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The methodology of modelling flight dynamics of UAV using perceptron
artificial neural networks has been presented. The modelling is based on
experimental data recorded during flight characteristic and performance
tests of UAVs that is a part of a set to give training to anti-aircraft artil-
lery. The artificial neural network structure in quasi-static and dynamic
flights have been given. The accuracy indexes also have been given.
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1. Introduction

Identification of flight dynamical models of unmanned aerial vehicles
(UAVs) is taken up by many research institutions. Computer methods of the
identification are used supported by experimental data (Manerwowski and
Rykaczewski, 2003). As a new branch in science and technology artificial neu-
ral networks (ANNs) have appeared (Borowczyk et al., 1998; Hazarika, 1998;
Rutkowska et al., 1999). One of the most important characteristics of ANNs
is parallel processing if information by all neurons. In many cases, the paral-
lel processing is possible on-line. One of interesting applications of ANNs is
identification in flight control (Borowczyk et al., 1998; Hazarika, 1998; Horn
and Calise, 1998; James, 1997; Lonnblad et al., 1992), which is the subject
of research. Distinctly different from linear equations, non-linear relationships
are much complicated and analytical solutions are impossible. Instead, ap-
proximate ANN mathematical models are used, which are adapted during a
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learning process (Lonnblad et al., 1992). The identification problem is to con-
struct a model and to describe its parameters. From many possible solutions,
a multi-layer perceptron neural network has been chosen.

To work out a mathematical model of a UAV, experimental data has been
used (Fig.1) and examined during tests at the Air Force Institute of Tech-
nology (AFIT). Experimental flight data was recorded by a flight recorder.
Recorded data were: G-forces, angle velocities, speed and height of the flight,
aileron displacement, rotational speed of the propeller and UAV’s GPS co-
ordinates. These experimental data were used then for the learning process.
In the learning process, back propagation algorithms were used, which defined
the strategy of weights selection in a multi-layer ANN (Manerowski, 1999). As
a result, the structure of the ANN was defined, i.e. the number of layers and
neurons as well as the structure of input and output parameters in full flight
dynamics of the UAV.

Fig. 1. Flying object UAV

2. Problem formulation

To formulate a mathematical model of a UAV, classic laws of flight me-
chanics were used )Bociek and Gruszecki, 1999; Manerowski, 2001). On the
basis of these laws, equations of motion were determined considering the flying
object as a rigid solid. Generally, equations of motion can be presented as

Vyo=B ' (Fs+Fp+Fg+...) (2.1)

where
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B —~ Inertia matrix

F, - force vector and moment of inertia
Fpg ~ vector of inertia forces

Fao —  vector of G-forces.

On the basis of analysis by Manerowski (2001), his equation of motion
were incorporated to formulate the mathematical model of the UAV. In the
mentioned equations, the linear vector of acceleration V and the vector of
angular velocities € (deflection) and 9 (slope) are generally linked by the

formula _
Ve =EyEE'n (2.2)

where V. is the vector of motion parameters (Fig.1). It consists of compo-
nents

Ve = [V, 9,67 (2.3)
Ey is a matrix that has the following form
1 1
Ev = Q[L T m] (2.4)

while E; - depends on the angles ¢ and ¥ (Fig. 1)

cos ) cose cosdsine —sind
E; = | —sindcose —sindsine —cosd (2.5)
—sine COSE 0

n = [ng,ny,n;]" is avector of G-loads in the ozyz co-ordinate system (Fig. 1).
Its components are longitudinal G-load (n;), side G-load (n,) and gravity
load (n.).

E is a matrix of transformation expressed in terms of Euler’s angles &, ©
and ¥ (Manerowski, 2001) (Fig. 2)

cosWcos® sinWeos®  —sin@
E; = €21 €22 cos @sin® (2.6)
es1 €32 cos @ cos P

where

eo1 = cos Wsin O sin @ — sin ¥ cos ¢
€99 = sin ¥ sin @ sin @ + cos ¥ cos ¢
€31 = cos¥sin @ cos @ + sin ¥ sin @

e32 = sin¥sin @ cos ¢ — cos ¥ sin @
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Fig. 2. Euler’s angles (9,0, %) between two coordinate systems (ozyz - co-ordinate
related to object, (OXY Z — co-ordinate related to elipsoid surface

Changes of the velocity V, slope angle 1 and deflection angle & with
respect to time and position of the flying object and with respect to the given
co-ordinate (Fig.1) can be presented in a functional way depending on the
(G-loads vector m and angular velocity of bank &

Vt‘}e = f(na k‘: .. ) (2'7)

Moreover, n and £ depend on the velocity V, aileron displacement d,,
differential aileron displacement Ad;, and derivatives of these parameters. The
idea of the paper is to formulate G-loads vector n and bank angular veloci-
ty £, in relation to flight and control parameters. As a result, equations of
motion were determined, (2.8), whose the solution was found by methods of
numerical integration, while the G-loads and the bank angle x were generated
by perceptron neural networks

0
il |9 9 10 0 Na _sin
9| = 0 1_/; 0 0 —sink —cosk —ny | + | cosVsink
5 0 0 0 cosk —sink -, cos 1 cos K
Vs cos v
(2.8)

To get prejudiced in favour of computational results, it is worth to mark
that good results are obtained when using a separate ANN to generate a single
parameter of G-loads and bank angle k. The G-loads are modelled separately
for quasi-static and dynamic flights (quasi-static component — st sign, dynamic
component ~ dyn sign) according to

Na = Nast T Nadyn @ =,Y,z (2'9)
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3. ANN model

An artificial neural network (ANN) is a mathematical model that allows
formulating output signals m, in that case G-loads, in relation to input si-
gnals p, whereas, basically, these should be normalised signals (Fig. 3).

Lol A L-HANN”:': B e

Fig. 3. A mathematical scheme of a neural model of a flying object; p — vector of
input signal [V;, dpi, Adpi,...], ' — vector of normalised input signal, n’ — vector of
normalised output signal, n - G-loads vector [ngi,nyi,n2i], A. B — matrices of
signal transformation

3.1. Model in quasi-static flight

The structure of an ANN in a quasi-static flight with experimental data
used is shown in Fig. 4. The input data are: velocity, aileron displacement and
rotational velocity of the propeller at the i-th moment. The output data are
G-loads at the i-th moment.

Input layer Hidden laver Output layer

A1

Fig. 4. The structure of an ANN in a quasi-static flight

3.2. Model in dynamic flight

The structure of an ANN in a dynamic flight is shown in Fig.5. The
output data at the i-th moment depend on quasi-static parameters at that
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moment and depend on the input data at the previous moments: i — 1,
1 — 2, ete.

Input layer Hidden layer Output layer

P

N fiwdk-‘m |

n-dvni

Fig. 5. The structure of an ANN in a dynamic flight

4. Results

Numerical computations were carried out based upon the ANN JETNET
2.0 software (Lonnblad et al., 1992) using a back propagation algorithm. To
learn the ANN, experimental data of a UAV were used. The computations were
made for different structures of the ANN. Unfavourable results for an incorrect
ANN structure are presented in Fig. 6 and Fig. 7, whereas favourable results
(ANN worked correctly) in Fig. 8 and Fig. 9. As an example, G-loads generated
by the ANN were presented below as a function of aileron displacement for
selected velocities.

Positive and negative G-loads of the whole flight were generated by the
ANN. Experimental data for learning process were prepared. After compu-
tations, the best results were taken by a separate ANN to generate a single
output parameter, which meant separate modelling of the ANN for any G-
loads. The generated gravity load n. by the ANN is presented in Fig. 8.

A very interesting problem is to generate the dynamic component of the
G-load taken from recorded loads. The recorded loads consist of two compo-
nents: quasi-static and dynamic. Quasi-static components are G-loads at the
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Fig. 6. Gravity load n, generated by a 3 x4 x 4 x 3 ANN (unfavourable case)
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Fig. 7. G-loads generated by a 3 x 4 x 3 ANN (unfavourable casc)
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Fig. 8. Generated gravity load n, by a separate ANN

i-th moment, depending on the input parameters (Vi,dpi,7Zi,...) and dyna-
mic components depending on derivatives of these data. In accordance with
that methodology, the dynamic component was taken as subtraction of the
quasi-static component generated by the quasi-static ANN from the recorded
parameters. Below the dynamic component is presented in relation to an im-
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pulsive aileron displacement for a specified flight. It is worth to know that
the accuracy during the learning process of the dynamic ANN depends on
repeating of the process N. The number of repetitions N is one order higher
than that in the quasi-static ANN. For a specific flight, the generated dynamic
component of the gravity load is presented in Fig.9 for an impulsive aileron

displacement.
o
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Fig. 9. Dynamic change of the gravity load in relation to aileron displacement

The evaluation of accuracy of the generated G-loads was made as follows:

e average sum of components taken from experimental recorded data (n;.)
and generated by the ANN (n;) to the power of two

2
N

=<

2 —
Xmean —

whereas
N
2 2
X = Z Xi
i=1
e positive case [, to meet the condition
(nie = 1) (nie — n3) < 0.01

nie — experimental G-load at the momemt 12

1=1,2...

n; — G-load grnerated by the ANN at the momemt .

X} = (nie — n3)" (nie — 13)

N

(4.1)

(4.2)
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The influence of the ANN structure and its parameters such as the learning
factor 1 and momentum « (Osowski, 2000) on the accuracy indexes is given
below.

Table 1
ANN structure Positive Index
a/n input hidden | output | cases l, | X%eqn - 1072
neurones | neurones | neurones (%)

0.8/0.4 13 23.329
0.7/0.3 22 0.731
0.6/0.2 3 4| - 1 58 0.282
0.5/0.1 99 0.017
0.1/0.05 98 0.056
0.8/0.4 18 19.338
0.7/0.3 i 7.161
0.6/0.2 8 4| - 1 45 0.799
0.5/0.1 07 0.703
0.1/0.05 95 0.121
0.8/0.4 65 0.863
0.7/0.3 34 7.543
0.6/0.2 3 4| 4 1 98 0.766
0.5/0.1 100 0.103
0.1/0.05 100 0.084
0.8/0.4 24 43.223
0.7/0.3 46 17.544
0.6/0.2 8 4 4 1 35 33.654
0.5/0.1 95 0.487
0.1/0.05 99 0.077
0.8/0.4 17 13.049
0.7/0.3 57 26.556
0‘6/0.2 8 6 6 1 44 5.834
0.5/0.1 99 0.096
0.1/0.05 99 0.042
0.8/0.4 50 7.657
0.7/0.3 40 10.923
0.6/0.2 8 4 4 1 88 0.282
0.5/0.1 99 0.027
0.1/0.05 99 0.083
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5. Summary

To compare the results taken from experimental data and generated by the
ANN it is worth to mention that the mathematical model of a UAV using the
ANN is satisfactory. It can be concluded that the perceptron neural network
can be used for UAV modelling and testing its performance. That ANN model
consists of:

o cight neurones in the input layer
e four neurones in separate two hidden layers

e one neurone in the output layer.

The most important thing is to realize that good accuracy in generating
flight data, in quasi-static and dynamic flights, requires separate ANNs to ge-
nerate single parameters. Therefore, to work out a mathematical model of the
UAV, it was necessary to build the same number of ANNs as output parame-
ters. Moreover, in the dynamic model of the UAV, the number of repetitions N
in the learning process is one order higher than the corresponding number in
a quasi-static ANN model.
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Identyfikacja modelu dynamiki lotu bezpilotowego statku powietrznego
z wykorzystaniem perceptronowych sztucznych sieci neuronowych

Streszezenie

W artykule przedstawiono metodologie modelowania dynamiki lotu bezpilotowe-
go statku powietrznego z wykorzystaniem perceptronowych sztucznych sieci neuro-
nowych. Modelowanie oparto na wynikach eksperymentu uzyskanych podczas badan
wlasnosci lotnych i osiagdéw bezpilotowego statku powietrznego wchodzacego w zestaw
celéw powietrznych do szkolenia wojsk OPL. Podano, w zagadnieniu quasi-ustalonym
oraz dynamicznym, strukture sieci neuronowej odwzorowujacej wlasnosci lotne takie-
go obicktu oraz wskazniki oceny dokladnodei.
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