
JOURNAL OF THEORETICAL

AND APPLIED MECHANICS

44, 2, pp. 299-322, Warsaw 2006

SOLUTION TO THE STATIC STABILITY PROBLEM OF

THREE-LAYERED ANNULAR PLATES WITH A SOFT CORE

Dorota Pawlus

Faculty of Mechanical Engineering and Computer Science, University of Bielsko-Biała

e-mail: doro@ath.bielsko.pl

The solutions to the static stability problem of a three-layered annular
plate with a soft core and a symmetric cross-section structure are presented
in this paper. The basic element of the solution is the formulation of a
system of differential equations describing plate deflections and the use of
the finite difference method in calculation of critical loads of buckling forms
solving the eigen-value problem. The solution indicates the minimal values
of static critical loads as well as the buckling forms of plates compressed
on a selected edge. The obtained results have been compared with those
obtained for plate models built by means of the finite element method.
The final remarks concerning the forms of the loss of static stability of
analysed plates with the sandwich structure have been formulated. This
paper is a complement of the work by Pawlus (2005), which concerned
calculations of the dynamic stability of plates, and it is an extension to
cases of wave forms of the plate buckling problem earlier presented only for
regular, axially-symmetrical forms of deformation in, eg., Pawlus (2002).
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1. Introduction

The evaluation of critical static loads with the indication of the minimal
value and the corresponding form of plate buckling is the basic problem in plate
stability analysis. The analysis of static critical loads precedes the evaluation
of dynamic critical loads of plates and the observation of their supercritical
behaviour.
Buckling loads and geometrically nonlinear axisymmetric postbuckling be-

haviour of cylindrically orthotropic annular plates under inplane radial com-
pressive load applied to the outer edge were undertaken by Dumir and Shingal
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(1985). Geometrically nonlinear, axisymmetric, moderately large deflections of
laminated annular plates were presented by Dumir et al. (2001). Also in the
work by Krizhevsky and Stavsky (1996) laminated annular plates were exami-
ned. Buckling loads of such plates uniformly compressed in the radial direction
were analysed, too. The axisymmetric dynamic stability of sandwich circular
plates with viscoelastic damping layer under periodic radial loading along the
outer edge was the subject of considerations by Wang and Chen (2003). Al-
so the axisymmetric dynamic instability of a rotating sandwich annular plate
with a viscoelastic core under periodic radial stress was examined by Chen et
al. (2006).
Solutions to the static analysis of plate stability presented in this paper

refer to the solutions of the three-layer annular plate problem presented by
Pawlus (2005). They exactly constitute the introduction to the dynamic stabi-
lity plate problem undertaken in the mentioned work. The presented solutions
do not limit the range of the examined plates only to such forms of deforma-
tions which are regular and axially-symmetrical (see Pawlus, 2002), but they
are global solutions for different circumferential wave forms of the loss of plate
static stability. The presented solutions eliminate possible questions connected
with forms of the plate buckling for minimal values of critical loads. They also
show that the variability in number of waves of deformation plates strongly
depends on geometric and material properties of layers in plate structures.
Two solutions presented in this paper use approximation methods: finite dif-
ferences and finite elements. The proposed solution to the static stability of
analysed three-layer annular plate, which uses the finite difference method,
refers to solutions of homogeneous elastic plates presented, eg. by Wojciech
(1979) as well as by Trombski and Wojciech (1981). Additionally, some modifi-
cation of calculation algorithms to formulas necessary for sandwich structures
is introduced.

2. Problem formulation

A three-layer annular plate with a symmetric cross-section structure com-
posed of thin steel facings and a soft foam isotropic core is considered. Plate
edges are clamped. Compressive loads uniformly distributed on the plate pe-
rimeter act on the outer or/and inner edge of the plate facings. A scheme of
the plate is presented in Fig. 1.
In the solution based on the finite difference method, the classical theory of

sandwich plates with the broken line hypothesis (Volmir, 1967) is adopted. The
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Fig. 1. Scheme of analysed plate

classical participation of plate layers in carrying the plate load is assumed: the
facings are loaded with normal but the core with shear stresses. Equal values
of transverse deflections of plate layers are accepted. The minimal critical
static load of the plate and the corresponding form of buckling are calculated
analysing the minimal critical loadings found from the eigen-value problem
for different numbers m of plate circumferential waves describing the form of
plate deformation.

3. System of elementary equations

In the group of presented basic equations – the obtained equation, (3.14),
enabling calculation of transverse plate deflections is fundamental. The qu-
antities describing the relative radial δ and circumferential displacements γ
of plate facings coming from the sandwich structure of the analysed plate
build additional expressions in equation (3.14) in relation to the formulas of
homogeneous plates.

3.1. Equilibrium equations

The system of forces acting on each of three layers of a single annular
sector of the plate is presented in Fig. 2. The system of equilibrium equations
of each layer is presented by the formulas:
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— layer 1

Mr1 −Mθ1
r

+Mr1′r +
1

r
Mθr1′θ −Qr1 +

h1
2
τr1 = 0

1

r
Mθ1′θ +

2

r
Mrθ1 +Mrθ1′r −Qθ1 +

h1
2
τθ1 = 0 (3.1)

(Tθr1w′r)′θ + (Tθr1w′θ)′r + (rNr1w′r)′r +
1

r
(Nθ1w′θ)′θ +

+Qθ1′θ + (rQr1)′r + rτr1w′r + τθ1w′θ = 0

— layer 2

−Qr2 +
h2
2
τr1 +

h2
2
τr3 = 0 −Qθ2 +

h2
2
τθ1 +

h2
2
τθ3 = 0

(3.2)

Qθ2′θ + (rQr2)′r − rτr1w′r + rτr3w′r − τθ1w′θ + τθ3w′θ = 0

— layer 3

Mr3 −Mθ3
r

+Mr3′r +
1

r
Mθr3′θ −Qr3 +

h3
2
τr3 = 0

1

r
Mθ3′θ +

2

r
Mrθ3 +Mrθ3′r −Qθ3 +

h3
2
τθ3 = 0 (3.3)

(Tθr3w′r)′θ + (Tθr3w′θ)′r + (rNr3w′r)′r +
1

r
(Nθ3w′θ)′θ +

+Qθ3′θ + (rQr3)′r − rτr3w′r − τθ3w′θ = 0

where
Nr1(3) , Nθ1(3) – normal radial and circumferential forces acting on

facings per unit length, respectively
Qr1(2,3) , Qθ1(2,3) – transverse forces acting on facings and core layer

per unit length, respectively
Mr1(3) ,Mθ1(3) – elementary radial and circumferential bending mo-

ments of facings, respectively
Mrθ1(3) – elementary torsional moments of outer layers

Tθr1(3) – shear forces per unit length acting on outer plate
layers

τr1(3) , τθ1(3) – shearing radial and circumferential stresses, espec-
tively

w – plate deflection.
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Fig. 2. Loading of plate layers

3.2. Geometric relations

Radial and circumferential cross-section deformations of the plate struc-
ture are shown in Fig. 3. The angles β and α determine the radial and cir-
cumferential deformation of the plate core, respectively. They are expressed
by equations

β =
u1 − u3 − w′rh

′

h2
α =
v1 − v3 −

1
r
w′θh

′

h2
(3.4)

where
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u1(3), v1(3) – displacements of the points of the middle plane of fa-
cings in the radial and circumferential directions, re-
spectively

h′ = h1 = h3 – thicknesses of the plate layers.

Fig. 3. Cross-sectional geometry of sandwich plate: (a) in radial direction, (b) in
circumferential direction

3.3. Physical relations

Linear physical relations of Hooke’s law for the plane stress state in plate
outer layers are given by the following formulas

σri =
Ei
1− ν2i

(εri + νεθi) σθi =
Ei
1− ν2i

(εθi + νεri) (3.5)

where i denotes the outer layer, i = 1 or 3.

Young’s moduli and Poisson’s ratios of the facing material fulfil the condi-
tions: E = E1 = E3 and ν = ν1 = ν3.

The physical relations of the core material under shearing stress are as
follows

τrz2 = G2γrz2 τθz2 = G2γθz2 (3.6)

where γrz2 , γθz2 – shearing strain of the core in the radial and circumferential
directions, respectively

γrz2 = u
(z)
2′z
+ w′r γθz2 = v

(z)
2′z
+
1

r
w′θ
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and u
(z)
2 = u2 − zβ, v

(z)
2 = v2 − zα – radial and circumferential displacements

of a point with the z – coordinate, respectively (z is the distance between the
point and the middle surface of the core).

3.4. Differential equations for plate deflections

Based on the relations between sectional forces, moments and stresses for
plate facings, equations of sectional forces and moments have been established

Nri =
Ehi
1− ν2

(

ui′r +
ν

r
ui +
ν

r
vi′θ +

1

2
(w′r)

2 +
ν

2r2
(w′θ)

2
)

Nθi =
Ehi
1− ν2

(1

r
ui +
1

r
vi′θ + νui′r +

ν

2
(w′r)

2 +
1

2r2
(w′θ)

2
)

Trθi = Ghi
(1

r
ui′θ + vi′r −

1

r
vi +
1

r
w′rw′θ

)

(3.7)

Mri = −Di
(

w′rr +
ν

r
w′r +

ν

r2
w′θθ
)

Mθi = −Di
( 1

r2
w′θθ +

1

r
w′r + νw′rr

)

Mrθi = −2Drθi

(w

r

)

′rθ

where Di, Drθi denote the flexural rigidities of the outer layers, and

Di =
Eh

3

i

12(1 − ν2)
Drθi =

Gh3i
12

The transverse forces Qr2 and Qθ2 respectively expressed by formulas
Qr2 = τrz2h2, Qθ2 = τθz2h2, have been obtained using equations (3.4) and
(3.6)

Qr2 = G2(δ +H
′w′r) Qθ2 = G2

(

γ +H ′
1

r
w′θ
)

(3.8)

where

δ = u3 − u1 γ = v3 − v1 H ′ = h′ + h2 (3.9)

Finding from equations (3.1)1,2, (3.2)1,2 and (3.3)1,2 formulas determining the
radial Qr1(2,3) and circumferential Qθ1(2,3) forces, enables one to obtain the
resultant forces Qr and Qθ as the sums of the individual layer forces
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Qr =
1

r
(Mr1 +Mr3)−

1

r
(Mθ1 +Mθ3) + (Mr1 +Mr3)′r +

+
1

r
(Mθr1 +Mθr3)′θ +

H ′

h2
Qr2

(3.10)

Qθ =
1

r
(Mθ1 +Mθ3)′θ + (Mrθ1 +Mrθ3)′r +

2

r
(Mθr1 +Mθr3) +

H ′

h2
Qθ2

Inserting equations (3.7)4−6 and (3.8) into equations (3.10) yields the following
formulas

Qr = −k1w′rrr −
k1
r
w′rr +

k1
r2
w′r −

k2
r2
w′rθθ +

k1 + k2
r3
w′θθ +

+G2(δ +H
′w′r)
H ′

h2
(3.11)

Qθ = −
k1
r3
w′θθθ −

k1
r2
w′θr −

k2
r
w′θrr +G2

(

γ +H ′
1

r
w′θ
)H ′

h2

where k1 = 2D, k2 = 4Drθ + νk1.

Adding the summands of equations (3.1)3, (3.2)3, (3.3)3 all together gives
the following equation

(Trθw′r)′θ + (Tθrw′θ)′r + (rNrw′r)′r +
1

r
(Nθw′θ)′θ +Qθ′θ + (rQr)′r = 0 (3.12)

In the above equation, (3.12) the resultant membrane forces Nr, Nθ, Trθ are
expressed respectively: Nr = Nr1+Nr3 , Nθ = Nθ1+Nθ3 and Trθ = Trθ1+Trθ3 .
They have been determined by means of the introduced stress function Φ

Nr = 2h
′

(1

r
Φ′r +

1

r2
Φ′θθ
)

Nθ = 2h
′Φ′rr

(3.13)

Trθ = 2h
′

( 1

r2
Φ′θ −

1

r
Φ′rθ
)

Inserting (3.11) and (3.13) into equation (3.12) yields a differential equation
for deflections of the analysed plate
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k1w′rrrr+
2k1
r
w′rrr−

k1
r2
w′rr+

k1
r3
w′r+

k1
r4
w′θθθθ+

2(k1 + k2)

r4
w′θθ+

2k2
r2
w′rrθθ+

−

2k2
r3
w′rθθ −G2

H ′

h2

1

r

(

γ′θ + δ + rδ′r +H
′
1

r
w′θθ +H

′w′r +H
′rw′rr

)

=
(3.14)

=
2h′

r

( 2

r2
Φ′θw′rθ −

2

r
Φ′θrw′θr +

2

r2
w′θΦ′θr −

2

r3
Φ′θw′θ + w′rΦ′rr + Φ′rw′rr +

+
1

r
Φ′θθw′rr +

1

r
Φ′rrw′θθ

)

3.5. Boundary conditions

The boundary conditions for the loading are expressed by equations

σr
∣

∣

∣

r=ri
= −pd1 σr

∣

∣

∣

r=r0
= −pd2 (3.15)

where d1, d2 are some quantities being 0 or 1, which determine the loading
of the inner or/and the outer plate edge (Wojciech, 1978). The boundary
conditions for the clamped edges of the plate are as follows

w
∣

∣

∣

r=r0(ri)
= 0 w′r

∣

∣

∣

r=r0(ri)
= 0 δ

∣

∣

∣

r=r0(ri)
= 0

δ′r
∣

∣

∣

r=r0(ri)
= 0 γ

∣

∣

∣

r=r0(ri)
= 0 γ′r

∣

∣

∣

r=r0(ri)
= 0

(3.16)

4. Problem solution

The quantities δ and γ, unknown in equations (3.14), have been obtained
by finding the differences in the radial and circumferential displacements u1,
u3 and v1, v3 of points from the middle surface of the plate facings (3.9) using
the equilibrium equations for forces acting on the undeformed outer plate
layers in the u and v direction, respectively:
— layer 1

Nr1 + rNr1′r −Nθ1 + Tθr1′θ + rτr1 = 0
(4.1)

Nθ1′θ + 2Trθ1 + rTrθ1′r + rτθ1 = 0

— layer 3

Nr3 + rNr3′r −Nθ3 + Tθr3′θ − rτr3 = 0
(4.2)

Nθ3′θ + 2Trθ3 + rTrθ3′r − rτθ3 = 0
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Having calculated the above expressions, the summands in equations (4.1) and
(4.2) have been subtracted and then expressions (3.7)1−3, which determine the
sectional forces Nri , Nθi , Trθi , have been inserted into the obtained equations.
The shearing stresses τr, τθ have been expressed by sums of stresses τr1 , τr3
and τθ1 , τθ3 using equations (3.2)1,2

τr1 + τr3 =
2

h2
Qr2 τθ1 + τθ3 =

2

h2
Qθ2

After some transformations, the following differential equations have been fo-
und

2r

h2
G2H

′w′r =
Eh′

1− ν2

(

rδ′rr + δ′r −
1

r
δ + νγ′rθ −

1

r
γ′θ
)

+

+Gh′
1

r
(δ′θθ + rγ′rθ − γ′θ)−

2r

h2
G2δ

(4.3)

2

h2
G2H

′w′θ =
Eh′

1− ν2

(1

r
δ′θ + νδ′rθ +

1

r
γ′θθ
)

−

2r

h2
G2γ +

+Gh′
1

r
(δ′θ + rδ′rθ + r

2γ′rr + rγ′r − γ)

Using the following dimensionless quantities and the expressions in the solution

F =
Φ

Eh2
ζ =
w

h
ρ =
r

r0

δ =
δ

h
ζ(ρ, θ) = X(ρ) cos(mθ) γ =

γ

h

δ(ρ, θ) = δ(ρ) cos(mθ) γ(ρ, θ) = γ(ρ) sin(mθ)

(4.4)

where m is the number of circumferential waves corresponding to the form of
plate buckling, h = h1 + h2 + h3 – total thickness of plate, equations (3.14)
and (4.3) can be presented in the following form

W1X′ρρρρ +
2W1
ρ
X′ρρρ −

W3
ρ2
X′ρρ +

W3
ρ3
X′ρ +

W4
ρ4
X −
2W1
ρ4
m2X +

−

W5
ρ
H ′
(

mγ + δ + ρρ′ρ −
m2

ρ

H ′

r0
X +
H ′

r0
X′ρ +

H

r0
ρX′ρρ

)

=

=
2W 25W2
ρ

(

X′ρY0′ρ + Y0X′ρρ −
m2

ρ
XY0′ρ

)

X′ρ = δ
(

A
1

ρ2
+B +

m2

ρ2
C
)

−A
1

ρ
δ′ρ −Aδ′ρρ −m

K2
ρ
γ′ρ +m

K1
ρ2
γ (4.5)

mX = −m
K1
ρ
δ −mK2δ′ρ + ρCγ′ρρ + Cγ′ρ − γ

(

m2
A

ρ
+
C

ρ
+Bρ

)
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where

Y0 = F′ρ A = −
Eh′

1− ν2
h2
G2

1

2H ′r0
B = −

r0
H ′

C = −
Gh′

r0

h2
2G2H ′

D = Aν K1 = A+ C

K2 = D + C W1 = k1
h′

h

h2
G2

1

r30
W2 = E

h2
G2

h3

r30

W12 = k2
h′

h

h2
G2

1

r30
W3 =W1 + 2m

2W12 W5 =
h′

h

W4 = m
4W1 − 2m

2W12

Assuming that the stress function F is a solution to the disk state and
using the boundary conditions for the clamped edges, based on the work by
Wojciech (1978), the following expression has been obtained

Y0 = K10p
∗

(

e1ρ+
e2
ρ

)

(4.6)

where

K10 =
r2z
h2

p∗ =
p

E
e1 =

d2
ρi
− d1ρi

ρi −
1
ρi

e2 =
d1ρi − ρid2

ρi −
1
ρi

and ρi is the dimensionless inner plate radius.
In the solution, the finite difference method has been used for the appro-

ximation of the derivatives with respect to ρ by central differences in discrete
points. Transformed equations (4.5) have the forms

MAPU +MADD +MAGG = p
∗
MACU

(4.7)

MACPU =MACDD +MACGG MPU =MDD +MGG

where:

U , D, G – vectors of plate deflections and differences of the radial ui and
circumferential vi displacements of facings (3.9), respectively

MAP , MAC , MACD, MACG, MD, MG – matrices of elements composed of
geometric and material parameters of the plate and the quantity b of the
length of the interval in the finite difference method and the number m
of buckling waves

MAD – matrix of geometric parameters and the quantity b
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MAG – matrix of geometric parameters and the number m

MACP – matrix with elements described by the quantity 1/(2b)

MP – matrix with elements described by the number m.

Solving the eigen-value problem, the minimal value of p∗ as the critical
static load p∗cr has been calculated

det[(MAP +MADMATD +MAGMATG)− p
∗
MAC ] = 0 (4.8)

and MATG, MATD are matrices obtained from transformed equations (4.7)2,3
in the forms

MATG =M
−1
TG(MP −MDM

−1
ACDMACP )

(4.9)

MATD =M
−1
ACDMACP −M

−1
ACDMACGMATG

where

MTG =MG −MDM
−1
ACDMACG

5. Numerical calculations

Exemplary numerical calculations of a plate loaded on the inner or/and
outer edges have been carried out by analysing the influence of geometric and
material parameters on the critical static loads and corresponding forms of
buckling.
The calculations have been carried out for plates with the following geo-

metrical dimensions: inner radius ri = 0.2m, outer radius r0 = 0.5m, various
core and steel facing thicknesses in the range of: h2 = 0.005m, 0.01m, 0.02m
and h′ = 0.0005m, 0.001m, respectively; accepting a polyurethane foam as an
isotropic core material with Kirchhoff’s moduli G2 = 5MPa (Majewski and
Maćkowski, 1975) and G2 = 15.82MPa (Romanów, 1995) and the Poisson’s
ratio ν = 0.3 (PN-84/B-03230).

5.1. Calculations by finite difference method

Calculations of plates using the Finite Difference Method (FDM) have
been preceded by analysis of the accuracy of values of the critical loads for
different numbers N of discrete points: N = 11, 14, 17, 21, 26. Tables 1, 2,
3, 4 show the critical plate loads pcr for different buckling forms determined
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by the number m of circumferential waves. The minimal critical load with the
wave number m have been marked. The analysis of critical loads pcr indicates
that the number N = 14 of discrete points fulfils the accuracy up to 5% of
technical error. The calculations were carried out for this number (N = 14)
of discrete points in FDM. The results show that for a higher number N of
discrete points, N = 21, 26, the form of plate buckling has an additional
circumferential wave for the minimal critical plate load pcr.

The influence of core Kirchhoff’s modulus and layer thicknesses, particular-
ly the core on the distribution of critical loads and the forms of plate buckling
are presented in Fig. 4 - Fig. 6.

Table 1. Critical plate loads pcr for different wave numbers m

d1 = 0 d2 = 1 E = 2.1 · 105 MPa
ri = 0.2 m r0 = 0.5 m h′ = 0.001 m
ν = 0.3 G2 = 5 MPa h2 = 0.005 m

pcr [MPa]

m
N

11 14 17 21 26

0 32.78 32.89 32.94 32.98 33.01

1 30.95 31.06 31.12 31.16 31.19

2 26.89 27.01 27.09 27.14 27.18

3 23.32 23.45 23.53 23.59 23.63

4 21.25 21.37 21.44 21.50 21.54

5 20.41 20.52 20.58 20.63 20.67

6 20.44 20.53 20.58 20.62 20.65

7 21.05 21.13 21.17 21.21 21.24

8 22.09 22.16 22.22 22.24 22.26

All analysed examples of plates loaded on the inner perimeter of facings
confirmed the observation earlier noticed in homogeneous plates (Wojciech,
1978; Pawlus, 1996) that the buckling of plates with double clamped edges for
the minimal critical static load has a regular, axi-symmetrical form. Figure 4
shows a suitable distribution of the critical loads. Detailed results for such lo-
aded plates, including their behaviour, were presented by Pawlus (2002, 2003).
Diagrams 5, 6 present the distribution of critical loads for the plate compres-
sed at outer perimeters depending on the number m of buckling waves. The
points marked by ∗ in the diagrams correspond to forms of buckling of plates
loaded with minimal critical loads. The presented results indicate a change in
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Table 2. Critical plate loads pcr for different wave numbers m

d1 = 0 d2 = 1 E = 2.1 · 105 MPa
ri = 0.2 m r0 = 0.5 m h′ = 0.0005 m
ν = 0.3 G2 = 5 MPa h2 = 0.02 m

pcr [MPa]

m
N

11 14 17 21 26

0 118.77 118.95 119.04 119.11 119.16

9 70.31 70.44 70.54 70.64 70.72

10 69.70 69.83 69.92 70.01 70.09

11 69.41 69.53 69.62 69.71 69.79

12 69.38 69.49 69.58 69.67 69.74

13 69.55 69.67 69.75 69.83 69.90

14 69.91 70.02 70.10 70.18 70.25

Table 3. Critical plate loads pcr for different wave numbers m

d1 = 0 d2 = 1 E = 2.1 · 105 MPa
ri = 0.2 m r0 = 0.5 m h′ = 0.001 m
ν = 0.3 G2 = 15.82 MPa h2 = 0.005 m

pcr [MPa]

m
N

11 14 17 21 26

0 76.10 76.19 76.23 76.27 76.30

3 54.84 55.08 55.22 55.33 55.42

4 49.81 50.04 50.18 50.29 50.37

5 47.31 47.50 47.62 47.72 47.80

6 46.37 46.53 46.64 46.72 46.79

7 46.42 46.56 46.65 46.72 46.78

8 47.15 47.27 47.34 47.40 47.45

9 48.37 48.47 48.53 48.59 48.63

10 49.98 50.06 50.12 50.16 50.12

the deformations for plates with stiffer structures. With an increase in the core
thickness and Kirchhoff’s modulus or with a decrease in the facing thickness,
the form of plate deformation has an additional buckling wave.
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Table 4. Critical plate loads pcr for different wave numbers m

d1 = 1 d2 = 0 E = 2.1 · 105 MPa
ri = 0.2 m r0 = 0.5 m h′ = 0.001 m
ν = 0.3 G2 = 5 MPa h2 = 0.005 m

pcr [MPa]

m
N

11 14 17 21 26

0 74.70 75.61 76.05 76.39 76.57

1 86.78 87.72 88.16 88.48 88.69

2 121.70 123.47 124.27 124.87 125.27

3 159.50 165.46 167.18 168.42 169.26

4 195.78 214.02 217.68 219.94 221.45

5 236.00 263.92 275.70 279.59 282.12

Fig. 4. Critical static load distributions depending on number of buckling waves for
plates compressed on inner perimeter
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Fig. 5. Critical static load distributions depending on number of buckling waves for
plates compressed on outer perimeter with different core thicknesses and material

parameters

Fig. 6. Critical static load distributions depending on number of buckling waves for
plates compressed on outer perimeter with different core and facing thicknesses

5.2. Calculations by finite element method

The presented results of examined plates have been compared with the re-
sults obtained using the Finite Element Method (FEM). For this purpose, the
computational plate models consistent with the analysed models in the finite
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difference method have been built. The fundamental computational model of
the plate is a full annulus plate model presented in Fig. 7. Additionally, the
plate models in the form of an annular sector as the 1/8 or 1/6 part of the
annulus have been built – see Fig, 8a,b, respectively.

Fig. 7. Full annulus plate model

Fig. 8. Annular sector plate model, (a) 1/8 part of annulus (α = 45◦), (b) 1/6 part
of annulus (α = 60◦)

The facing mesh has been built using 3D, 9-node shell elements, but the
core mesh was made of 3D, 27-node solid elements. The outer surfaces of
facing mesh elements have been connected with the outer surfaces of core ele-
ments using the surface contact interaction. The deformations of the inner
and outer plate edges have been limited by the support conditions witho-
ut the possibility of relative displacements of facings in their clamped edges.
There is no limitation to the deformation, which was earlier formulated by
the condition of equal deflections of each plate layer. The calculations we-
re carried out at the Academic Computer Center CYFRONET-CRACOW
(KBN/SGI ORIGIN 2000/PŁódzka/030/1999) using the ABAQUS system.

The symmetry conditions enabling the observation of such forms of plate
deformations for which the length of a single circumferential wave is included
or is a multiple of the angle of an annular sector have been imposed on the side
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edges of the annular sector plate models. The computational results of plate
models built in the form of annular sectors (Fig. 8) compared with the results
of the full annulus plate model (Fig. 7) allow the evaluation of correctness
of the FEM-based calculations. The computational capability of the program
enabled creation of plate meshes for the annular sector model thicker than
those for the full annulus model, hence the accuracy of the results could be
greater. The results presented in Fig. 9 and in Tables 5, 6, 7 for plates with the
facing thickness h′ = 0.001m show some quantitative discrepancy in values of
the critical loads.

Fig. 9. Distribution of critical static loads of plates modelled as annular sectors or
full annulus; (1) annular sector model, (2) full annulus model

The presented in Tables 5, 6, 7 critical loads pcr and forms of buckling are
given in the increasing order up from the minimal value to numbers obtained
for the full annulus plate model. All results concern the plate models loaded at
the outer edge of facings. The presented results are comparable, however some
differences in the range of higher values of critical loads depending on the kind
of computational plate model are observed. One can notice some sensitivity of
numerical results with depend on the computational model using FEM. Some
detailed remarks concerning calculations of plates loaded at inner facing edges,
which are differently modelled were presented by Pawlus (2002, 2004, 2005).
The numerical calculation of the full annulus plate model loaded at the inner
edges confirms the observation that the minimal critical loads corresponds



Solution to the static stability problem... 317

Table 5. Critical stresses calculated by means of FEM for plate models with
parameters: h2 = 0.005m, G2 = 5MPa

pcr [MPa]
m Full annulus Annular sector of plate model
plate model α = 45◦ α = 60◦

5 16.48 – –

6 16.75 – 17.92

4 17.02 18.76 –

7 17.68 – –

3 18.65 – 20.22

8 19.25 19.74 –

9 21.49 – 22.48

2 21.52 – –

10 24.71 – –

1 24.87 – –

0 26.44 27.06 29.98

Table 6. Critical stresses calculated by means of FEM for plate models with
parameters: h2 = 0.005m, G2 = 15.82MPa

pcr [MPa]
m Full annulus Annular sector of plate model
plate model α = 45◦ α = 60◦

6 35.04 – 36.74

5 35.46 – –

7 35.57 – –

8 36.94 38.35 –

4 37.19 38.37 –

9 38.98 – 39.86

3 40.87 – 44.24

10 42.48 – –

2 47.01 – –

to the regular axi-symmetrical form (m = 0) of plate buckling. Exemplary
critical loads in the increasing order for a plate with layer thicknesses equal:
h′ = 0.001m, h2 = 0.005m and with core Kirchhoff’s modulus G2 = 5MPa
are presented in Table 8.
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Table 7. Critical stresses calculated by means of FEM for plate models with
parameters: h2 = 0.02m, G2 = 15.82MPa

pcr [MPa]
m Full annulus Annular sector of plate model
plate model α = 45◦ α = 60◦

9 115.10 – 123.23

8 115.26 124.43 –

7 116.52 – –

10 118.41 – –

6 119.53 – 130.13

11 122.55 – –

5 125.01 – –

12 129.98 – 124.03

4 134.29 147.01 –

Table 8. Critical stresses and forms of buckling of plates loaded at inner
perimeter of facings (d1 = 1, d2 = 0)

pcr [MPa]

64.08 75.75 107.04

m = 0 m = 1 m = 0, n = 1

109.89 113.95 141.35

m = 2 m = 1, n = 1 m = 2, n = 1

n – number of waves in radial direction
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Table 9. Critical stresses and forms of buckling of plates loaded at outer
perimeter of facings (d1 = 0, d2 = 1)

Parameters of plate pcr [MPa]
h′ / h2 /G2 FEM Form of

[m] / [m] / [MPa] FDM Full annulus Annular sector buckling

plate model of plate model

0.001 / 0.005 / 5.0 20.52 16.48 –
m = 5

0.001 / 0.01 / 5.0 29.42 25.85 27.93
m = 6

0.001 / 0.02 / 5.0 46.95 43.71 –
m = 7

0.001 / 0.005 / 15.82 46.53 35.04 36.74 m = 6

0.001 / 0.02 / 15.82 125.11 115.1 123.23
m = 9

0.0005 / 0.005 / 5.0 22.37 – –
m = 8

– 19.6 – m = 7
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6. Conclusions

Comparing the results obtained using th two presented methods: Fini-
te Difference Method (FDM) and Finite Element Method (FEM), quanti-
tative correctness and qualitative consistency have been observed. Suitable
results of critical static loads of plates calculated in the FDM and FEM
with their forms of buckling are presented in Table 9. The critical loads of
the annular sector plate model built in FEM show better consistency with
the results of plates calculated in the FDM. For plates with thin facings
(h′ = 0.0005m), a difference in the buckling form calculated in the FDM and
in FEM is observed. The number of waves is equal to m = 8 and m = 7, res-
pectively.

Analysing the results of critical static loads with forms of buckling of annu-
lar sandwich double-clamped plates determined by the two presented methods,
it can be concluded:

• in the case of loading of the inner plate perimeter, the minimal value
of compressive static critical load is found for a regular axi-symmetrical
form of loss of the plate static stability

• in the case of loading of the outer plate perimeter, the minimal critical
static loads and the numbers of buckling waves depend on the geome-
trical and material parameters: with the increase in the plate stiffness,
the critical loads and numbers of circumferential buckling waves incre-
ase, too.
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Rozwiązanie zagadnienia stateczności statycznej pierścieniowych płyt

trójwarstwowych z rdzeniem miękkim

Streszczenie

W pracy przedstawiono rozwiązania stateczności statycznej trójwarstwowych płyt
pierścieniowych o symetrycznej strukturze poprzecznej z piankowym rdzeniem mięk-
kim. Zasadniczą częścią rozwiązania jest wyprowadzenie układu równań różniczko-
wych opisujących ugięcia płyty oraz wykorzystanie metody różnic skończonych i wy-
znaczenie krytycznych obciążeń płyt poprzez rozwiązanie zagadnienia wartości wła-
snych. Wyznaczonym wartościom ciśnień krytycznych płyt obciążonych na wybranym
brzegu ich okładzin odpowiadają postacie deformacji płyt, które określa liczba m fal
poprzecznych na obwodzie płyty. Otrzymane wyniki pod względem ilościowym i ja-
kościowym porównano z wynikami obliczeń metodą elementów skończonych przedsta-
wionych modeli płyt. Sformułowano uwagi końcowe dotyczące form utraty stateczności
statycznej analizowanych płyt o strukturze warstwowej. Artykuł stanowi uzupełnienie
pracy Pawlus (2005) dotyczącej obliczeń stateczności dynamicznej płyt i rozwinięcie
na przypadki sfalowanych form deformacji rozwiązania problemu stateczności sta-
tycznej płyt rozpatrywanego wcześniej, min. w pracy Pawlus (2002) w zakresie tylko
obrotowych, osiowo-symetrycznych form utraty ich stateczności.
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