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In the present paper approximate constrained controllability of linear abs-
tract second-order infinite-dimensional dynamical control systems is conside-
red. First, fundamental definitions and notions are recalled. Next it is proved,
using the so-called frequency-domain method, that approximate constrained
controllability of second-order dynamical control system can be verified by
the approximate constrained controllability conditions for the simplified, su-
itably defined first-order linear dynamical control system. General results
are then applied for approximate constrained controllability investigation of
mechanical flexible structure vibratory dynamical system. Some special ca-
ses are also considered. Moreover, many remarks, comments and corollaries
on the relationships between different concepts of approximate controllabi-
lity are given. Finally, the obtained results are applied for investigation of
approximate constrained controllability for flexible mechanical structure. In
this case linear second-order partial differential state equation describes the
transverse motion of an elastic beam which occupies the given finite interval.
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1. Introduction

Controllability, similarly to stability and observability is one of the fun-
damental concepts in mathematical control theory (Huang, 1988). Roughly
speaking, controllability generally means, that it is possible to steer a gi-
ven dynamical system from an arbitrary initial state to an arbitrary final

1This work was supported by the State Committee for Scientific Research under grant
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state using the control taken from the set of admissible controls. Therefo-
re, controllability of dynamical system depends on the one side on the form
of the strate equation and on the other side-on the set of admissible con-
trols. In the literature, there are many different definitions and conditions
of controllability, which depend on the class of dynamical system (Ahmed
and Xiang, 1996; Huang, 1988; Klamka, 1992, 1993a,b; Kunimatsu and Ito,
1988; Narukawa, 1982; O’Brien, 1979; Triggiani, 1975b, 1977). Moreover, it
should be pointed out, that for infinite-dimensional dynamical systems, it
is necessary to distinguish between the notions of approximate controllabi-
lity and exact controllability (Huang, 1988; Klamka, 1993a, O’Brien, 1979;
Triggiani, 1975a,b, 1976, 1977, 1978; Triggiani and Lasiecka, 1991). It fol-
lows directly from the fact, that in infinite-dimensional spaces there exist
linear subspaces that are not closed. Finally, it should be mentioned, that
most of the papers concerning different controllability problems are main-
ly devoted to a study of unconstrained controllability, i.e. when the valu-
es of admissible controls are unconstrained. However, in the papers (Klam-
ka, 1992, 1993a,b) several necassary and sufficient conditions for constrained
approximate controllability for linear dynamical systems are formulated and
proved.

The present paper is devoted to the study of approximate controllability
of linear infinite-dimensional second-order dynamical systems with damping
and with constrained set of admissible controls. For such dynamical systems
direct verification of approximate constrained controllability is possible but
it is rather very difficult and complicated (Klamka, 1991). Therefore, using
the frequency-domain method (Klamka, 1993b), it is shown that approximate
constrained controllability of second-order dynamical system can be verified
by the approximate constrained controllability condition for suitably defined,
simplified first-order dynamical system.

The paper is organized as follows. Section 2 contains systems descriptions
and fundamental results concerning linear self-adjoint operators. In Section 3
constrained approximate controllability problem for general linear second-
order infinite-dimensional control systems with constant coefficients is discus-
sed. The Section 4 is devoted to a detailed study of constrained approximate
controllability of certain flexible mechanical control system. In this case, linear
second-order partial differential state equation describes the transverse motion
of an elastic beam which occupies the given finite interval (Kobayashi, 1992).
The solution of the state equation denotes the displacement from the reference
state at a given time and at a given space variable. In the state equation, the
first term is introduced by accounting rotational forces, next terms with the
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first-order derivative with respect to time represent internal structural viscous
damping, and the last term represents the effect of axial force on the beam
(Kobayashi, 1992). Moreover, the boundary conditions correspond to hinged
ends of the beam. The special attention is paid to the so-called positive appro-
ximate controllability, i.e. approximate controllability with positive controls.
Finally, concluding remarks are presented.

2. System description

First of all let us introduce notations and concepts taken directly from the
theory of linear opetarors.

Let V and U denote separable Hilbert spaces. Let A : V ⊃ D(A) → V
be a linear generally unbounded self-adjoint and positive-definite linear ope-
rator with dense domain D(A) in V and compact resolvent R(s;A) =
= (sI − A)−1 for all s in the resolvent set ρ(A). Then operator A has the
following properties (Ahmed and Xiang, 1996; Huang, 1988; Kobayashi, 1992;
O’Brien, 1979, Triggiani, 1975b):

• Operator A has only pure discrete point spectrum σp(A) consisting en-
tirely of isolated real positive eigenvalues si such that

0 < s1 < s2 < . . . < si < si+1 < . . . lim
i→∞
si = +∞

Each eigenvalue si has finite multiplicity ni <∞ (i = 1, 2, . . .) equal to
the dimensionality of the corresponding eigenmanifold.

• The eigenvectors vik ∈ D(A) (i = 1, 2, . . .; k = 1, 2, . . . , ni) form a
complete orthonormal system in the separable Hilbert space V .

• A has the spectral representation

Av =
∞
∑

i=1

si

ni
∑

k=1

〈v,vik〉V vik for v ∈ D(A)

• Fractional powers Aα (0 < α ¬ 1) of the operator A can be defined as
follows

A
α
v =

∞
∑

i=1

sαi

ni
∑

k=1

〈v,vik〉V vik for v ∈ D(Aα)
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where

D(Aα) =
{

v ∈ V :
∞
∑

i=1

(sαi )
2
ni
∑

k=1

|〈v,vik〉V |2 <∞
}

• Operators Aα (0 < α ¬ 1) are self-adjoint, positive-definite with dense
domains in V and generate analytic semigroups on V .

Now, let us consider linear infinite-dimensional control system described
by the following abstract second-order differential state equation

(e2A+ e1A
1

2 + e0I)v̈(t) + 2(c2A+ c1A
1

2 + c0I)v̇(t) +
(2.1)

+(d2A+ d1A
1

2 + d0I)v(t) = Bu(t)

where e2 ­ 0, e1 ­ 0, e0 ­ 0, e2 + e1 + e0 > 0, c2 ­ 0, c1 ­ 0, c0 ­ 0, d1 and
d0 unrestricted in sign, d2 > 0 are given real constants.
It is assumed that the operator B : U → V is linear and its adjoint

operator B∗ : V → U is A 12 -bounded (Ahmed and Xiang, 1996; Bensoussan
et al., 1993; Klamka, 1993b), i.e. D(B∗) ⊃ D(A 12 ) and there is a positive real
number M such that

‖B∗v‖U ¬M
(

‖v‖V + ‖A
1

2v‖V
)

for v ∈ D(A)

Let Ω ⊂ U be a convex cone with vertex at the origin in U such that
int co Ω 6= ∅. In the sequel it is generally assumed, that the admissible
controls u ∈ L2loc([0,∞), Ω). For the set Ω we define the polar cone by
Ωo = {w ∈ U, 〈w,v〉U ¬ 0 for all v ∈ Ω}. The closure, the convex hull
and the interior are denoted respectively by cl Ω, co Ω and int Ω. The linear
subspace spanned by Ω is denoted by span Ω.
It is well known (Bensoussan et al., 1993; Chen and Russell, 1982; Chen

and Triggiani, 1989, 1990a,b) that linear abstract ordinary differential equation
(2.1) with initial conditions

v(0) ∈ D(A) v̇(0) ∈ V
has for each t1 > 0 and admissible control u ∈ L2loc([0,∞), Ω) an uni-
que solution v(t;v(0), v̇(0),u) ∈ C2([0, t1], V ) such that v(t) ∈ D(A) and
v̇(t) ∈ D(A) for t ∈ (0, t1].
Moreover, for v(0) ∈ V there exists so-called ”mild solution” for the equ-

ation (2.1) in the product space W = V × V with inner product defined as
follows

〈v,w〉W = 〈[v1,v2], [w1,w2]〉W = 〈v1,w1〉V + 〈v1,w1〉V
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In order to transform the second-order equation (2.1) into the first-order equ-
ation in the Hilbert space W , let us make the substitution (Ahmed and Xiang,
1996; Bensoussan et al., 1993; Chen and Russell, 1982; Chen and Triggiani,
1989, 1990a,b; Triggiani, 1977)

v(t) = w1(t) v̇(t) = w2(t)

Then equation (2.1) becomes

w(t) = Fw(t) +Gu(t) (2.2)

where

F =

[

0 I

−F−10 (d2A+ d1A
1

2 + d0I) −2F−10 (c2A+ c1A
1

2 + c0I)

]

w(t) =

[

w1(t)
w2(t)

]

G =

[

0

F
−1
0 B

]

and F0 = (e2A+ e1A
1

2 + e0I).

Remark 2.1. Since the operators A and A
1

2 are self-adjoint and un-
der assumptions on coefficients ei (i = 0, 1, 2), the sequence
{(e2si + e1

√
si + e0)

−1 ∈ R, i = 1, 2, . . .} converges towards zero, it
is easy to see that operator (e2A+e1A

1

2 +e0I)
−1 is self-adjoint, positive-

definite and bounded on V .

Taking advantage of relation 〈v1,F∗v2〉W = 〈Fv1,v2〉W , we can obtain for
the operator F its adjoint operator F∗ as follows

F
∗ =

[

0 −(d2A+ d1A
1

2 + d0I)(e2A+ e1A
1

2 + e0I)
−1

I −2(c2A+ c1A
1

2 + c0I)(e2A+ e1A
1

2 + e0I)
−1

]

Similarly, the adjoint for operator G can be obtained as

G
∗ =
[

0 B∗(e2A+ e1A
1

2 + e0I)
−1
]

Remark 2.2. It should be pointed out, that properties of operators F and
F
∗ depend strongly on the values of coefficients ci, di, ei (i = 0, 1, 2)
(Bensoussan et al., 1993; Chen and Russell, 1982; Chen and Triggiani,
1989, 1990a,b). In particular:
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1. If c2 = c1 = c0 = 0 and additionally

(a) e2 6= 0 or (e2 = 0 and d2 = 0 and e1 6= 0) or (e2 = e1 = 0 and
d2 = d1 = 0), then the operator F is bounded and generates
an analytic group of linear bounded operators on the Hilbert
space W = V × V .

(b) (e2 = 0 and d2 6= 0) or (d2 = 0 and e2 = e1 = 0 and d1 6= 0),
then the operator F is unbounded and generates a group of
linear bounded operators on the Hilbert space W = V × V
which cannot be analytic (Triggiani, 1975b).

2. If (e2 = 0 and c2 6= 0) or (e2 = e1 = 0 and (c2 6= 0 or
c1 6= 0)), then the operator F is unbounded and generates an ana-
lytic semigroup of linear bounded operators on the Hilbert space
W = V × V .

3. Moreover, if e2 6= 0 or (e2 = e1 = 0 and c2 = c1 = 0 and
d2 = d1 = 0) or (e2 = 0 and c2 = 0 and d2 = 0 and e1 6= 0),
then the operator F is bounded and generates an analytic semigro-
up of linear bounded operators on the Hilbert space W = V × V .

4. If c2 = e2 = 0 and e1 6= 0 and d2 6= 0, then the operator F
is unbounded and generates an C0-semigroup of linear unbounded
operators on the Hilbert space W = V × V which is not analytic.

In the sequel, in addition to the second-order equation (2.1), we shall also
consider the simplified first-order linear differential equation of the following
form

v̇(t) = −Aαv(t) +Bu(t) (2.3)

where constant α ∈ (0,∞) is such that there exists solution of differential
equation (2.3).
In the next sections we shall also consider dynamical control system (2.1)

with finite-dimensional control space U = Rm. In this special case, for conve-
nience, we shall introduce the following notations

B =
[

b1 · · · bj · · · bm
]

u(t) =



















u1(t)
...
uj(t)
...
um(t)



















where for bj ∈ V for j = 1, 2, . . . ,m and u ∈ L2loc([0,∞), Ω).
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Let us observe, that in this special case linear bounded operator B is finite-
dimensional and therefore, it is a compact operator (Ahmed and Xiang, 1996;
Huang, 1988; Triggiani, 1975a, 1976).
Using eigenvectors vik (i = 1, 2, . . . and k = 1, 2, . . . , ni) we introduce for

finite-dimensional operator B the following notation (Huang, 1988; Triggiani,
1975b) for i = 1, 2, . . .

Bi =























〈b1,vi1〉V 〈b2,vi1〉V · · · 〈bj ,vi1〉V · · · 〈bm,vi1〉V
〈b1,vi2〉V 〈b2,vi2〉V · · · 〈bj ,vi2〉V · · · 〈bm,vi2〉V
...

...
. . .

...
. . .

...
〈b1,vik〉V 〈b2,vik〉V · · · 〈bj ,vik〉V · · · 〈bm,vik〉V
...

...
. . .

...
. . .

...
〈b1,vini〉V 〈b2,vini〉V · · · 〈bj ,vini〉V · · · 〈bm,vini〉V























(2.4)

Bi (i = 1, 2, . . .) are ni × m-dimensional constant matrices which play an
important role in approximate controllability investigations (Huang, 1988;
Klamka, 1991, 1993a; Triggiani, 1975b).
For the special case when eigenvalues si are simple, i.e. ni = 1 (i = 1, 2, . . .)

and consequently the matrices Bi are in fact m-dimensional row vectors for
i = 1, 2, . . .

Bi =
[

〈b1,vi〉V · · · 〈bj ,vi〉V · · · 〈bm,vi〉V
]

(2.5)

3. Constrained approximate controllability

It is well known, that for infinite-dimensional dynamical systems we may
introduce two general kinds of controllability, i.e. approximate (weak) control-
lability and exact (strong) controllability (Ahmed and Xiang, 1996; Huang,
1988; Klamka, 1993a; Triggiani, 1975a, 1976). However, it should be mentio-
ned, that in the case when the linear semigroup associated with the dynamical
system is a compact semigroup or the control operator B is compact, then dy-
namical system is never exactly controllable in infinite-dimensional state space
(Ahmed and Xiang, 1996; Huang, 1988; Triggiani, 1975b, 1977). Therefore,
in the present paper we shall concentrate on approximate controllability for
second-order dynamical system (2.1) or equivalently (2.2), and first of all we
recall the basis definition. Next, we shall recall from the literature several lem-
mas and controllability conditions which will be used to verify the constrained
approximate controllability of certain mechanical system.
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Definition 3.1 (Ahmed and Xiang, 1996; Huang, 1988; O’Brien, 1979). Dy-
namical system (2.1) is said to be Ω-approximately controllable if for any
initial condition w(0) ∈ V ×V , any given final condition wf ∈ V ×V and
each positive real number ε, there exists a finite time t1 <∞ (depending
generally on w(0) and wf ) and an admissible control u ∈ L2([0, t1], Ω)
such that

‖w(t1;w(0),u)−wf‖V ×V ¬ ε

Now, let us recall several well-known lemmas (Klamka, 1993a,b; Narukawa,
1984; O’Brien, 1979) concerning constrained approximate controllability of the
first-order linear infinite-dimensional dynamical system (2.2), which will be
useful in the sequel.

Lemma 3.1. (Klamka, 1993b). Dynamical system (2.2) is U -approximately
controllable if and only if for any complex number z, there exists no
nonzero w ∈ D(F∗) such that

[

F
∗ − zI
G
∗

]

w = 0 (3.1)

Similarly, dynamical system (2.3) is U -approximately controllable if and
only if for any complex number s there exists no nonzero v ∈ D(Aα) ⊂ V
such that

[

A
α − sI
B
∗

]

v = 0

Lemma 3.2. (Klamka, 1993a). Suppose that U = Rm, and the cone Ω =
= {u ∈ Rm = U : uj(t) ­ 0, for t ­ 0}, then dynamical system (2.3) is
Ω-approximately controllable if and only if the columns of the matrices
Bi form a positive basis in the space R

ni for every i = 1, 2, . . ..

Lemma 3.3. (Narukawa, 1984). Dynamical system (2.3) is U -approximately
controllable if and only if it is approximately controllable for some
α ∈ (0,∞).

Lemma 3.4. (O’Brien, 1979). Dynamical system (2.2) is Ω-approximately
controllable if and only if it is U -approximately controllable and

Ker(zI− F∗) ∩ (GΩ)o = {0} for every z ∈ R (3.2)
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Remark 3.1. Since the linear operator A is selfadjoint then from Lemmas
3.1, 3.3, and 3.4 directly follows that the dynamical system (2.3) is
Ω-approximately controllable if and only if

Ker(sI−Aα) ∩ (BΩ)o = {0} for every s ∈ R (3.3)

Proposition 3.1. Dynamical system (2.3) is Ω-approximately controllable if
and only if it is Ω-approximately controllable for some α ∈ (0,∞).

Proof. Since the operator A is selfadjoint and positive definite, then for any
real number α ∈ (0,∞)

Ker(sI−A) = Ker(sαI−Aα) = Ker(zI−Aα)

where z = sα is a homeomorphizm. Hence our proposition follows.

Now, using the frequency-domain method (Klamka, 1993b) we shall for-
mulate the necessary and sufficient condition for approximate controllability
of dynamical system (2.1), which is proved by Klamka (1993a).

Theorem 3.1. (Klamka, 1993a). Dynamical system (2.1) is Ω-approximately
controllable if and only if dynamical system (2.3) is Ω-approximately
controllable for some α ∈ (0,∞).

From Theorem 3.1 follow several Corollaries, which are necessary and suf-
ficient conditions for constrained approximate controllability for different spe-
cial cases of dynamical system (2.1).

Corollary 3.1. Suppose that Ω = {u ∈ Rm = U : uj(t) ­ 0, for t ­ 0}.
Then the dynamical control system (2.1) is Ω-approximately controlla-
ble, i.e. with positive controls if and only if columns of the matrices Bi
form a positive basis in the space Rni for every i = 1, 2, . . ..

Proof. If the columns of the matrices Bi form a positive basis in the space
Rn for every i = 1, 2, . . . and Ω is a positive cone in the space Rm, then
image BΩ is the whole space Rni for every i = 1, 2, . . .. Therefore our
Corollary 3.1 follows.

Corollary 3.2. Suppose that c21 + c
2
2 > 0 and Ω = U . Then dynamical sys-

tem (2.1) is U -approximately controllable, i.e. without control constra-
ints in any time interval [0, t1] if and only if dynamical system (2.3) is
U -approximately controllable in finite time.
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Proof. Since for the case when c21 + c
2
2 > 0 operator F generates analytic

semigroup, then approximate controllability of dynamical system (2.2)
and hence also of dynamical system (2.1) is equivalent to its approxima-
te controllability in any time interval [0, t1] (Klamka, 1993a; Triggiani,
1977). Therefore, from Theorem 3.1 immediately follows Corollary 3.2.

Corollary 3.3. Suppose that c21 + c
2
2 > 0, Ω = U , and the space of control

values is finite-dimensional, i.e. U = Rm. Then the dynamical system
(2.1) is U -approximately controllable, i.e. without control constraints in
any time interval [0, t1] if and only if

rankBi = ni for i = 1, 2, . . .

Proof. Corollary 3.3 is a direct consequence of the Theorem 3.1, Corolla-
ry 3.2 and well-known results (Huang, 1988; Triggiani, 1975a,b, 1976)
concerning approximate controllability of infinite-dimensional dynami-
cal systems with finite-dimensional controls.

Corollary 3.4. Suppose that c21+ c
2
2 > 0, Ω = U , the space of control values

is finite-dimensional, i.e. U = Rm, and moreover, multiplicities ni = 1
for i = 1, 2, . . .. Then dynamical control system (2.1) is U -approximately
controllable, i.e. without control constraints in any time interval [0, t1]
if and only if

m
∑

j=1

〈bj ,vi〉2V 6= 0 for i = 1, 2, . . .

Proof. From Corollary 3.3 immediately follows that for the case when
multiplicities ni = 1 for i = 1, 2, . . . dynamical system (2.1) is
U -approximately controllable in any time interval if and only if
m-dimensional row vectors for i = 1, 2, . . .

Bi =
[

〈b1,vi〉V 〈b2,vi〉V . . . 〈bj ,vi〉V . . . 〈bm,vi〉V
]

Thus, Corollary 3.4 follows.

In the next section we shall use the general controllability results given
above to verify approximate constrained controllability of a certain vibratory
dynamical system modeling mechanical flexible structure.
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4. Approximate constrained controllability of vibratory system

In this section we shall consider a vibratory dynamical system described
by the following linear partial differential state equation (Kobayashi, 1992)

e1vttxx(t, x) + e0vtt(t, x) + 2c1vtxx(t, x) + 2c2vtxxxx(t, x) +
(4.1)

+d1vxx(t, x) + d2vxxxx(t, x) =
m
∑

j=1

bj(x)uj(t)

defined for x ∈ [0, L] and t ∈ [0,∞), where the subscript t represents partial
derivative with respect to time variable, while x denotes partial derivative
with respect to spatial coordinate.
The initial conditions for the equation (4.1) are given by

v(0, x) = v0(x) and vt(0, x) = v1(x) for x ∈ [0, L] (4.2)

and boundary conditions are as follows

v(t, 0) = v(t, L) = vxx(t, 0) = vxx(t, L) = 0 for t ∈ [0,∞) (4.3)

Let Ω be the positive cone Ω = {u ∈ Rm = U : uj(t) ­ 0, for t ­ 0}, i.e. in
the sequel we shall consider mechanical system with positive controls.
It should be stressed, that the partial differential state equation (4.1) de-

scribes the transverse motion of an elastic beam which occupies the interval
[0, L] in the reference and stress-free state. The function v(t, x) denotes the di-
splacement from the reference state at time t and position x. In the left-hand
side of the equation (4.1), the first term is introduced by accounting rotatio-
nal forces, terms with the first-order derivative with respect to time represent
internal structural viscous damping, and the fifth term represents the effect
of axial force on the beam (Kobayashi, 1992). The boundary conditions (4.3)
correspond to hinged ends of the beam.
Let V = L2[0, L] be a separable Hilbert space of all square integrable

functions on [0, L] with the standard norm and inner product (Ahmed and
Xiang, 1996; Huang, 1988). In order to regard the vibratory system (4.1),
(4.2) and (4.3) in the general framework considered in the previous sections,
let us define linear unbounded differential operator A : V ⊃ D(A) → V by
Kobayashi (1992)

v(x) = vxxxx(x) for v(x) ∈ D(A)
(4.4)

D(A) =
{

v(x) ∈ H4[0, L]; v(0) = v(L) = vxx(0) = vxx(L) = 0
}
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where H4[0, L] denotes the fourth-order Sobolev space on [0, L].

The linear unbounded operator A has the following properties (Ahmed
and Xiang, 1996; Huang, 1988; Kobayashi, 1992; O’Brien, 1979):

• Operator A is self-adjoint and positive-definite with dense domain D(A)
in the space V .

• There exists a compact inverse A−1, and consequently the resolvent
R(s;A) of A is a compact operator for all s ∈ ρ(A).

• Operator A has a spectral representation

Av =
∞
∑

i=1

si〈v, vi〉V vi for v ∈ D(A)

where si > 0 (i = 1, 2, . . .) are simple eigenvalues (i.e. ni = 1) and
vi ∈ D(A) (i = 1, 2, . . .) are the corresponding eigenfunctions of A.
Moreover, for x ∈ [0, L]

si =
(πi

L

)4

vi(x) =

√

2

L
sin
πix

L

and the set {vi(x), i = 1, 2, . . .} forms a complete orthonormal system
in V .

• Fractional powers Aα, 0 < α ¬ 1 can be defined by

A
αv =

∞
∑

i=1

sαi 〈v, vi〉V vi for v ∈ D(A) (0 < α ¬ 1)

which is also a self-adjoint and positive-definite operator with a dense
domain in V . In particular, for we have

A
1

2 v = −vxx

with the domain D(A
1

2 ) = {v ∈ H2[0, L] : v(0) = v(L)}.

Now, we can consider the partial differential equation (4.1) with condi-
tions (4.2) and boundary conditions (4.3) as a special case of the second-order
abstract evolution equation (2.1) in the Hilbert space V .

(e1A
1

2 + e0)ẅ(t) + 2(c2A+ c1A
1

2 )ẇ(t) + (d2A+ d1A
1

2 )w(t) = Bu(t) (4.5)
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where

w(t) = v(t, ·) ∈ V ẇ(t) = vt(t, ·) ∈ V ẅ(t) = vtt(t, ·) ∈ V
bj = bj(·) ∈ V (j = 1, 2, . . . ,m)

Let the initial conditions be of the following form

w(0) = w0 ∈ D(A) ẇ(0) = w1 ∈ V

Then there exists a unique solution of the partial differential equation (4.1)
(Kobayashi, 1992).

Now, using the results given in Section 3 we shall formulate and prove
the necessary and sufficient condition for approximate controllability of the
vibratory dynamical control system (4.1), which is the main result of the
present paper.

Theorem 4.1. Vibratory dynamical control system (4.1) is Ω-approximately
controllable, i.e. with positive controls if and only if for each i = 1, 2, . . .
m-dimensional row vectors Bi = [bi1, bi2, . . . , bij , . . . , bim] contain at le-
ast two coefficients with different signs, where

bij =

L
∫

0

√

2

L
bj(x) sin

πix

L
dx

i = 1, 2, . . .

j = 1, 2, . . . ,m
(4.6)

Proof. Let us observe, that dynamical system (4.1) satisfies all the assump-
tions of Corollary 3.1. Therefore, taking into account the analytic for-
mula for the eigenvectors vi(x), i = 1, 2, . . . and the form of the inner
product in the separable Hilbert space L2([0, L], R), from relation (4.1)
we directly obtain inequalities (4.6). Hence, Theorem 4.1 immediately
follows.

Corollary 4.1. Vibratory dynamical control system (4.1) is U -approxi-
mately controllable, i.e. without control constraints in any time interval
[0, t1] if and only if

m
∑

j=1

(

L
∫

0

√

2

L
bj(x) sin

πix

L
dx
)2

6= 0 for i = 1, 2, . . . (4.7)
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Proof. Let us observe, that dynamical system (4.1) satisfies all the assump-
tions of Corollary 3.4. Therefore, taking into account the analytic for-
mula for the eigenfunctions vi(x) (i = 1, 2, . . .) and the form of the inner
product in the separable Hilbert space L2([0, L], R), from Lemma 3.4
we directly obtain inequalities (4.6). Hence, Theorem 4.1 follows imme-
diately.

5. Conclusions

The present paper contains results concerning approximate controllabili-
ty of second-order abstract infinite-dimensional dynamical systems. Using the
frequency-domain method (Klamka, 1993b) and the methods of functional
analysis, especially the theory of linear unbounded operators, necessary and
sufficient conditions for approximate controllability in any time interval are
formulated and proved. Moreover, some special cases are also investigated and
discussed. Then, the general controllability conditions are applied to investiga-
te approximate controllability of vibratory dynamical system modeling flexible
mechanical structure.

The results presented in the paper are generalization of the controllability
conditions given in the literature (Ahmed and Xiang, 1996; Klamka, 1991,
1993b; Narukawa, 1984; O’Brien, 1979; Triggiani, 1975a,b) to second-order
abstract dynamical systems with damping terms. Finally, it should be pointed
out,that the obtained results could be extended to cover the case of more
complicated second-order abstract dynamical systems (Chen and Russel, 1982;
Chen and Triggiani, 1989, 1990a,b).
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Przybliżona ograniczona sterowalność układu mechanicznego

Streszczenie

W artykule rozpatrywana jest przybliżona ograniczona sterowalność liniowego
abstrakcyjnego nieskończenie-wymiarowego układu dynamicznego drugiego rzędu.
W pierwszej kolejności przedstawiono podstawowe definicje i pojęcia. Następnie, wy-
korzystując metodę częstotliwościową, wykazano, że przybliżona ograniczona stero-
walność układu dynamicznego drugiego rzędu może być weryfikowana poprzez ba-
danie przybliżonej ograniczonej sterowalności odpowiednio zdefiniowanego uproszczo-
nego układu dynamicznego pierwszego rzędu. Ogólne metody zastosowano do ba-
dania przybliżonej ograniczonej sterowalności mechanicznego układu oscylacyjnego
o elastycznej strukturze. Rozpatrzono również pewne przypadki szczególne. Ponadto
podano wiele uwag, komentarzy i wniosków dotyczących relacji między różnymi ro-
dzajami przybliżonej sterowalności. Jako przykład zastosowań sformułowano warunki
przybliżonej ograniczonej sterowalności w odniesieniu do elastycznego układu me-
chanicznego. W tym wypadku liniowe równanie różniczkowe cząstkowe stanu opisuje
odchylenie elastycznej belki o danej długości.
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