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Scientific reception of the term ”stability” stresses steady adaptation to
its changing fields of application. Nevertheless, the determination of cri-
tical forces remains one of the main tasks of stability theories. We exem-
plify some classes of the stability loss in beams under internal pressure
for the static case. Additionally, we analyse in more detail the dynamic
stability of beams under internal pressure and demonstrate means to
keep an equilibrium.
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1. Static cases of loss of stability

Best known examples for the loss of stability under static loads are the Eulerian
cases of stability (Leipholz, 1968). For undercritical loads, the equilibrium
is determinate, while at critical loads bifurcations in the solutions to state
equations occur. Solutions are no more bijective, one load situation may lead
to more than one possible geometric configuration of the system. Figure 1
exemplifies this phenomenon in the case of a half-cycle shaped bending beam
subject to loading by a single force with constant direction (conservative force)
but with a 2D-free floating location of the site of application under load. Two
possible trajectories of this point and two realisations of the equilibrium are
illustrated. Solutions have been determined numerically, a current application
is the design of compliant grasping devices.

Another well-known problem of the loss of stability is buckling. As an
example, Fig. 2 shows a valve coherent in the material; due to symmetry only
one half of it is drawn. Other examples for statical stability of fully compliant
mechanisms are presented in Huba et al. (2002).
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Fig. 1. Equilibrium situations of a half-cycle shaped beam under external load. A
force constant in amount and direction traces the free end of the beam
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Fig. 2. A valve using compliant mechanisms: pressure-displacement relation;
(a) principle of the valve, (b) configuration of the membrane below the lower
pressure threshold of the two-point switch mechanism (”open”), (c) configuration of
the membrane above the threshold (”closed”)

The valve serves to prevent region (4) in Fig. 2 from pressure overload. Due
to different diameters and thus different cross—sectional areas in regions (1)
to (3), different pressures occur. Depending on pressure differences along the
flow line from (1) to (3), elastic membrane (5) is deflected towards plate (6). If
the pressure difference between (1) and (3) exceeds a predefined threshold, the
valve closes. Calculation of the stress strain relations in the membrane may be
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based on a quasi-static attempt, if conditions allow to neglect inertial effects
of the fluid.

High deflections provoke only small stresses and strains, functions and
shape constancy are guaranteed for a large number of cycles, providing short
and constant switching times with constant diameters of the valve in all "open”
states. Figures 2b and 2c¢ compare the unswitched and switched states as far
as the geometry is concerned. Additionally, an example of this problem is
described in Huba et al. (2002).

2. Dynamic cases of loss of stability

A number of systems, especially non-conservative ones, may only insufficiently
be described by static approaches (Djanelidse, 1958). For example, if a stra-
ight bending beam is subject to a load like illustrated in Fig. 3, calculations
based on static approaches do not identify unstable situations, which, never-
theless, may be found when using dynamic methods. Below the threshold of
the critical load, one stable equilibrium exists. The critical load induces mo-
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Fig. 3. Deformation of compliant beam structures loaded by external forces and/or

bending moment applied to the free-moving end of the beam. Resistance is provided

by elasticity of the beam in combination with internal pressure and/or influence of
filaments

tion, which may lead to stable situations as well as to unstable ones. Methods
to quantitatively identify these situations and to derive related stability crite-
ria are mostly lacking in literature, thus development of methodology in this
field is an important task for the future. Our contribution to this duty will
be the dynamical analysis of a hollow beam under the influence of internal
pressure and of non-conservative forces. The technical application we aim at
is a pneumatic "finger” for grasping, especially for manipulation. Due to the
underlying technology, we would like to know the influence of internal pressure
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or length-constant filaments in the wall of the structure on the stability beha-
viour of the structure. The effects of internal pressure on deformation may be
represented by one force and a bending moment acting on the moving end of
the beam.

The deformation of the beam is expressed as a function of time and spacial
coordinate z (Fig.4). The external force is provoked by a point-like mass m
attached to the moving end of the beam, which performs small movements v
parallel to the y-axis. Thus, redistribution of the mass reduces the kinetic
energy balance to the analysis of states of the point-like mass, without neglec-
ting the elasticity of the beam. As a consequence, the reduced model provides
higher amplitudes and smaller critical loads than a more complex model based
on continuum mechanics. Thus, the results of the calculations assure additional
security, especially as far as critical loads are concerned.
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Fig. 4. A dynamic case of loading of the beam by non-conservative forces and the
bending moment

The force acting on the beam generated by the point-like mass is
F, = —miy, (2.1)

The bending moment of the beam M = EI.v” may be expressed as
ELV" = F(v —v) + (B, — F0,0)(I — x) + M, (2.2)

In further considerations a dynamic model of the material will be used.
Suppose that Fj, v; and 6; are independent of z, then the solution of the
previous equation is

Fi.l+ M;

: Fy,
v(x) = Asin Az + Bcos Az + (015 - )\Q—Elz)x + (v — 6;61) — EL (2.3)
with 7
A=
El,

The bending moment M; is supposed to be proportional to the angle 6; by a
factor k
M; = —kb, (2.4)
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In combination with boundary conditions v(0) = 0 and ¢'(0) = 0, these

equations yield

Fi.l+ M;
MNET,

F}. )( _Sin)\x

v(x) = (015 ~2EL 3

)—i— (vl — 6,61 — )(1—008 Az) (2.5)
Taking into account the two additional boundary conditions v(l) = v; and

V(1) = 6; allows the derivation of the following equations

o= (‘915_%51—2)@_ sir;)\l) + (vl —¢916l—Fié%[jyl)(l—cos)\l)(2 5

Ey,

Tk Bl + M,
N2ET,

0, = (el(s - BT

) (1= sin A + (v — 60l — )Asin Nl

Knowing conditions (2.4) for the moment and force Fj, we eliminate 6; and
get the equation of motion for the point-like mass

U] + w2vl =0 (2.7)
with the natural frequency w

; NBL (A6 — 1) cos M — - sin Ml — 6))
w? = - (2.8)
mBz'gz[(2ELIz i w) cos Al — )\(1 - E%l) sin A — 2ELIJ

The sign of w? # 0 decides the solution to equation (2.7)

K sinwt + K5 coswt for w?>0
v = (2.9)

Kssinhwt + Ky coshwt  for w? <0
In the case of w? > 0, the amplitude is constant. For w? < 0 the solution

tends to infinity. The sign of w? may change if the sign of the denominator or
of the numerator in (2.8) changes. These events occur if

ko
A0 —1)cos Al — EL sin A\l — A =0 (2.10)
or if " )
2 : —
(QE]Z +A l) cos)\l—)\(l— Elzl) sm)\l—2EIZ =0 (2.11)

Introduction of dimensionless parameters F = g—i and k = kl/(EL,) facilita-

tes the further procedure. We transform A and k to dimensionless parameters

VF _kEL
l =

A=
l

k
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Using (2.10) and (2.11), we get relationships for k(F) (Fig.5)
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Fig. 5. Critical loads from equation (2.12); (dashed line) and (2.12)3 (solid line) in
the (k, F') plane

The asymptote of the graph of equation (2.12)y coincides with the second
asymptote described by equation (2.12); and is determined from the formula

\/%sin\/%+2cos\/§z2%

and the bending moment are indeterminate for F=0.In Fig. 5, the straight
line of (2.12) intersects the function derived in equation (2.12);. Consecutive-
ly, an a priori exclusion of the critical loads is impossible. In the case of k = 0,
a simple change of the force direction increases the critical force by a factor of
ten. Dashed line I in Fig. 6 illustrates the strategy to avoid instability. Line II
shows the positive effect of an additional external moment on the avoidance
of the critical loads.

Graphic representations of %(ﬁﬁ) allow the derivation of strategies to
avoid the critical forces by guiding the processes on ”uncritical pathes”. One
of those solutions is given by the dashed line in Fig.7. The price to be pa-
id for this avoidance is control: preemptive (planning) or current (Zentner,
2003).

Introduction of a bending moment acting as an extended load not only
provides more general solutions to stability problems, but also offers access to
new strategies for the avoidance of instable phases in the processes. Superpo-
sition of loads helps in ”shifting” the critical loads into uncritical zones of the
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Fig. 6. Critical loads from equation (2.12); (dashed line) and (2.12)3 (solid line) in

plane (8, F) for k =0 (line I) and k = 15 (line II). Adaptive change of loads allows
for avoidance of critical loads

Fig. 7. Critical loads, determined by equations (2.12); dashed line: one possible
strategy for the guidance of the loading process avoiding critical situations

load condition, as illustrated in Fig. 6. Physical realisation of such additional
loads enable one to use embedded filaments in the basis structure (Fig.3),
which provoke moments under an external force. Thus, the moment is realised
under dangerous load conditions, without the use of additional sensors.

Our results cover those of Djanelidse (1958) for a static case without an

external bending moment (k = 0). For k = 0 and § = 0, equation (2.12);

provides a formula cos V F= 0, where the eigenvalues equal the critical force
in the Euleian sense.



168 L. ZENTNER ET AL.
3. Conclusions

Our attempts to model the behaviour of compliant mechanisms, like pneumatic
manipulator ”fingers”, mechanically identified the needs to extend methods
for the determination of critical loads. For this purpose, we analysed beams
under a load by internal pressure in combination with external forces and/or
bending moments. In some loading situations of the pneumatic ”finger”, the
analysis of the derived equations allowed a multifold increase of the critical
loads. Guidance of the loading process was required to trace uncritical regions
of parameter combinations describing the equilibrium situation.

Of special impact on the increase of the critical loads is the controlled
overlay of bending moments onto the forces applied. In situations with given
external loads, this overlay allows the minimisation of structural weight.
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O statecznos$ci podatnych belek poddanych obcigzeniu ci$nieniem
wewnetrznym

Streszczenie

Naukowe podejscie do kwestii statecznosci cechuje niezmienna adaptacja tego ter-
minu do réznych dziedzin zastosowan. Niemniej, wyznaczanie obciazen krytycznych
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wciaz pozostaje jednym z gléwnych zadan teorii statecznosci. W pracy zaprezento-
wano kilka przykladow réznych typow utraty statecznosci w belkach poddanych ob-
ciazeniu ci$nieniem wewnetrznym w przypadku statycznym. Dodatkowo, szczegdto-
wo przeanalizowano zagadnienie statecznosci dynamicznej takich uktadow i pokazano
sposoby utrzymywania ich w réwnowadze.
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