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The aim of this paper is to pursue, in the wake of the work by Nadot-Martin et
al. (2003), a non-classical micromechanical study and scale transition for highly
filled particulate composites with viscoelastic matrices. The present extension of
a morphology-based approach due to Christoffersen (1983), carried forward to
the viscoelastic small strain context by Nadot-Martin et al. (2003), consists here
in introducing a supplementary mechanism, namely damage by grain/matrix de-
bonding. Displacement discontinuities (microcracks) on grain/matrix interfaces
are first incorporated in a compatible way within geometric and kinematic hy-
potheses regarding the grains-and-layers assembly of Christoffersen. Then, local
field expressions as well as homogenized stresses are established and discussed
for a given state of damage (i.e. for a given actual number of open and clo-
sed microcracks) and using the hypothesis of no sliding on closed crack lips. A
comparison with the results obtained for the sound viscoelastic composite by
Nadot-Martin et al. (2003) allows to quantify the damage influence on local and
global levels. At last, the basic formulation of the model obtained by scale transi-
tion is completed by the second stage leading to a thermodynamically consistent
formulation eliminating some superfluous damaged-induced strain-like variables
related to open cracks. This second stage is presented here for a simplified sys-
tem where delayed (viscoelastic) effects are (tentatively) neglected. It appears
as a preliminary and crucial step for further generalization in viscoelasticity.

Key words: micro-macro transition, heterogeneous materials, morphology, visco-
elasticity, anisotropic damage, microcracking
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1. Introduction

This paper deals with a two step scale transition for modelling anisotropic
damage behaviour of viscoelastic particulate composites, starting from the
methodology initially proposed by Christoffersen (1983) for elastic bonded
granulates. This methodology is built on geometric and kinematic hypotheses
regarding a granular assembly with interconnecting layers constituting thus
a consistent framework of a microstructural morphology pattern. The latter
forms in fact an advantageous starting point for a micromechanical descrip-
tion and further localization-homogenization procedure. The recent extension
of the method, performed by Nadot-Martin et al. (2003) for composites invo-
lving viscoelastic matrices, has confirmed its efficiency since it allows one to
account for genuine viscoelastic interactions between constituents and for their
macroscopic consequence – the ”long range memory” effect. It is to be recalled
that the presence of truly viscoelastic (i.e. viscous and elastic) coupled inte-
ractions on the microscale level and of associated global ”long range memory”
constitute two crucial criteria for relative evaluation of the pertinency of sca-
le transition in the viscoelastic context (see e.g. Beurthey and Zaoui, 2000;
Brenner et al., 2002). The present contribution attempts to further extend
the technique in the presence of damage by grain-matrix debonding. It is to
be emphasized that the resulting two step scale transition presented is done
for a given diffuse distribution of open and closed interface microdefects (i.e.
without coalescence).

The aim of Section 2 is to extend the technique due to Christoffersen (1983)
– with its geometrical and kinematical ingredients, its averaging scheme and
the relevant strategy of the approach of the local problem – in the presence
of interfacial discontinuities. In such a way, Section 2 provides generalization,
involving the damage mechanism mentioned, of the conceptual structure and
relevant consistency requirements by Christoffersen. Section 3 deals with the
solution to the localization-homogenization problem for composites with a vi-
scoelastic matrix as it was done for the sound aggregate by Nadot-Martin et
al. (2003), while here it is performed in the presence of interfacial damage. A
discussion is put forward (Subsection 3.3) in order to quantify the coupling
between damage and viscoelasticity regarding several aspects as e.g. local in-
teractions and the macroscopic consecutive long range memory effect, induced
anisotropy, moduli recovery under crack closure. At this stage, local fields and
global stresses involve a full set of internal relaxation variables (as for the so-
und material) and a new set of strain-like variables related to (discrete) sites
of microcracking. In the same time, the reversible global moduli tensor lacks
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crucial symmetries. The discussion at the end of Subsection 3.3 brings out the
necessity of complementary analysis in order to express local open defects-
related strains as functions of macroscopic state variables. Nevertheless, the
simultaneous presence of viscoelastic variables and damage related ones makes
the problem complex to deal with. This is why the above mentioned specific
analysis, called the ’complementary localization-homogenization approach’ is
conducted here (Section 4) for an elastic aggregate only (elastic grains and
matrix + microcracks open/closed). This is a (necessary) crucial step, and
the results obtained will constitute the basis for further genuine viscoelastic
analysis.

2. Extension of Christoffersen’s method in presence of damage

2.1. Microstructure schematization

Figure 1 shows a close-up schematic for grains separated by matrix layers
according to the scheme proposed by Christoffersen (1983) for a sound, i.e. an
undamaged particulate composite. The grains are considered as polyhedral;
any two of them are interconnected by a thin material layer of a given uniform
thickness (noted hα for the αth layer). The grain-layer interfaces are charac-
terized by their orientation (nα for the αth layer). The spatial distribution
of grains is accounted for through vectors linking grain centroids (dα for the
αth layer). Moreover, no restriction is imposed on the grain size – the repre-
sentation allows granulometric variations. As a result, such a schematization,
giving much attention to the granular character, makes it possible to describe
with sufficient accuracy the real initial microstructure geometry of an am-
ple class of strongly charged particulate composites. Moreover, such a direct
morphological description will allow one to introduce local interfacial defects
(discontinuities) in a relatively direct and simple manner (see Subsection 2.2).

2.2. Local problem approach

2.2.1. Kinematics

The purpose consists here in introducing material discontinuities and re-
lative displacement jumps in a compatible way with the original kinematical
framework of Christoffersen (1983), and following step by step the strategy
of this author. This implies more detailing of this framework. The latter is
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Fig. 1. Two neighbouring grains GA and GB with an interconnecting material layer
according to Christoffersen (1983)

defined by four assumptions for the local displacement field that are recalled
below:

• The kinematics of grain centroid is characterized by the global (macro-
scopic) displacement gradient ∇U = F.

• The grains are supposed homogeneously deformed and the corresponding
displacement gradient f0 is assumed to be common to all members of
the Representative Volume Element (RVE).

• Each interconnecting layer is subject to a homogeneous deformation,
proper for the layer α under consideration. The corresponding displace-
ment gradient is denoted fα for the αth layer.

• Local disturbances at grain edges and corners are neglected on the basis
of thinness of the layers (see surrounded zones in Fig. 1).

Following the methodology by Christoffersen, the first stage consists in in-
terpreting the above hypotheses. The resulting three following equations cor-
respond to relations (2.1)-(2.3) in the original paper by Christoffersen (1983).
According to the first item, the centroid displacements uAi and u

B
i of two

grains GA and GB separated by the layer α (see Fig. 1) are given by

uAi = u
0
i + Fijy

A
j uBi = u

0
i + Fijy

B
j (2.1)

where u0 designates a global constant vector and yj (j = 1, 2, 3) represent
local, cartesian coordinates in the RVE. Therefore and with the second as-
sumption, the displacements of the grains GA and GB are

uGAi (y) = u
0
i + (Fij − f

0
ij)y
A
j + f

0
ijyj

(2.2)

uGBi (y) = u
0
i + (Fij − f

0
ij)y
B
j + f

0
ijyj
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At last, by means of the third assumption, the displacement field of the layer α
is

uαi (y) = u
α
i (y
AB) + fαij(yj − y

AB
j ) (2.3)

where AB stands for an arbitrary point on Iα1 , the interface of the layer α
and the grain GA.
For a sound material, further developments by Christoffersen consist in

expressing uα and finally the displacement gradient fα of any layer α as
functions of F, the macroscopic displacement gradient, f 0, the grain displace-
ment gradient and of morphological parameters of the layer

fαij = f
0
ij + (Fik − f

0
ik)d
α
k

nαj
hα

(2.4)

To this aim, Christoffersen employs the continuity of the displacement field
successively on Iα1 and I

α
2 , namely, makes use of what happens at the gra-

in/layer interfaces. These developments are here revisited to take into account
the presence of discontinuities. Following the spirit of the author, it leads to
consideration of the jumps (discontinuities) as data of the local problem and
to search for uα and fα as functions of these. It is stressed that this is also the
option taken by some works regarding homogenization of microcracked solids
(Andrieux et al., 1986; Kachanov, 1994; Basista and Gross, 1997) where the
local problem is solved by considering the displacement jumps (corresponding
to cracks) as the relevant data.
So, consider the presence of a discontinuity on the first interface Iα1 of the

layer α. According to the previous remark, the corresponding displacement
discontinuity vector, denoted bα1i , is considered as a data of the local problem.
Nevertheless, its form cannot be arbitrary. Indeed, the linearity (according to
kinematical assumptions) of the displacement field leads to assignment of a
linear form to bα1i , namely

bα1i (y
AB) = fαD1ij y

AB
j + c

αD1
i (2.5)

where the tensor fαD1 and the vector cαD1 are homogeneous and stand for
data characterizing the crack. So, in the presence of a discontinuity on the first
interface Iα1 , instead of researching u

α
i by means of the continuity condition

uαi (y
AB) = uGAi (y

AB) for any point AB on Iα1 as it was done by Christoffersen
for the sound material, one has to find it in such a way that

uαi (y
AB) = uGAi (y

AB) + bα1i (y
AB) ∀yAB ∈ Iα1 (2.6)

with bα1i given by (2.5). By reporting (2.6) where u
GA
i and bα1i are expres-

sed using (2.2)1 and (2.5) respectively, in (2.3), the displacement field in the
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layer α is obtained in the following form

uαi (y) = u
0
i + (Fij − f

0
ij)y
A
j + (f

0
ij − f

α
ij)y
AB
j + f

α
ijyj + f

αD1
ij y

AB
j + c

αD1
i (2.7)

As the above expression must be independent of the choice of the point AB,
the condition

(f0ij − f
α
ij + f

αD1
ij )m

α
j = 0 (2.8)

must hold for any tangent mα to the grain-layer interface Iα1 . It follows that
f
α must have the form

fαij = f
0
ij + f

αD1
ij + gαi n

α
j (2.9)

where gα denotes a homogeneous vector. Furthermore, expression (2.7) for uαi
becomes independent of the choice of the point AB, and is finally given by

uαi (y) = u
0
i + (Fij − f

0
ij)y
A
j + f

0
ijyj + g

α
i z
AB + fαD1ij yj + c

αD1
i (2.10)

where zAB = nαi (yi − y
AB
i ) is the distance from the debonded interface I

α
1 .

Except for the starting point consisting in satisfying (2.6) – in the place of
the displacement continuity for any point AB on Iα1 – the foregoing reasoning
in the presence of damage constitutes a simple extension of that advanced by
Christoffersen (1983) for the sound composite (see for comparison relations
(2.3)-(2.6) in the reference quoted).
For the sound material, further developments by Christoffersen concern the

determination of the homogeneous vector gα regarding the continuity on the
second interface Iα2 . In the presence of a discontinuity on the first interface I

α
1 ,

the (basic) hypothesis stipulating a homogenous displacement gradient for
two grains separated by the layer α – making two opposite faces deform in
the manner to stay parallel – makes necessary to introduce simultaneously a
discontinuity on the second interface Iα2 , see Fig. 2.

Fig. 2. A layer with cracks at its boundaries
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For the same reasons as for bα1i on the first interface, one assigns a linear
form to the displacement discontinuity vector, noted bα2i , across I

α
2

bα2i (y
BA) = fαD2ij y

BA
j + c

αD2
i (2.11)

where the tensor fαD2 and the vector cαD2 are homogeneous and stand for
new data of the local problem that could be a priori considered as different
from fαD1 and cαD1. The vector gα is then searched in such a way that

uαi (y
BA) = uGBi (y

BA) + bα2i (y
BA) ∀yBA ∈ Iα2 (2.12)

be satisfied with bα2i given by (2.11) and u
α
i , u

GB
i expressed via (2.10)

and (2.2)2, respectively. In this manner, one mathematically proves that
f
αD1 = fαD2. It is stressed that this relation is not a choice but a consequence
of the methodology assumed. In the following, this displacement gradient will
be denoted fαD. The finally obtained form of gα allows one to express fα in
the following manner

fαij = f
0
ij + (Fik − f

0
ik)d
α
k

nαj
hα
+ fαDij + (c

αD2
i − cαD1i )

nαj
hα

(2.13)

The supplementary terms in (2.13) compared to (2.4) represent a specific con-
tribution of two microcracks located at the boundaries of the debonded layer α
considered.
At this stage, all the ingredients of the methodology by Christoffersen in

order to express fα have been exploited, and it appears necessary to recapitu-
late different implications of the kinematical hypotheses. The latter, consisting
in a piecewise linearization of the microscopic displacement field, impose first
that the displacement discontinuity vectors across the debonded interfaces are
necessarily affine functions of spatial coordinates. Since an affine function can
not be equal to zero on a segment and different from zero elsewhere, the-
re is either (total) decohesion almost everywhere or there is no decohesion.
This means that the simplified (piece-wise linear) kinematics put forward by
Christoffersen (1983) does not allow one to account for partial decohesion of
grain/matrix interfaces. Moreover, the hypothesis stipulating the identical di-
splacement gradient f0 for opposite grains separated by a given layer imposes
either no decohesion, or simultaneous decohesion of its both interfaces. Phy-
sically speaking, for grains of different size and, in particular, two opposite
interfaces of different geometry and area, it is clear that a single crack along
one of the interfaces (one-sided decohesion) would be more realistic than two
simultaneous events. Unfortunately, the kinematics framework of the Christof-
fersen pattern does not allow for such one-sided local decohesion. So, in order
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to make the double decohesion acceptable, one completes the geometrical basis
of the Christoffersen theory by adding the following assumption:

• any two opposite interfaces are supposed to have comparable geometrical
properties (shape and area).

Since two opposite interfaces remain parallel during motion, such an assump-
tion regarding their geometry gives some physical justification to the fact that
when the first one is debonded, the second is too. We are aware that the lat-
ter assumption, by adding a supplementary constraint to the schematization,
leads to restriction of the class of particulate composite microstructures that
could be modeled with Christoffersen’s original geometrical scheme. Neverthe-
less, it seems to be a necessary compromise to legitimate the Christoffersen
kinematical framework in the presence of damage.

Having supposed the above simplification and considering the parallelism
of interfaces in the course of deformation, it is reasonable to consider that the
mean displacement discontinuity vectors across the interfaces Iα1 and I

α
2 of

the debonded layer α defined by

〈bα1i 〉Iα1 = f
αD
ij y

B1
j + c

αD1
i = bα1i (y

B1)
(2.14)

〈bα2i 〉Iα2 = f
αD
ij y

B2
j + c

αD2
i = bα2i (y

B2)

are opposite. B1 and B2 are the centres of the interfaces I
α
1 and I

α
2 , respec-

tively.

In the following, one attempts to simplify expression (2.13) obtained for
f
α involving for instance the terms fαD, cαD1 and cαD2 considered as data
characterizing microcracks at the boundaries of the debonded layer α consi-
dered. The relevant motivation is the advantage of reducing the number of
entities that will characterize the effects of microcracks inside the RVE in the
expressions further obtained for local fields and the homogenized stress-strain
relation. To this aim, one introduces now the following assumption concerning
the vectors cαD1 and cαD2, for which – it should be emphasized – no condition
has been imposed by the Christoffersen methodology:

• The contribution of constant vectors cαD1 and cαD2 in displacement
jumps bα1i (y) = f

αD
ij yj + c

αD1
i and bα2i (y) = f

αD
ij yj + c

αD2
i across Iα1

and Iα2 , respectively, are considered negligible (i.e. null).

The latter hypothesis consists in fact in choosing particular, simple and
linear forms of displacement jumps considered as data of the local problem.
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General forms (2.5) and (2.11) are thus replaced (with moreover fαD ≡ fαD1 =
f
αD2) by

bα1i (y) = f
αD
ij yj bα2i (y) = f

αD
ij yj (2.15)

In this way, the displacement gradient fα for a debonded layer α takes the
simplified expression

fαij = f
0
ij + (Fik − f

0
ik)d
α
k

nαj
hα
+ fαDij (2.16)

Moreover, the following simple relationship exists now between 〈bα1〉Iα1 =

−〈bα2〉Iα2 and the unique term f
αD representing the two microcracks effect

on fα by subtracting (2.14)2 from (2.14)1 and suppressing the contribution of
cαD1 and cαD2)

〈bα1i 〉Iα1 = −〈b
α2
i 〉Iα2 = −

1

2
fαDij c

α
j cαj = y

B2
j − y

B1
j (2.17)

In (2.17), cα designates the vector connecting the centres B1 and B2 of two
opposite interfaces (see Fig. 2).
The displacement gradient fα for any layer α whose both interfaces are

cohesive, obtained by using the continuity of displacements on the grain/layer
interfaces according to the Christoffersen methodology, remains given by (2.4)

fαij = f
0
ij + (Fik − f

0
ik)d
α
k

nαj
hα

(2.18)

In view of (2.16) for a debonded layer and (2.18) for a cohesive one, the
strain as well as rotation is controlled by F, the macroscopic displacement
gradient, f0, the grain displacement gradient, but also by geometrical features
of the layer α under consideration. One may emphasize the physical relevance
of such a dependence on local morphological parameters: it allows one to ac-
count for the microstructure effect on deformation mechanisms of the matrix.
In this way, the Christoffersen kinematical framework offers a way to take into
account some strain heterogeneity in the matrix phase in the homogenized
behaviour estimation. It is stressed that taking into account field fluctuations
in phases represents actually a crucial challenge in micromechanics especially
for non linear and/or time-dependent behaviour (see e.g. Ponte Castañeda,
2002; Moulinec et Suquet, 2003). It is to be noted that the strain heteroge-
neity in the matrix is also influenced by damage via the dependence of fα on
f
αD (for debonded layers). At last, due to the assumption neglecting the de-
scription of complex effects in interlayer zones (see surrounded zones in Fig. 1),
each layer is in the Christoffersen framework subjected to loading uniquely via
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its adjacent grains. In this way, there is no direct interaction between layers;
the transmission through the grains-and-layers assembly strongly involves the
grains as expressed through the presence of f0 in (2.16) and (2.18).

2.2.2. Micro-macro relations

The focus is here on establishing micro–macro relationships essential for the
ultimate solution to the local problem, i.e. for determination of the unknown
f
0 according to the procedure outlined further. In the same spirit as in the
kinematic description, one follows step-by-step – in the presence of damage –
the corresponding method by Christoffersen (1983) for the sound material.
In order to ensure compatibility between local motion in accordance with

the above kinematical description and global motion characterized by F, the
following average relation, the counterpart of relation (2.13) in Christoffersen
(1983), including now the contribution of material discontinuities, is imposed

Fij = (1− c)f
0
ij +
1

V

∑

α

fαijA
αhα +

1

V

∑

k

(∫

Ik1

bk1i n
k
j da−

∫

Ik2

bk2i n
k
j da
)

(2.19)

where V represents the volume of grains and layers, Aα is the projected area
of the αth layer and c = V −1

∑

αA
αhα is the ratio of the layer volume to

the volume V . The subscripts α, k under summation symbols designate sum-
mations over all layers contained in the RVE and over layers with debonded
interfaces, respectively. After some manipulations using (2.18), and (2.16), for
f
α for the layers α whose both interfaces are cohesive, respectively debon-
ded, and (2.15) to express bk1 and bk2, one may prove that the geometrical
condition established by Christoffersen for the sound material, namely

1

V

∑

α

dαi n
α
jA
α = δij (2.20)

remains necessary in the presence of damage to ensure the compatibility be-
tween local and global motions, i.e. relationship (2.19). In (2.20) δij is the Kro-
necker’s symbol. In the work by Christoffersen (1983), geometrical condition
(2.20) related to the composite morphology may be seen as a discriminating
criterion of applicability for the Christoffersen-type approach. Thus, it seems
coherent to retrieve such a condition in the presence of interfacial damage
(cracks).
The principle of macro-homogeneity for the RVE subjected to uniform

tractions is given by Christoffersen (1983) – see Eq. (3.1) in the reference qu-
oted. The corresponding expression extended here and accounting for interface
discontinuities takes the following form



Damage modelling framework for viscoelastic... 563

ΣijFji = (1− c)σ
0
ijf
0
ji +
1

V

∑

α

σαijf
α
jiA
αhα +

(2.21)

+
1

V

∑

k

(∫

Ik1

σijn
k
j b
k1
i da−

∫

Ik2

σijn
k
j b
k2
i da

)

for any arbitrary F and f0 and any stress field σ, statically admissible with the
macroscopic stress Σ. σ0 and σα represent average stresses in the grains and
in the αth layer, respectively. After some manipulations using (2.16) and (2.18)
to express fα, (2.15) for bk1 and bk2, and taking successively two particular
values for f0, namely f0 = F and f0 = 0 as it was done for the sound material,
it can be shown from (2.21) that the system established by Christoffersen







Σij = 〈σij〉V = (1− c)σ
0
ij +
1

V

∑

α

σαijA
αhα

Σij =
1

V

∑

α

tαi d
α
j =
1

V

∑

α

tαj d
α
i tαj = σ

α
kjn
α
kA
α

(2.22)

remains valid in the presence of damage. In (2.22), tα represents the total force
transmitted through the interfacial layer. Note that, although the first avera-
ging is ”classically” exploited in the micromechanics, the second one remains
specific to the Christoffersen-type approach: stresses are seen from a granular
viewpoint as forces transmitted from grain to grain by layers acting as contacts
zones. For the debonded layer α, two cases must be considered. When cracks
located at its boundaries are open (i.e 〈bα1i 〉Iα1 n

α
i = −〈b

α2
i 〉Iα2 n

α
i > 0) then

tα = 0. When they are closed ( i.e 〈bα1i 〉Iα1 n
α
i = −〈b

α2
i 〉Iα2 n

α
i = 0) and in the

framework of this exploratory study, it is supposed that no sliding is allowed,
so that tα is integrally transmitted. For a cohesive layer α, tα is considered
as fully conveyed as it was in the case of all layers in the absence of damage.

According to the Christoffersen methodology, the following consists in se-
arching f0 in such a way that the real stress field, namely this associated to
the strain field by local constitutive laws, satisfies system (2.22).

3. Application to viscoelastic composite materials

The class of heterogeneous materials considered is that of particulate compo-
site materials which can be considered as composed of isotropic linear-elastic
grains embedded in a viscoelastic matrix (see Nadot-Martin et al., 2003). At
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first, mean features of the matrix viscoelastic law are recalled. This constitutes
a preliminary step before going on to find f0 and to establish the full set of
localization relations, as it was done for the sound material by Nadot-Martin
et al. (2003), but here is done in the presence of damage by grain/matrix de-
bonding. Then, the macroscopic homogenized stress is derived from (2.22)1.
Finally, a discussion is presented in order to quantify the damage influence on
the local and global scale levels.

3.1. Viscoelastic law for the matrix

The matrix occupying each elementary layer α is considered as viscoelastic
and isotropic according to the thermodynamically consistent internal variable
representation given by Nadot-Martin et al. (2003). The dissipative process re-
lated to viscoelastic relaxation is accounted for via the symmetric, strain-like,
tensorial internal variable γ. The free energy per unit volume and correspon-
dingly the total stress are decomposed into two terms, a reversible function
of the total strain ε, and a viscous function of γ. The reversible and viscous
stresses are obtained by partial derivation of the free energy with respect to
ε and γ. The evolution of γ which can be interpreted as inelastic-viscous
or otherwise as ’delayed elastic’ strain is given by law (3.3)1 employing, for
simplicity, a single relaxation time τ

w(ε,γ) =
1

2
ε : L(e)` : ε+

1

2
γ : L(v) : γ (3.1)

σ = σ(r) + σ(v) = L(e)` : ε+ L(v) : γ (3.2)

γ̇ +
1

τ
γ = ε̇ γ(t = 0) = 0

(3.3)

d(v) = σ(v) : (ε̇− γ̇) =
1

τ
γ : L(v) : γ ­ 0

L
(e)` and L(v) are fourth-order tensors of the elastic and viscous moduli for
the matrix.

3.2. Solution to the local problem and expression of homogenized stress

The purpose is to resolve system (2.22) in order to get f0 by considering
grains as isotropic linear-elastic and the matrix layers as viscoelastic according
to the model presented in Subsection 3.1. All the grains have here identical
moduli denoted by L0. Mechanical properties of the matrix (moduli L(e)`, L(v)

and relaxation characteristic τ) are considered as homogeneous, namely the
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same for all layers. Consequently, as εα = Sym fα is uniform over the αth
layer (see kinematical assumption 3 in Subsection 2.2.1), the corresponding
viscoelastic relaxation γ introduced by (3.3)1 is also uniform for a given re-
laxation state; it is denoted by γα. It is also the case for all thermodynamic
quantities involved in the matrix model.

From a methodological viewpoint, calculations to determine f 0 from (2.22)
in the presence of damage are similar to those required for the sound material
(see for comparison Subsection 3.2 in Nadot-Martin et al., 2003). Nevertheless,
it is to be recalled that the summation in (2.22)2 is here to be considered
over layers either cohesive or with closed cracks. One begins by inserting the
microscopic laws formulated in terms of displacement gradients rather than
in terms of strain in system (2.22). Then, (2.18) is substituted for fα for the
layers α whose both interfaces are cohesive, while (2.16) is put for the layers
debonded. Finally, by using geometrical condition (2.20) and eliminating Σij
between both equations of (2.22), one obtains the form of f0 relevant to the
local problem in the presence of damage as follows

f0ij = (Id
1 −B′

−1
: A′)ijklFlk

︸ ︷︷ ︸

f
0(r)
ij

+

−B′
−1
ijuvL

(v)
mukl

( 1

V

∑

α′

Πα
′

vmγ
α′

lkA
α′hα

′

+ δvm
1

V

∑

β

γβlkA
βhβ
)

︸ ︷︷ ︸

f
0(v)
ij

+ (3.4)

−B′
−1
ijuvL

(e)`
mukl

( 1

V

∑

f

Πfvmε
fD
lk A

fhf + δvm
1

V

∑

β

εβDlk A
βhβ
)

︸ ︷︷ ︸

f
0(d)
ij

with, for any layer α, Πα = δ − dα ⊗ nα/hα and where the tensors A′, B′

degraded by the presence of damage are defined as follows

A′ijkl = 〈L
(e)
ijkl〉V − L

(e)`
mjkl(δim −Dim) Aijkl = 〈L

(e)
ijkl〉V − L

(e)`
ijkl (3.5)

B′ijkl = Aijkl − L
(e)`
mjkl(δim −Dim) + L

(e)`
mjnl(T imkn −Dimkn) (3.6)

T ijkl =
1

V

∑

α

dαi n
α
j d
α
kn
α
l

Aα

hα
(3.7)

Dij =
1

V

∑

β

dβi n
β
jA
β Dijkl =

1

V

∑

β

dβi n
β
j d
β
kn
β
l

Aβ

hβ
(3.8)
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In the above relations, the subscripts α, α′, β and f under summation sym-
bols denote summations over all layers, layers either cohesive or with closed
cracks, layers with open cracks only and layers with closed cracks only. In
(3.4), εβD = Sym fβD, εfD = Sym ffD and one has assumed invertibility of
B
′ with respect to the identity tensor Id1 defined by Id1ijkl = δilδjk. The form

of (3.4) represents a remarkable decomposition into a reversible term f 0(r),
depending linearly on the macroscopic gradient F, a viscous one f 0(v), func-
tion of variables γα for α = 1, . . . , N – with N being the total number of
layers inside the RVE – and a damage-induced one f 0(d) involving the full set
{εkD} = {εfD} ∪ {εβD} related to the effect of any kind of cracks (closed and
open) inside the RVE. These three contributions depend on the damage state
through the tensors D and D (see A′, B′). The same can be done for fα after
employing (2.18) and (2.16) for a cohesive and debonded layer, respectively .
At last, the local strain field with respect to y in the grains and matrix layers
is obtained in the following additive form

ε(y) = C(y) : E+ ε(v)(y) + ε(d)(y) +

{
εαD for y ∈ debonded layer α

0 elsewhere
(3.9)

Cijkl(y) =







C0ijkl(D,D) = (Id− Id : B
′−1 : A′)ijkl for y ∈ grains

Cαijkl(D,D) = Idijkl+

−Idijuv(B
′−1 : A′)vmklΠ

α
mu for y ∈ layer α, ∀α

(3.10)

ε
(v)
ij (y) =







ε
0(v)
ij ({γ

α},D,D) = Idijklf
0(v)
lk for y ∈ grains

ε
α(v)
ij ({γ

α},D,D) = Idijuvf
0(v)
vm Παmu for y ∈ layer α, ∀α

(3.11)

ε
(d)
ij (y) =







ε
0(d)
ij ({ε

kD},D,D) = Idijklf
0(d)
lk for y ∈ grains

ε
α(d)
ij ({ε

kD},D,D) = Idijuvf
0(d)
vm Παmu for y ∈ layer α, ∀α

(3.12)

with E = SymF. As expected, the degraded elastic strain concentration ten-
sor satisfies 〈C〉V = Id – with Id being the classical fourth-order identity
tensor defined by Idijkl = (δikδjl + δilδjk)/2 – and the fields ε

(v) and ε(d)

the properties 〈ε(v)〉V = 0 and 〈ε
(d)〉V = 0, respectively. At last, the overall

(average) stress is derived from (2.22)1

Σ = L(D,D) : E+Σ(v)({γα},D,D) +Σ(d)({εkD},D,D) (3.13)

L(D,D) = 〈L(e)〉V −A : B
′−1 : A′ (3.14)
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Σ(v) = A : f0(v)({γα},D,D) + L(v) :
1

V

∑

α

γαAαhα (3.15)

Σ(d) = A : f0(d)({εkD},D,D) + L(e)` :
1

V

∑

k

εkDAkhk (3.16)

3.3. Discussion

In order to discuss the forms of results on micro and macro levels in the
presence of damage, it may be convenient to compare them with those obtained
by Nadot-Martin et al. (2003) for the sound material.

Table 1. Localization results and expression of the homogenized stress for
the sound material (Nadot-Martin et al., 2003)

Local strain field:

ε(y) = C(y) : E+ ε(v)(y)

Cijkl(y) =

{

C0ijkl = (Id− Id : B
−1 : A)ijkl for y ∈ grains

Cαijkl = Idijkl − Idijuv(B
−1 : A)vmklΠ

α
mu for y ∈ layer α,∀α

ε
(v)
ij (y) =







ε
0(v)
ij ({γ

α}) = Idijklf
0(v)
lk for y ∈ grains

ε
α(v)
ij ({γ

α}) = Idijuvf
0(v)
vm Παmu for y ∈ layer α, ∀α

Homogenized stress:

Σ = L : E+Σ(v)({γα})

L = 〈L(e)〉V −A : B
−1 : A

Σ(v) = A : f0(v)({γα}) + L(v) :
1

V

∑

α

γαAαhα

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

with:

A = 〈L(e)〉V − L
(e)`

Bijkl = Aijkl − L
(e)`
ijkl + L

(e)`
mjnlT imkn

T ijkl =
1

V

∑

α

dαi n
α
j d
α
kn
α
l

Aα

hα

f
0(v)
ij ({γ

α}) = −B−1ijuvL
(v)
mukl

1

V

∑

α

Παvmγ
α
lkA
αhα

At the local level, one may observe that the degraded elastic concentration
tensor given by (3.10) has the same form as C for the sound material with A′
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and B′ replacing A and B. Moreover, the strain field (3.9) for any point in
grains or layers depends through the term ε(v) on the full set of relaxations
{γα}. The internal variable γα representing memory of the αth layer clearly
indicates viscoelastic interactions between the full set of matrix layers and the
set of grains in the RVE. In the same manner as for the sound material, this
dependence directly results from the term f0(v) which, by means of (2.16) and
(2.18) appears in the expression of fα and, therefore, in that of the strain field,
see (3.11). Nevertheless, one may note that the more complex structure of f 0(v)

(see (3.4)) in the presence of damage shows that the damage tends to enhance
the complexity of viscoelastic interferences taken into account. Moreover, the
strain field (3.9) for any point in grains or layers (cohesive or not) depends on
damage through the tensors D and D (appearing in A′ and B′) but also on
the term ε(d) depending on the full set {εkD} = {εβD}∪{εfD} related to the
effect of any kind of cracks (open or closed) inside the RVE. The latter depen-
dence results from the term f0(d) which, for the same reasons as f0(v), appears
in the expression of the strain field, see (3.12). This is not surprising when
reported to comments formulated at the end of Subsection 2.2.1 concerning
the transmission inside the aggregate. In particular, for the debonded layer α,
one may distinguish two kinds of contribution of damage to the corresponding
”overall” strain in the layer: a ”local” one, εαD, related to microcracks loca-
ted at its own boundaries (its ”own” defects) and a ”non-local” one, εα(d),
involving the effect (via f0(d)) of the whole set of microcracks inside the RVE,
in other words the effect of microcracks at the interfaces of other layers in
addition to the influence of those at its own boundaries.
At the global level, the overall stress given by (3.13) is split into a reversible

part and a viscous one influenced by damage through D and D and comple-
ted (when compared to that for the sound material) by the damage-induced
stress Σ(d). Note that the forms of viscous stress for the sound and damaged
materials are the same, the difference is in the detailed expression of f 0(v)

relevant to local viscoelastic interactions depending here on the damage state
in addition to the set {γα} acquiring the status of macroscopic viscoelastic
internal variables. The first terms of (3.15) and (3.16), namely A : f 0(v) and
A : f0(d), correspond respectively to the macroscopic consequences of viscoela-
stic interactions and ”non-local” damage effects.
It can be seen that A′, B′ and therefore C and L(D,D), are degraded

only by open cracks via D and D, see (3.8). This is due to the assumption of
no sliding on closed crack lips (infinite friction coefficient). Being tensorial by
nature, D and D allow one to account for the damage induced anisotropy. By
depending on the vectors dβ and not only on the crack normal vectors nβ, the
damage tensors D and D emerging from the present morphology-based model-
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ling take into account the granular character of the composite microstructure
considered. Moreover, since D is not symmetric, the damage induced aniso-
tropy may be very complex. It is stressed that the scale transition at stake
accounts also for the initial morphology and internal organization of consti-
tuents through the presence of the fourth-order structural tensor T given by
(3.7) in the local and homogenized expressions (via B′ for the damaged mate-
rial and B for the sound one). The reader may refer to Christoffersen (1983),
where it is shown that T reflects material texture and irregularities in the
grain shape and in the layer thickness. In this way, the Christoffersen-type
approach extension in the presence of damage, applied here to a viscoelastic
composite, allows one to take into account, in a general 3D context, coupling
effects between the primary anisotropy, if any, (via T) and the secondary,
damage-induced one (via D and D).
At last, when the number of open cracks is equal to zero, i.e. for exclusively

closed cracks, the reversible part of the local strain field and, furthermore, the
homogenized reversible moduli become equal to those of the sound material.
The viscous part ε(v) of the local strain field becomes equal to that of the sound
material as well as Σ(v) at the macroscopic scale. The term ε(d), depending
only on {εfD}, accounts for the blockage effect of closed cracks inside the
RVE as the corresponding macroscopic damage-induced stress Σ(d). Thus,
the modelling is potentially capable of describing unilateral effects. In the limit
case where there is no crack, the local and global responses are identical to
those obtained for the sound material. This principal backwards confrontation
shows that the methodological coherence is being preserved between the sound
and damaged composites.
As macroscopic state variables, one has already mentioned the whole set

{γα} accounting for the relaxation state of the composite. Homogenized stress
(3.13) conveys also a full set {εkD} = {εβD} ∪ {εfD}. Let examine now the
status of {εkD}. Remarking, according to (3.4), that

f
0(d)({εkD},D,D) = −(B ′

−1
: L(e)`)ijkl

1

V

∑

β

εβDlk A
βhβ

︸ ︷︷ ︸

f
0(d)1({εβD},D,D)

+

(3.17)

−B′
−1
ijuv : L

(e)`
mukl

1

V

∑

f

Πfvmε
fD
lk A

fhf

︸ ︷︷ ︸

f
0(d)2({εfD},D,D)

one may discern that the respective contributions in the damage-induced stress
Σ(d) of open and closed cracks are clearly additive. Indeed, when detailing
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somewhat (3.16) on the basis of partition (3.17), one obtains

Σ(d) = A : f0(d)1 + L(e)` :
1

V

∑

β

εβDAβhβ

︸ ︷︷ ︸

Σ
(d)1({εβD},D,D)

+A : f0(d)2 + L(e)` :
1

V

∑

f

εfDAfhf

︸ ︷︷ ︸

Σ
(d)2({εfD},D,D)

(3.18)
In (3.18), the set {εfD} acquires the status of macroscopic internal variables
accounting for the distortion due to the blockage of closed cracks inside the
RVE, and Σ(d)2 appears as the corresponding residual stress. At the microsco-
pic level, εβD represents for a layer β the ”local” contribution of open cracks
located at its own boundaries to its total strain. It seems natural to think
that the crack opening depends on the macroscopic strain E and therefore
εβD as well. So, each εβD cannot a priori be considered as a macroscopic
variable independent of E. This is confirmed when noting that L(D,D), given
by (3.14), does not exhibit all symmetries required for the effective reversi-
ble moduli tensor suggesting that Σ(d)1 must depend, through {εβD}, on E.
This remark shows that further analysis is necessary to explicit the depen-
dence of each εβD on E, that – via the term Σ(d)1 in the expression of Σ
– will complete the linear part L(D,D) : E of Σ and, therefore the form of
reversible moduli. This is the aim of the next section where a complementary
localization-homogenization procedure is advanced in order to express the lo-
cal strain induced in a layer β by open cracks at its interfaces as a function
of E, D, D and local geometrical features of the layer concerned. In the spirit
of a gradual, step-by-step approach to difficulties, this procedure is developed
hereafter in the context of pure elasticity. It is a necessary and preliminary
stage for further generalization in viscoelasticity.

4. A complementary localization-homogenization procedure for

an elastic aggregate

4.1. Preliminaries

The purpose of this Section is to express εβD for an arbitrary layer β with
open cracks at its own boundaries as a function of macroscopic state variables,
the global strain E in particular. In the framework of the exploratory character
of the approach advanced in this paper, the developments put forward below
are performed in the elastic context, namely by considering the grains and the
matrix (i.e. the set of layers) as linear elastic and isotropic.
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The first step consists in the determination of the overall free-energy for
the elastic heterogeneous material as the volume average of the local energy.
After some calculations using the localization relations (see (3.9) to (3.12)
where the viscous field ε(v) is suppressed), employing geometrical statement
(2.20) and the major symmetry of B, the overall free energy is obtained in the
following additive form

W =
〈1

2
ε : L(e) : ε

〉

=W 1(E,D,D) +W 2(E, {εβD},D,D) +

+W 3(E, {εfD},D,D) +W 4({εβD},D,D) + (4.1)

+W 5({εβD}, {εfD},D,D) +W 6({εfD},D,D)

where

W 1(E,D,D) =
1

2
E : 〈tC : L(e) : C〉V : E (4.2)

〈tC : L(e) : C〉V = 〈L
(e)〉V +

t
G : B : G− [A : G+ tG : A]

(4.3)

G = B′
−1
: A′

and with W i for i = 2, . . . , 6 given in Appendix A. W 2 and W 3 are explicitly
linear in E and linear with respect to each εβD and εfD. W 5 depends linearly
on each εβD. The terms W i for i = 4, 5, 6 do not depend explicitly on E.
A quick comparison between the homogenized free energy and the expres-

sion of the global stress given by (3.13), where the viscous stress Σ(v) is
suppressed, shows immediately that the explicitly quadratic term in E of W ,
i.e. W 1, cannot give by derivation the linear term L(D,D) : E of the stress
except for only closed cracks inside the RVE. This provides a new confirma-
tion of the dependence of each εβD on E. A non-trivial problem consists then
in quantifying the relationship between each εβD (for an arbitrary layer β)
and E. Note that the expression for εβD is not a priori postulated so that the
strategy proposed can be viewed as a complementary ”localization” procedure.
To this aim, the thermodynamic framework is used as a guide.
From a thermodynamic viewpoint, the macroscopic stress must derive

from the overall free energy with respect to E. Consequently, the relation
εβD = εβD(E) has to be searched in such a way that the global elasticity law

Σ =
∂W

∂E
(4.4)

be explicitly verified with Σ = 〈σ〉V and W = 〈w〉V given by (3.13), with
Σ(v) suppressed, and by (4.1).
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Since W 6 is independent of E, ∂W/∂E =
∑5
i=1 ∂W

i/∂E. Assuming, for
each layer β with open cracks at its boundaries, linearity of the relation
εβD = εβD(E) and its independence of the set {εfD}, one can discern that:
1) W 2, W 4 and Σ(d)1 do not depend on {εfD}; 2) W 3 and W 5, depending
on the set {εfD}, are linear functions of E (explicitly for W 3, implicitly thro-
ugh each εβD for W 5). Thus, for such a strategy (∂W 3/∂E) + (∂W 5/∂E)
must correspond to the residual stress due to the blockage of closed crack lips.
Precisely, one must have explicitly

∂W 3

∂E
+
∂W 5

∂E
= Σ(d)2

(4.5)

∂W 1

∂E
+
∂W 2

∂E
+
∂W 4

∂E
= L(D,D) : E+Σ(d)1

In fact, while searching a relation between εβD and E directly (in order to
assure that Σ = ∂W/∂E =

∑5
i=1 ∂W

i/∂E be satisfied) appears too complex
when examining the detailed expressions of W i for i = 1, . . . , 5, it is easier
to search it by satisfying (4.5)1. It is stressed that ensuring (4.5)1 is sufficient
to ensure simultaneously (4.5)2 and more generally (4.4). But the converse
is not true. Indeed, searching a solution to (4.5)2 would not be sufficient to
ensure simultaneously (4.4) since the solution would not take into account the
contribution of the set {εfD}.

4.2. Solution

The aim is to find a linear relation εβD = εβD(E) for each layer β with
open cracks at its boundaries, satisfying equation (4.5)1 with W

3, W 5 and
Σ(d)2 given by (A.2), (A.4) and (3.18). From (A.2)-(A.4) and due to symme-
tries of A, L(e)` and A′, the expression for (∂W 3/∂E)+(∂W 5/∂E) is obtained
as follows

∂W 3

∂Eij
+
∂W 5

∂Eij
= Aijklf

0(d)2
lk + L

(e)`
ijkl

1

V

∑

f

εfDlk A
fhf +

(4.6)

+
{[
tGijuv −

t
(∂f

0(d)1
uv

∂Eij

)]

(B′ −B)vukl + L
(e)`
vunl

1

V

∑

β

Πβkn
∂εβDuv
∂Eij
Aβhβ

}

f
0(d)2
lk

where one recognizes Σ(d)2 (see the first line) given by (3.18). So, (4.5)1 is
satisfied for any damage configuration, in particular for any f 0(d)2, only if the
term between braces in (4.6) is null. Moreover, by using the expressions for
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B and B′ (see Table 1 and (3.6), respectively) in order to develop B′ − B, it
follows

L
(e)`
vunl

1

V

∑

β

Πβkn
∂εβDuv
∂Eij
Aβhβ =

(4.7)

= −
[
tGijuv −

t
(∂f

0(d)1
uv

∂Eij

)]

L
(e)`
munl

1

V

∑

β

dβv
nβm
hβ
ΠβknA

βhβ

with (see (3.17))

∂f
0(d)1
uv

∂Eij
= −B′

−1
uvabL

(e)`
bats

1

V

∑

β

∂εβDst
∂Eij
Aβhβ (4.8)

Considering complex forms (4.7) and (4.8), it appears useful to exploit the
consequences of the linearity of the relation εβD = εβD(E) supposed for any
layer β with open cracks at its boundaries. It implies the linearity of f 0(d)1, i.e.

the existence of a macroscopic fourth-order tensor K′ such that ∂f
0(d)1
uv /∂Eij =

K ′uvij . Note that the ”non local” effects of open cracks in the heterogeneous

medium represented by f0(d)1 will be described by a linear function of E. Thus,
the final form of (4.7) to satisfy is

L
(e)`
vunl

1

V

∑

β

Πβkn
∂εβDuv
∂Eij
Aβhβ = −t(G−K ′)ijuvL

(e)`
munl

1

V

∑

β

dβv
nβm
hβ
ΠβknA

βhβ

(4.9)
After calculations (see Appendix B for details), one obtains a linear rela-

tionship between εβD and E, i.e. solution to (4.9)

εβDij = −Idijmud
β
v

nβm
hβ
(G−K ′)uvklElk + r

βD
ij (4.10)

The constant tensor with respect to E, rβD, represents a residual strain indu-
ced in the layer β by residual opening of the cracks at its boundaries when
E = 0. It is reasonable to think that it is a function of D and D.
In view of (B.5), if (4.10) is satisfied for every βth layer with open cracks

at its boundaries, then (4.9) is verified and furthermore (4.5)1 also, but the
converse is not true. In other words, from a mathematical viewpoint, the solu-
tion is not unique. Nevertheless, the strategy employed in Appendix B, based
on the assumption that the relations εβD = εβD(E) have the same form for
every βth-layer, is in accordance with the Christoffersen framework. More-
over, the result seems pertinent since the ”local” strain induced in the layer β
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by open cracks at its interfaces depends on damage through D and D appe-
aring explicitly in A′ and B′, but also on the geometrical features of the layer
considered.

It remains now to determine the expression for K′. The latter has to satisfy

∂f
0(d)1
uv /∂Eij = K

′
uvij with ∂f

0(d)1
uv /∂Eij given by (4.8) and with ε

βD being
represented by (4.10). After some manipulations, it follows

K
′ = [B′ + t(A′ −A)]−1 : t(A′ −A) : G (4.11)

where one has assumed the invertibility of B′ + t(A′ − A) with respect to
the identity tensor Id1. Once relation (4.10) obtained for εβD is accepted as
pertinent, the resulting form (4.11) of K′ is unique. Furthermore, the ”non-
local” effects of open cracks inside the RVE are now represented by (see (3.17)
with (4.10))

f
0(d)1(E,D,D) = K′ : E−B′−1 : L(e)` :

1

V

∑

β

r
βDAβhβ (4.12)

The second term in (4.12) characterizes the specific contribution of the re-
sidual opening of cracks when E = 0. It will be denoted by f 0(d)1Res. One
may emphasise the complex structure of K′ involving elastic moduli of both
constituents, the tensor T (via B′) related to the material initial morphology
and internal organization and D, D. This is in perfect accordance with the
role of f0(d)1.

Remark: In addition to its linearity, one has supposed the independence of
the relation εβD = εβD(E) on the set {εfD}. Such an assumption seems
reasonable when recalling that εβD represents the local strain induced
in a layer β by open cracks at its own interfaces and that the influence of
the distorsion of closed cracks on the strain of this layer is already taken
into account through the non local term f0(d)2. Note that without such an
assumption, the disconnection in (4.5) would be no longer valid, so that
feasibility of obtaining an analytical solution would remain questionable
considering the complexity of various couplings involved.

4.3. Macroscopic stress-strain relation

With (4.10)-(4.11), one may formulate the whole elastic model giving local
and global responses of the elastic damaged composite in terms of macrosco-
pic variables E, {εfD} and damage tensors D, D. For simplicity, one just
reports below the macroscopic stress-strain relation obtained by derivation of
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the overall free energy given by (4.1)-(4.2) and (A.1) to (A.5), in which (4.10)
is substituted for εβD

Σ =
∂W

∂E
= L̃(D,D) : E+Σ(d)({εfD},D,D) (4.13)

Σ(d) = A : f0(d)2 + L(e)` :
1

V

∑

f

εfDAfhf

︸ ︷︷ ︸

Σ
(d)2({εfD},D,D)

+

(4.14)

+A : f0(d)1Res + L(e)` :
1

V

∑

β

r
βDAβhβ

︸ ︷︷ ︸

Σ
(d)1(D,D)

L̃(D,D) = 〈L(e)〉V +
t(G−K′) : [H− t(A′−A)− (A′−A)] : (G−K′) (4.15)

Hijkl = L
(e)`
mjnlDimkn −Bijkl (4.16)

In (4.14), the expression for Σ(d)2 representing the macroscopic residual stress
induced by the blockage of closed cracks remains unchanged, and Σ(d)1 cor-
responds now to the residual stress induced by the residual opening of (open)
cracks. Direct calculation of Σ using (3.13) with Σ(v) suppressed, (3.14) and
(3.18) in which (4.10) is substituted for εβD, leads to

Σ = 〈σ〉V = [〈L
(e)〉V −

t
A
′ : (G−K′)] : E+Σ(d)({εfD},D,D) (4.17)

with Σ(d) given by (4.14). With (4.11), one may fortunately prove that
L̃(D,D) = 〈L(e)〉V −

tA
′ : (G − K′) so that (4.17) and (4.13) are equiva-

lent. This equivalence shows that solution (4.10)-(4.11) satisfies explicitly, as
expected, (4.4), i.e. 〈σ〉V = ∂〈w〉V /∂E. Moreover, the degraded elastic moduli
tensor L̃(D,D) has now all symmetries (notably the major symmetry) contra-
rily to L(D,D) given by (3.14). This result concerning the indicial symmetries
of the effective moduli obtained by means of the complementary localization-
homogenization procedure stands as the proof for its efficiency. From a the-
oretical viewpoint, equation (4.15) for the effective moduli seems to be more
appropriate than the one in (4.17) since it clearly shows the major symme-
try. In the limit cases, where there is no open crack inside the RVE, i.e. for
only closed cracks or for the sound material, one may observe that the effec-
tive moduli L̃(D,D) correspond, as expected, to those of the sound material:
L = 〈L(e)〉V − A : B

−1 : A. This result constitutes a new confirmation of the
coherence of the complementary localization-homogenization approach.
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At last, a comment should be made regarding practical determination of
the variables {εfD} accounting for the frictional locking effect of closed cracks.
Considering the hypothesis of no sliding on closed crack lips, a microcrack is, in
the present framework, necessarily open before being closed. Moreover, εfD for
a layer with closed cracks at its boundaries does not evolve as long as the cracks
remain closed. Therefore, the components of εfD may be calculated from those
of εβD given by (4.10) at the crack closure, precisely when the layer under
consideration – initially with open cracks – becomes a layer with closed cracks.
The crucial problem is to simultaneously ensure the homogenized energy and
stress-response continuity in spite of discontinuity of effective moduli, see e.g.
Dragon and Halm (2004). The respective conditions formulated in the context
of the scale transition at stake should also give tools to express the tensors rβD

in function of D, D and geometrical features of the layer β. Such a strategy is
necessarily associated with the formulation of rigorous criteria of unilaterality.
This is the aim of present investigations concerning the unilateral effect (i.e.
opening/closure transition modelling).

5. Conclusion

A non-classical homogenization method that constitutes an extension of the
Christoffersen approach for both viscoelasticity and damage by grain/matrix
debonding is presented. The discontinuities have been first introduced in a
compatible way with the Christoffersen framework (geometry and kinematics)
and following the strategy of this author. It is shown that the direct patter-
ning of the material microstructure and associated local kinematics due to
Christoffersen can accommodate the grain/layer discontinuities with just one
additional assumption regarding geometry of opposite interfaces of a given
layer, introduced in order to make acceptable their simultaneous decohesion
(if any) resulting from the hypothesis of the identical displacement gradient
f
0 for grains. Moreover, the Christoffersen’s morphology and kinematics fra-
mework, extended in the presence of damage, offers an advantage to take into
account some strain heterogeneity in the matrix phase in estimation of homo-
genized behaviour (see in (2.16)-(2.18) the dependence of fα on morphological
features of the layer α and on fαD if it is debonded).
The solution to the localization-homogenization problem obtained in Sec-

tion 3 for composites with a viscoelastic matrix, in the presence of interfacial
damage, allows one to discern several crucial features. First, the scale transi-
tion leads to natural emergence of two macroscopic damage tensors involving
granular aspects – a second-order one and a fourth-order one. They describe
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damage-induced degradation effects and induced anisotropy. These two tensors
– in addition to the textural tensor T related to the initial morphology and
internal organisation of constituents – allow one to account, in a general 3D
context, for coupling the primary anisotropy with the damage-induced one.
Local viscoelastic interactions and the macroscopic consecutive long range
memory effect are clearly shown to be affected by microcracking. Other re-
markable features as recovery of some properties of the sound material under
microcrack closure may also be discerned through the comparison with local
and global relations obtained for the undamaged material by Nadot-Martin
et al. (2003). In particular, in the absence of discontinuities, the correspon-
ding expressions for micro- and macro-scale levels reduce to the ones for the
sound composite, confirming thus that the methodological coherence is being
preserved between both cases (sound and damaged composite) and endorsing
specific hypotheses regarding the damaged aggregate and relevant generaliza-
tion. At last, the advanced scale transition does not make use of the hypothesis
of non-interacting cracks (each microcrack is not considered as isolated in an
infinite medium) so that some ”non-local” damage effects may be identified at
both scales. One should realize in the same time that this does not mean that
defects interact in the sense pointed out by e.g. Kachanov (1994). Indeed, on
can note in particular that the influence of ”non-local” damage effects within
the RVE, embodied by the term f0(d), on the strain of any layer is just pon-
dered by morphological features of the layer considered, and does not involve
any distance separating this layer from ”remote” defects.
Some superfluous damage-induced strain-like variables related to open

cracks (i.e. {εβD}) are still explicitly present at this stage. Their status as well
as some other properties of homogenized expressions indicate that further ana-
lysis is needed to obtain a net and thermodynamically consistent formulation.
The latter has been achieved via complementary localization-homogenization
analysis under notable simplification regarding behaviour of constituents: only
elastic-damaged system has been considered in Section 4. The local strain εβD

induced in any layer β with open cracks at its boundaries is thus expressed
as a function of the macroscopic variable E, damage tensors D, D and geo-
metrical features of the layer at stake in such a way that the homogenized
stress derives explicitly from the global free energy. By giving access to the
effective moduli in a direct and thermodynamically consistent manner, such a
preliminary analysis performed in the elastic context will stand as a reference
for further viscoelasticity-damage complementary localization-homogenization
approach. The latter will also include replacement of the set of relaxation in-
ternal variables {γα} by a single variable as it was done in Nadot-Martin et
al. (2003) for the sound material.
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Further work will include – apart from fully viscoelasticity-damage com-
plementary study – a detailed treatment of unilateral phenomena and damage
evolution. It is to be noted that the strategy regarding modelling of the uni-
lateral effect proposed in the elastic context at the end of Section 4, remains
valid for viscoelastic constituents.
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A. Appendix

This appendix presents detailed expressions of the terms W i for i = 2, . . . , 6
figuring in homogenized free energy (4.1) obtained for the damaged elastic
aggregate in Subsection 4.1.

W 2(E, {εβD},D,D) = Euv
[

(A− tG : B −B′)vuklf
0(d)1
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B. Appendix

This appendix deals with the determination of a linear relation between εβD

and E that satisfies differential equation (4.9) established in Subsection 4.2.
Since there is only one equation for M unknown functions, where M denotes
the number of layers with open cracks at their boundaries, it is mathematically
impossible to find these functions in a unique manner. One proposes here a
reasonable way based on the assumption that the above mentioned relations
have the same structure for every βth layer.

Equation (4.9) is satisfied if

L
(e)`
vunlΠ

β
kn

∂εβDuv
∂Eij

= −t(G−K ′)ijuvL
(e)`
munld

β
v

nβm
hβ
Πβkn (B.1)

for every βth layer with open cracks at their boundaries. Consider a single
βth layer. This particular layer verifies (B.1) if

L
(e)`
vukl

∂εβDuv
∂Eij

= −t(G−K ′)ijuvL
(e)`
mukld

β
v

nβm
hβ

(B.2)

Using the invertibility of L(e)`, (B.2) becomes equivalent to

∂εβDrs
∂Eij

= −Idrsmud
β
v

nβm
hβ
(G−K ′)uvij (B.3)

Finally, one obtains εβD in terms of E by solving (B.3)

εβDij = −Idijmud
β
v

nβm
hβ
(G−K ′)uvklElk + r

βD
ij (B.4)

where rβD is a constant tensor with respect to E. This simple calculation
provides a linear form for εβD in function of E that, when satisfied for every
layer β with open cracks at their boundaries, leads to (4.9)

(B.4) ∀β ⇔ (B.2) ∀β ⇒ (B.1) ∀β ⇒ (4.9) (B.5)

Significant symbols

Morphological parameters and tensors

hα – thickness of αth layer
nα – unit normal vector defining orientation of αth layer
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dα – vector linking centroids of grains interconnected by αth layer
Aα – projected area of αth layer
cα – vector connecting centres of two opposite boundaries of αth layer
c – ratio of layer volume to volume V of grains and layers
Πα – second-order tensor accounting for geometry of αth layer
T – fourth-order structural tensor accounting for morphology and inter-

nal organization of constituents inside the Representative Volume
Element (RVE)

Kinematical quantities

F – global (macroscopic) displacement gradient

f
0 – displacement gradient of grains

f
0(r) – reversible part of f0

f
0(v) – viscous part of f0 accounting for viscoelastic interactions

between constituents

f
0(d) – damage-induced part of f0 accounting for ”non local” effects

of whole set of defects inside RVE

f
0(d)1 – ”non local” effects of open defects inside RVE

f
0(d)2 – ”non local” effects of closed defects inside RVE
f
α – displacement gradient of αth layer

f
αD – contribution of defects located at boundaries of a debonded

layer α to its displacement gradient fα

uGA,uGB – displacement field of grains GA and GB, respectively
uα – displacement field of αth layer

bα1, bα2 – displacement discontinuity vectors across interfaces Iα1 and
Iα2 of a debonded layer α

Strain-like quantities

E – global (macroscopic) strain tensor
γα – viscoelastic internal second-order tensorial variable accoun-

ting for relaxation state of αth layer
ε – local strain tensor field

ε(v), ε(d) – respectively viscous and damage-induced parts of local stra-
in field

ε0(v), ε0(d) – respectively viscous and damage-induced parts of strain ten-
sor for grains

εα(v), εα(d) – respectively viscous and damage-induced parts of strain ten-
sor for αth layer εα = Sym fα
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εαD = Sym fαD – for a debonded layer α, ”local” contribution of its own
defects to its strain εα = Sym fα

εβD = Sym fβD – for a layer β with open defects at its boundaries,
”local” contribution of its own defects to its strain
εβ = Sym fβ

εfD = Sym ffD – for a layer f with closed defects at its boundaries,
”local” contribution of its own defects to its strain
εf = Sym ff . Internal variable accounting for distor-
sion due to blockage of corresponding closed defects

rβD – residual strain induced in a layer β by residual opening
of defects at its boundaries when E = 0

Stresses

Σ – global (homogenized) stress tensor

Σ(v),Σ(d) – respectively viscous and damage-induced parts of homoge-
nized stress tensor Σ

Σ(d)1 – contribution of open defects to the damage-induced stress
tensor Σ(d)

Σ(d)2 – contribution of closed defects to the damage-induced stress
tensor Σ(d), macroscopic residual stress tensor correspon-
ding to blockage of closed defects inside RVE

σ0,σα – average stress tensors in grains and in αth layer, respectively
tα – total force transmitted through interfacial αth layer

Local and global moduli and essential tensors involved

L
(e)`,L(v) – fourth-order tensors of elastic and viscous moduli for matrix
L
0 – fourth-order tensor of elastic moduli for grains
C – elastic concentration tensor field

C
0,Cα – elastic concentration tensor for grains and αth layer, respec-

tively
L – reversible global moduli tensor for sound material (without

damage)

L(D,D) – ”incomplete” reversible global moduli tensor in presence of
damage

L̃(D,D) – reversible global moduli tensor (after complementary analy-
sis)

A,B – fourth-order tensors involved in local and global response
expressions
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A
′,B′ – damage degraded forms (via D and D) of the tensors A

and B
D,D – second-order and fourth-order damage tensors

Identity tensors and particular operators

δ – symmetric second-order identity tensor
Id – classical fourth-order identity tensor defined by

Idijkl = (δikδjl + δilδjk)/2

Id
1 – fourth-order identity tensor defined by Id1ijkl = δilδjk
〈·〉V – volume average
: – tensorial double contraction defined by:

Cijkl = AijmnBnmkl if A, B and C are fourth-order tensors,
Cij = AijklBlk if A is fourth-order tensor and B second-order
one
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Modelowanie uszkodzenia w granulowanych kompozytach

lepkosprężystych przy pomocy podejścia wieloskalowego

Streszczenie

Celem tej publikacji jest sformułowanie wieloskalowego modelu mikromechanicz-
nego dla granulowanych kompozytów o wysokim stopniu upakowania inkluzji w osno-
wie lepkosprężystej. Przedstawiony model, będący rozwinięciem morfologicznego po-
dejścia Christoffersena (1983) i Nadot-Martin i in. (2003) w zakresie małych odkształ-
ceń lepkosprężystych, polega na wprowadzeniu do analizy dodatkowego mechanizmu
uszkodzenia – mikropękania na granicy inkluzji i osnowy. Mikroszczeliny na granicy
inkluzji i osnowy uwzględniono w hipotezie geometrycznej i kinematycznej metody
Christoffersena. Następnie, wyznaczono lokalne oraz uśrednione pola naprężenia dla
zadanego stanu uszkodzenia (tzn. dla zadanej liczby otwartych i zamkniętych mi-
kroszczelin przy pominięciu poślizgów na powierzchniach mikroszczelin zamkniętych).
Porównanie z wynikami uzyskanymi przez Nadot-Martin i in. (2003) dla nieuszkodzo-
nego kompozytu lepkosprężystego pozwoliło na określenie wpływu uszkodzenia na
poziomie lokalnym i globalnym. Na koniec, podstawowy model wieloskalowy uzu-
pełniono o drugą część sformułowania, która pozwoliła usunąć pewne nadmiarowe
odkształcenia związane z mikroszczelinami otwartymi, czyniąc cały model termody-
namicznie spójnym. Ta druga część modelu wieloskalowego jest przeprowadzona przy
założeniu upraszczającym, polegającym na (tymczasowym) pominięciu efektów lep-
kosprężystych.
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