SHM systems, there are some nonstationarities of signals due to
nonstationary environments or faults from a structure itself. There are some
methods of structural dynamic testing of nonlinear systems (Uhl, 2001) based
on transformation of nonlinear terms to variable parameters. This approach
requires methods which help one to process data from nonstationary systems.
Time-frequency analysis is the most popular method for analysis of nonstatio-
nary signals. In this group of analysis methods, the following are most widely
used in practical applications (Batko and Ziétko, 2002; Young, 1993):

e Wigner-Ville distribution (Lin and Qu, 2000)

e Short Time Fourier Transform (Pan and Sas, 1996)

e Choi-Willams Distribution (Peng et al., 2002)

e Cone-Shaped Distribution (Francois and Patrick, 1995)

e Continuous Wavelets Transform (Chancey and Flowers, 2001; Young,
1993)

e Discrete Wavelets Transform (Osipiw et al., 2002).

These methods realise mapping of one-dimensional signal z(t) to a two-
dimensional function of time and frequency. The main problem with applica-
tion of the Wigner-Ville distribution method is the occurrence of an interfe-
rence term in the time-frequency plane, which misleads the signal analysis.
There are no such big interference terms in the Choi-Willams distribution
(also Cone-Shaped distribution) method, but computation effort related to
its application is enormous, which discards this method in practical solutions
(Russel et al., 1998). The Short Time Fourier Transform gives correct results
of means constant resolution (interfernce terms are not observed) for all frequ-
encies since it uses the same window for the analysis of the whole signal. But
if high frequency resolution is required for a low frequency, it is not possible to
obtain good time resolution which is required for a high frequency. The Short
Time Fourier Transform is useful for quasi stationary signals but not for real
nonstationary signals.

Over the past twenty years, a novel concept of time-frequency transforms
has been introduced. It is based on Morlet’s wavelets definition given by the
formula (Young, 1993)

1 Lt=0

Walabi) = —= [ a(w (=) a (2.1)
where a is the scale factor, b is the time parameter.

The Morlet wavelets theory has been developed to construct an orthogo-

nal wavelet base with excellent time and frequency resolution. There are some
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different algorithms which are very fast and help one to obtain wavelet signal
decomposition from its finest scale approximation. The Morlet wavelet trans-
form can be obtained for a discrete signal using the following formula (Uhl
and Bogacz, 2002)

W(m,n, ) = — / 2(t)* (et — mbo) dt (2.2)
where m and n are integers.

Different from the STFT, wavelets transforms can be used for multi-scale
analysis of a signal through dilation and translation. It means that they can
effectively extract time-frequency properties of the signal with good time and
frequency resolution. Therefore, the wavelet transforms are a widely applied
tool for nonstationary signal processing and nonstationary model parameters
identification, and can be very useful for design of SHM systems.

Because of their orthogonal properties, wavelet transforms are applicable
for modal parameters identification. It was proved that Morlet’s wavelet trans-
form decouple the solution to coupled ordinary differential equations similar
to the modal transform (Gouttebroze and Lardies, 2000; Klepka and Uhl,
2003b). This fact allows one to apply Morlet’s wavelets for the identification
of chosen mode parameters, e.g. modal damping or natural frequencies. For the
frequency of a wavelet equal to the natural frequency, representation of only
one vibration component is obtained, which allows independent identification
modal parameters for each vibration mode.

The modal damping identification procedure and its application will be
described in the next section of the paper.

3. Identification of modal damping using Morlet’s wavelets

To formulate the method of modal damping identification, a single-degree-
of-freedom system is considered (Gouttebroze and Lardies, 2000; Klepka and
Uhl, 2003b)

mi(t) + ci(t) + kx(t) = f(t) (3.1)

where m, ¢, k stand for the mass, damping and stiffness, respectively, and f
is the excitation force. The solution to (3.1) has the following form

z(t) = A(t)eFin V1=t — A(1)el¢() (3.2)
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For the Morlet function g(t) given by (2.1), the wavelet transform of Eq. (3.2)
can be approximated by the equation

(Wyz)(a,b) = A(b)G" (ad(0)e?® + o(|A], |4]) (3.3)

where G*(-) is a complex value adjoint to G(-).
The modulus of the function G can be obtained on the basis of the following
equation

|(Wyz)(a,b)| = A(D)G" (ad(b)) (3-4)

For a given dilatation value ay, with logarithm of equations (3.2) and (3.4)
found, the following relation was obtained

In |(Wyz)(a,b)| & —wn(b + In[Ap|G* (£agjwny/1 — (?)|] (3.5)

Similarly, for a multiple- N-degree-of-freedom system, the wavelet transform
of the response has the form (Klepka and Uhl, 2003a; Staszewski, 1997)

In| (W, ixi) (ai,b)| ~ —wn,Gib + I[Ai|G* (£aijwn, /1~ )] (36)
i=1

On the basis of equations (3.5) and (3.6), a method for modal damping iden-
tification can be formulated. The logarithm of wavelets transform is a combi-
nation of straight lines, whose slopes are proportional to the modal damping
in the tested system. Based on such a formulation, a identification procedure
is determined. The procedure is presented schematically in Fig. 3.

The method explained above was verified numerically.

Example 1

In order to verify the presented method, simulation of a discrete damped
systemn was realised. All calculations were carried out in the MATLAB® envi-
ronment. For the analysis purposes, the following form of the impulse response
signal (Fig. 4a) of a single degree of freedom system is assumed

h(t) = e” 131 gin(314t) (3.7)

In Fig.4b, the response signal power spectrum density is shown. In the ana-
lysis the following damping and natural frequencies were assumed: ¢ = 0.1,

f =50Hz.
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Fig. 4. (a) System impulse response; (b) power spectrum density of the signal h(t);
(c) wavelets transform for Morlet’s wavelet; (d) values obtained from equation (3.6)
for =20
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The signal described by (3.7) is transformed to time-frequency domain
using the wavelet transform. The Morlet wavelet employed for the response
signal transformation is described by the formula (Robertson et al., 1998)

2
G(t) = V/afy Ao (3.8)

where f;, denotes the bandwidth parameter, f. - wavelet central frequency.

Knowing the system natural frequency, on the basis of formula (3.5) the
dilatation parameter a can be computed. For the determined initial value of
a next steps of the formulated procedure will be carried out. Signal decompo-
sition results are shown in Fig. 4c.

On the basis of formula (3.6) and with the use of regression analysis, a stra-
ight line slope coefficient has been determined (Fig.4d). Having transformed
equation (3.6), one finds the damping coefficient to be ¢ = 0.1. The obtained
result is consistent with the assumed one.

A similar simulation procedure has been realised for a more complex system
with two degrees of freedom. The system impulse response function had the
form

h(t) = e 0131t gin(314¢t) + e 004785 gin(785¢) (3.9)
a
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Fig. 5. (a) Impulse response of the simulated system; (b) results of wavelet-based
signal decomposition; (¢) approximation of the line given by equation (3.6) for
i = 20%; (d) approximation of the line given by equation (3.6) for i = 8

Natural frequencies were 50 Hz and 125 Hz, while damping factors 0.1 and
0.04. The response time history is shown in Fig. 5a.
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As in the case described above, computations were carried out on the
basis of relation (3.6). Coefficients charts of the wavelet transform are shown
in Fig. 5b.

Two spectral lines corresponding with individual natural frequencies are
visible. The following results were obtained: natural frequencies: f; = 50 Hz
and fy = 125 Hz and corresponding damping values (from the regression ana-
lysis): ¢; = 0.1 and ¢» = 0.04 and (Fig.5c,d). It is easy to notice that the
estimated values of damping parameters and natural frequencies are consistent
with the assumed values.

The above described examples show the damping identification procedure
for a stationary case. Example 2 shows results obtained for a nonstationary
system with a change in parameters.

Example 2

In this case, a single-degree-of-freedom system was been analysed. During
simulation of the impulse response the damping parameter was changed si-
gnificantly. The original value was (; = 0.01, but after changing had a value
of ¢ =0.02. The impulse response time history is shown in Fig. 6a. The time
profile of damping changes is shown in Fig. 6b.
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Fig. 6. (a) Time history of the impulse response signal; (b) rofile of damping
changes; (c) approximation of formula (3.6) for the nonstationary case; (d) Results
of signal decomposition
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As a result of transformation of equation (3.6), two straight line intervals
of different slopes (Fig. 6¢) were obtained. The first segment (ranging from 0.2
to 0.3 second) corresponds to the first damping coefficient, and the second one
(ranging from 0.6 do 1 second) corresponds to the second damping coefficient.
The following numerical results have been obtained:

e frequency f counted on the basis of formula (3.5): f = 100Hz

e damping coefficients for the first and second range: ¢; = 0.01, {; = 0.02,

respectively.

The obtained damping coefficients were identical with the assumed values.

The application of the verified identification procedure require one to as-
sume the model structure, mainly assumption of the number of degrees of
freedom before the estimation of parameters. But the identification of model
structures in a nonstationary case is not an easy task as it was presented, and
requires a special procedure. The wavelet transform can be very helpful in
solving this problem.

4. Application of wavelet filter for modal analysis of
nonstationary systems

To formulate the method of modal parameters estimation from the respon-
se signal of a nonstationary system, properties of the Morlet wavelet transform
are applied. The idea of the method is based on recovering the time history
of a signal from its time-frequency representation. To detect the modal model
structure (model order), a stabilisation diagram (Uhl, 1997) is synthesized and
analyzed. To obtain the stabilisation diagram, the Frequency Response Func-
tions (FRF) are necessary to be known. Based on the FRF estimators, the
modal model parameters can be estimated using the classical formula (Uhl,
1997)

C e QT o,
H(jw) = ;(jw_ = ) (4.1)
where A, = Q, ¥, ¥, is the vector of modal rest, A, — pole of the system.

In the proposed procedure, the FRFs are obtained from the time history
of input-output signals after their filtering with filters designed on the base of
the wavelet transform. The method is presented schematically in Fig. 7.

Using the classical wavelet transform (Staszewski and Giacomin, 1997), a
time-frequency representation of a signal can be obtained. The wavelet trans-

formation can be done by computation of a sequence of wavelet coefficients for
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Fig. 7. Scheme of the proposed method

a given parameter a. If the signal under transformation contains a frequency
component which corresponds to the parameter a, then the wavelet coefficient
will achieve a high value. Repeating this operation for the next value of a, a
matrix of wavelet coefficients can be obtained. Each row of this matrix is the
time profile for the given frequency, but each column describes the signal spec-
trum for the given time. High values of wavelet coefficients help one to find the
natural frequency of the system. Based on the wavelet coefficients, the signal
filter is defined.

In the first step of the proposed identification procedure, the wavelet trans-
form of the excitation (or a reference signal if the method for in-operation is
applied) and the response are computed. From the scalogram of the response,
natural frequences and scale parameters a are found. For each chosen parame-
ter a, time representations of the excitation and response are reconstructed.
If a frequency content of the analysed signal is changed in time, then correla-
tion of the wavelet and signal will change as well (Staszewski, 1997). Then, a
part of the signal which is correlated is used for estimation modal parameters.
The part of the signal where the correlation is changed will be analysed for
different parameter a and different frequencies. The filtered signal is used for
the estimation of FRF and modal parameters of the structure.
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5. Case studies

The proposed method has been applied to the identification of natural fre-
quency and modal damping parameters of an airplane (jet trainer ISKRA)
based on in-flight measurements data. Two different identification methods
have been applied and results compared. The measurement results contain ac-
celeration signals recorded during flight with varying speed. The first method
applied for the estimation of modal parameters was the ARMA model of the
measured signal (Cooper, 1995; Peng et al., 2002). The second applied me-
thod was the method presented in the paper. The results have been compared
in order to verify correctness of the methods. The recorded signal from the
accelerometer is shown in Fig. 8.
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Fig. 8. Time history of vibration acceleration in the ISKRA plane

The signal has been transformed to time-frequency domain using Morlet’s
wavelet transformation. The results are shown in Fig. 9. As it can be noticed,
dynamics of the analysed system is dominated by a frequency about 27 Hz. The
natural mode at 27 Hz has been detected and carefully analysed using both
methods. The results regarding modal damping coefficients are compared. The
comparison is presented in Fig. 10.
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Fig. 9. Example of a scalogram of the recorded signal
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Fig. 10. Comparison of identification results from both methods

As it can be noticed from the presented comparison, the results are similar.

The presented method is applied for the estimation of the modal model
structure. In order to perform this estimation based on investigation of the
stabilization diagram, cross spectral density (CSD) of measured signals and
wavelet transformation have been applied.

The CSD function has been obtained from the formula

Gag(f) = A(f)B*(f) (5.1)

where A(f) and B(f) are Fourier transforms of the signals a(t) and b(t),
respectively.

But before classical FFT analysis, the signals have been filtered using the
presented approach. The results of the first step of the procedure consist of
signal scalograms that have been obtained using the VIOMA software (Uhl et
al., 2001). The VIOMA software is developed for modal model identification
with several different methods. Results in the form of acceleration signal sca-
lograms are shown in Fig. 11. In the scalogram, two dominating frequencies
at two separate time intervals have been recognized (inside and outside the
rectangular). The modal parameters of the structure in both time intervals
have been obtained separately using the BR (Balanced Realization) estima-
tion method, which is implemented in the VIOMA software. The method, in
practical applications, gives a very good approximation of modal parameters
even for noisy data from an ambient excitation experiment.

To find the model structure, a stabilisation diagram has been synthesised.
The results for a signal without wavelet-based filtering are shown in Fig. 12.
As it can be noticed, it is very difficult to recognize stabilised modes which
indicate model structures and natural frequencies of the system.
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Fig. 11. A scalogram of an acceleration signal
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Fig. 12. A stabilisation diagram of a system without wavelet filtering

The signals have been filtered using the formulated wavelet-based filters,
and for the filtered data stabilisation diagrams have been built. The filters
have very similar characteristics and central frequencies (a = 41 and a = 42).
The results are shown in Fig. 13.

It can be seen in Fig. 13 that the structure (the order of the investigated
structure model) of the system is varying and completely different for the
interval inside the rectangular (Fig. 11), in which only 4 stabilised modes can
be distinguished, and outside the rectangular, where 7 stabilised modes are
recognized. The numerical results of modal parameters estimation for both
signal intervals are shown in Table 1.
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Table.1. Results of analysis

Identified mode shapes
Signal without Wavelet filtering System with wavelet
wavelet for the scale filtering for the scale
filtering parameter a = 41 parameter a = 42
Frequency | Damping | Frequency | Damping | Frequency | Damping
1) %] 2] 1% [Hz) %)
20.45 1.009 27.26 0.094 26.99 0.182
27.23 0.226 43.17 0.049 41.80 1.197
46.26 2.147 46.29 0.091 49.70 0.310
54.32 0.788 56.63 0.690
61.97 0.308 63.91 0.061

As it can be noticed, after wavelet filtering interpretation of the stabili-
sation diagram is relatively easy and diagrams have a clearer form, which is
helpful in recognition of natural modes. Different numbers of natural modes
of the system indicate structural nonstationarity of the system, which makes
more modes significantly excited when closer to the flutter point.

To confirm the nonstationarity of the system, modal model parameters
have been estimated for different signal samples. The wavelet-based filters have
been used for signal processing before estimation of the modal parameters. An
interval with correlation of a signal with a given wavelet have been chosen for
the estimation. The results in a form of a stabilisation diagram for different
time samples are shown in Fig. 14 and Fig. 15 and sumarized in Table 2.
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Fig. 15. A stabilisation diagram of a system with wavelet filtering: (a) from 7400 to
8200 for the scale parameter a = 41, (b) from 9800 to 10800 for the scale parameter
a =41

Table 2. Estimation of natural modes for different signal intervals

Identified natural modes for different time intervals
Sample No. Sample No. Sample No. Sample No.
3700-4200 4800-5400 7400-8200 9800-10800
Frequency | Damping | Frequency | Damping | Frequency | Damping | Frequency | Damping
Ha | (%) | M) | %) | (B | (%] | [He | [%]
26.26 1.02 26.60 2.10 25.79 1.90 28.11 2.18
27.09 0.64 27.25 0.19 27.32 0.25
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The obtained results confirm nonstationary behaviour of the system due
to aerodynamic couplings between particular modes. As it can be noticed, the
wavelet filtering has significant influence on quality of the obtained results. To
obtain a very accurate structure of the system, changes in the filtering based on
the wavelet formulation should be repeated for each value of the parameter a,
but it is a time consuming task. To avoid this effect, the parameters should
be chosen based on visual assessment of a scalogram.

6. Conclusions

Based on the presented theoretical and numerical studies, the following
conclusions can be drawn:

e During the process of modal analysis, stationarity of measured signals
should be very carefully checked. The nonstationarity can be a reason for
significant errors in the identification of parameters and the structure.

e The wavelet transform, particularly Morlet’s wavelets, is a very useful
tool for modal analysis of a mechanical structure and helps one to iden-
tify natural modes of a system even when signals are nonstaionary due
to system nonstationarity.

e The wavelet-based filtering should be used as a signal preprocessing pro-
cedure if the nonstaionarity of a system is expected. The wavelets help
one to recognize nonstionary behaviour of the system and to filter the
signal before the estimation procedure.

e A mechanical system with aeroelastic feedback, in which flutter is expec-
ted, revealed in its response that more and more dominating vibration
modes move to the flutter point in working conditions.

The future research in this area will be focused on modal analysis of non-
linear systems excited by ambient loads.
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Zastosowanie transformaty falkowej do identyfikacji parametréw
modalnych ukladéw niestacjonarnych

Streszezenie

W artykule przestawiono mozliwos¢ zastosowania transformaty falkowej do identy-
fikacji parametréw modalnych ukladéw mechanicznych. Pokazano procedury filtracji
falkowej pozwalajacej na wyznaczanie parametréw dynamicznych ukladéow wykazuja-
cych niestacjonarnosci. Metode zweryfikowano na danych symulacyjnych dla ukiadu
o dwdch stopniach swobody ze zmiennym tlumieniem. Opracowang metode zastoso-
wano do badania zmian tlumienia w czasie lotu samolotu ISKRA.
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