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In the present study, a hierarchy of control-oriented reduced order models
(ROMs) for fluid flows is presented. Control design requires simplicity, accura-
cy and robustness from an online capable Galerkin model. These requirements
imply low order of the associated dynamical system. Standard POD (proper
orthogonal decomposition) Galerkin models may provide a low-dimensional re-
presentation of a given reference state. Yet, their narrow dynamic range and
lack of robustness pose a challenge for control design. We propose key enablers
to increase the dynamic range of the POD model. An 11-dimensional hybrid
model is discussed which includes, in addition to 8 POD modes, a shift mode
to resolve base-flow variations, and a complex global stability mode for en-
hanced description of the transient phase. The dimension is further reduced
by a similarly accurate 3-dimensional generalized mean-field model employing
a novel continuous mode interpolation technique between POD and stability
eigenmodes. This method connects smoothly different operating conditions, dif-
ferent mode bases and even different boundary conditions, allowing the design
of least-order, accurate Galerkin model for flow control purposes. The interpo-
lation technique is employed to construct a priori flow model from the stability
analysis and the Reynolds equation without the need for flow data.

Key words: Reduced Order Models, control-oriented models, global flow sta-
bility, flow control, continuous mode interpolation

1. Introduction

Air-borne and ground transport systems are required to be more energy-
efficient, targeting lower energy consumption and lower environmental pol-
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lution. Flow control is one key enabler towards this target. These economic
and environmental considerations emphasize practical flow control strategies
as an important field of investigation (Fiedler and Fernholz, 1990; Gad-el-Hak,
2000). Such a strategy implies good choices of the type of actuator, its loca-
tion, as well as its amplitude and frequency range. Hitherto, many practical
actuation systems (acoustic actuator, winglets, ...) are obtained by engineering
wisdom and understanding of the flow phenomena. Currently, the complexity
of flows associated with transport systems require a more rigorous model-based
hardware selection. An agreed set of best practices is still a distant target. Si-
milar considerations apply even more so to sensing and control solutions.

Flow control may be operated in (i) passive (ii) active open-loop and (iii)
active closed-loop mode. Passive control means are already a standard practice.
Riblets used with the existing airplane configuration significantly reduce drag
(Bechert et al., 1997; Bechert and Hope, 1985). LEBUs (large-eddy-breakup
devices), vortex generators, splitter plates, Strykowski wires, are among other
passive means already implemented. Also active open-loop control has been
investigated since many decades (Gad-el-Hak, 2000; Gad-el-Hak and Busnell,
1991; Lumley and Blossey, 1998; Smith and Baillieul, 2000; Wygnanski and
Seifert, 1994). Synthetic jet actuation (Smith et al., 1998) or plasma actu-
ators (Kim et al., 2005; Thomas et al., 2006) enjoy an increasing popularity
in experimental studies.

When compared with passive control and open-loop actuation, feedback
control offers opportunities to enforce desirable but naturally unstable opera-
ting conditions. An important example is the efficient suppression of oscillatory
vortex shedding, where the feedback mechanisms maintains an amplitude and
phase relationship between the actuator and sensor signals (Roussopoulos,
1993), and the response to flow changes happens in fractions of the hydrody-
namic time scale. In addition, flow information may be used on longer time
scales, to respond to slowly varying flow changes and adapt amplitude and
frequency of an otherwise open-loop actuation. In both cases, the coupling
between sensors (output) and actuators (input) is based on a mathematical
dynamic model which may or may not explicitly resolve the flow structures.

Experimental input-output relationships have been compressed in black-
box models without coherent-structure resolution and have proven to be suc-
cessful in large number of experiments (Becker et al., 2007). Control based on
reduced order models for the coherent structures bears the advantage of an
enhanced understanding of the actuation and sensing effects relative to the
physics of the system (Henning et al., 2006; Pastoor et al., 2006). In addition,
Navier-Stokes based nonlinear control strategies may overcome challenges of
control design based on linear black-box models (Collis et al., 2004; Noack et
al., 2004; Siegel et al., 2003, Tadmor et al., 2004).
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Apart from control design, ROMs are also particularly suitable for qu-
ick parametric studies. A parametric study of actuation, sensing and control
opportunities may become expensive in wind- or water-tunnel as well as with
computational fluid dynamics simulations. Hence, reduced models may be use-
ful for less expensive exploration of control opportunities. In addition, closed-
loop control in experiment requires robust and online-capable feedback laws.
Robustness and simplicity imply sufficiently low-dimensional models, which
are accurate enough to resolve the most relevant flow structures and have no
”superfluous” degree of freedom (Gerhard et al., 2003; Rowley and Juttijudata,
2005).

The current paper addresses key enablers for least-order models. First (Sec-
tion 2), the general strategy is outlined. Section 3 recapitulates the standard
proper orthogonal decomposition (POD) modeling procedure. In Section 4,
missing dynamically important modes in the POD approximations are reca-
pitulated. Sections 5-8 are devoted to ’least-dimensional’ Galerkin models for
oscillatory processes. A phase-invariant 3-dimensional model for oscillatory
fluctuations is derived in Section 5. In Sections 6 and 7, an efficient mode-
interpolation method is proposed to account for mode changes kinematically
and dynamically in the Galerkin framework. Thus, the dynamic model range
is increased at fixed model dimension of 3. In Section 8, this 3-dimensional
model is derived only from generalized mean-field considerations without flow
input. Finally (Section 9), the main results are summarized.

2. General philosophy of flow control for stabilization

Consider the discrete, linearized Navier-Stokes equation and let the flow velo-
city field be decomposed into the steady part us and the fluctuation u

′

u = us + u
′ (2.1)

A general flow control approach can be based on the inclusion of a volume
force term in the linearized Navier-Stokes equations

∂tu
′ +∇ ·

(

us ⊗ u
′ + u′ ⊗ us

)

= −∇p′ +
1

Re
∆u′ +

Nb
∑

l=1

bl(t)gl(x) (2.2)

Any spatial discretization (FDM, FEM, FVM) of (2.2) yields a finite-
dimensional evolution equation of the form

d

dt
a = Aa+Bb (2.3)
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where a is a vector of state variables and b is the actuation command. Sensor
measurements are included, in the linear time invariant setting, in the form

y = Ca (2.4)

Using the wake flow behind a circular cylinder as an example, the eige-
nvalue spectrum of the matrix A is depicted in Fig. 1. A conjugate pair of
eigenvalues in the right-hand side of the complex plane represents the flow
instability. Flow control techniques target at the suppression of instability.

Fig. 1. Eigenvalue spectrum of flow around circular cylinder, Re = 100

In terms of the linear equation, suppression of the instability means an
effective change of matrix A, moving the unstable eigenvalues to the left-hand
(stable) side of the complex plane. Active proportional controller b = Ka, for
instance, gives rise to the forced dynamics

d

dt
a = Aca (2.5)

with the modified linear term Ac = A+BK. Here, the design parameter Kmay
be used to stabilize or destabilize the system and the flow control flow problem
can be treated as an extension of the flow stability problem. More generally, in
the linear model framework, the sensor signal y(t) is transferred to actuator
signal b(t) by a feedback controller K. An example is a PID controller, which
may also contain proportional, integral and derivative terms

b = KPy +KI

t
∫

0

y dt+KD
dy

dt
(2.6)

Depending on the dimension of the vectors b and y, one relates to a SISO
(single input single output – for one dimension) or MIMO (multiple input
multiple output – for higher dimension) control.
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The volume force Bb can represent Lorentz forces or a buoyancy term and
can substantially change the solution of the Navier-Stokes equations. It can
also mimic the active or passive control devices. For example in the penal-
ty method of CFD, obstacles are modeled by time-dependent volume forces
which lead to vanishing velocity in the obstacle. This corresponds to a local
actuation term Bb and a strongly stabilizing controller b = Ka. Thus, the
actuation term of (2.3) may model passive control with control wires, splitter
plates, riblets or other devices. Here, Ac describes the effect of the device and
optimization of a passive device may be guided by global stability analysis
(Morzyński et al.), 2006a). Volume force can also mimic active acoustic actu-
ator (Rowley and Juttijudata, 2005) or wall-mounted actuators (Rediniotis et
al., 2002).
Closed-loop control requires model of the flow. Robust closed-loop control

can be based on:

i) high dimensional model described by (2.2)

ii) low dimensional representation of (2.2)

iii) experimentally identified black-box models

Approach i) has no practical value in actual applications: real-time con-
trol decisions need to be made in milliseconds, ruling out the solution of the
Navier-Stokes equations. Black-box controllers iii) are quite successful in some
applications (King et al., 2004) but tend to have a limited region of validity.
Black-box models are mostly linear and more sophisticated nonlinear models
are harder to construct in a black-box framework.
Yet feasible closed-loop performance is determined by the ROM quality.

This is illustrated in Fig. 2 showing that while control is based on a higher
fidelity, hybrid POD model attenuates the turbulence kinetic energy (TKE)
down to about 5% of that of the natural attractor; a controller based on a
simpler minimum order POD model enables only partial stabilization.
State feedback, such as b = Ka assumes complete access to the state. The

reconstruction of the state from sensor measurements necessities construction
of a dynamic observer (Gerhard et al., 2003). In particular, it exploits the
knowledge of the system dynamics to derive the complete ROM state from
limited sensor information. In evolution equation it is introduced by adding the
correction term penalizing the difference between the estimated and measured
sensor signal values. As oscillations are attenuated, phase matching becomes
difficult (Tadmor et al., 2003) especially when actuation is based on dynamic
state estimation.
It is of interest of control the design to derive flow model, smoothly and

continuously passing from one operating condition to another. For example,
for circular cylinder the operating conditions (Fig. 3) range from the state near
the fixed point (steady solution) to the limit cycle (time-averaged flow).
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Fig. 2. From top to bottom: natural flow, flow controlled with Galerkin model based
actuation with standard POD model, flow controlled with Galerkin model based

actuation with hybrid POD model

Fig. 3. Principal sketch of the wake dynamics. The left side displays the mean flow
(top), shift-mode (middle) and steady solution (bottom). The right side illustrates
interpolated vortex streets on the mean-field paraboloid (middle column). The flow

mean-fields are depicted also as the streamline plots

While the fixed point operating conditions are precisely described by flow
stability eigenmodes with the transition and increased value of the fluctu-
ation amplitude, the modes structure changes up to the one corresponding to
oscillatory limit cycle related to the POD modes. In the same time the cohe-
rent structures are distorted, the oscillation period and growth rate increases,
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and the maximum of the turbulent kinetic energy moves toward the cylinder
(Fig. 7). This explains why in the controlled flow situation, the use of POD
modes computed for the wrong orbit results in false prediction of the phase of
the controller and leads to deterioration of the controlling effect.

3. Empirical Galerkin model

Standard Galerkin method (Fletcher, 1984; Holmes et al., 1998; Ladyzhen-
skaya, 1963) decomposes the velocity field in a base flow u0 and fluctuation u

′.
Velocity field is approximated in physical domain Ω with space dependent
expansion modes ui and time-dependent Fourier coefficients ai

u[0,...,N ] = u0 +
N
∑

j=1

αjuj =
N
∑

j=0

αjuj a0 ≡ 1 (3.1)

Basic mode u0 is included in the approximation. The ansatz (3.1) can serve
for deriving high-dimensional FEM model (computational Galerkin method)
if expansion modes have local compact support on grid cells (FEM’s hats).
Low-dimensional models and robustness which is our goal in designing the
flow model for control purposes, requires traditional Galerkin method which
is based on global expansion modes. Traditional Galerkin method (Fletcher,
1984; Holmes et al., 1998; Ladyzhenskaya, 1963) is based on a Hilbert space
for the fluctuation u′ := u−u0. A typical choice of the Hilbert space is the set
of square-integrable solenoidal vector fields ∈ L2(Ω) with the corresponding
inner product between two vectors u, v

(u,v)Ω =

∫

Ω

u · v dx = 0 (3.2)

The least-dimensional representation of a single operating condition is ob-
tained with empirical Galerkin method (Cordier and Bergmann, 2003; Holmes
et al., 1998). Expansion modes are determined with Karhunen-Loève decom-
position (Holmes et al., 1998) (POD) decomposition. Usually the snapshot
version (Aubry et al., 1988; Sirovich, 1987) of analysis of the experimental or
simulation data is applied. Model based on a priori mathematical modes, such
as harmonic base functions, typically requires a much larger number of modes
for the same, or even lower resolution. Pure physical mode basis obtained with
linear stability analysis (Morzyński et al., 1999; Morzyński and Thiele, 1991)
of Navier-Stokes equation is adequate for single operating condition and insuf-
ficient for representing the flow distant from instability onset. The evolution
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equation of the Fourier coefficients is derived from the Galerkin approximation
(3.1) by a Galerkin projection of the Navier-Stokes equation onto the expan-
sion modes ui (Holmes et al., 1998). The resulting Galerkin system has the
form

d

dt
ai = ν

N
∑

i=0

lijaj +
N
∑

i=0

N
∑

j=0

qijkajak (3.3)

where lij := (ui,∆uj)Ω and qijk := (ui,∇ · [ujuk])Ω .

Fig. 4. Streamlines of the mean flow (a), shift mode (c), and first POD
modes (b), (d)

Reduced Order Model obtained with the POD Galerkin method is highly
efficient and resolves nearly perfectly the kinematics of the flow. At the same
time it is highly fragile and sensitive to changes in the parameters or operating
conditions. First two POD modes, Fig. 4, of a circular cylinder wake flow for
Re = 100 capture about 95% of the perturbation energy. It more than sufficient
to represent the time evolution of the dominant coherent flow structures, and
to determine the phase of the flow for the dissipative feedback control. Yet
the Galerkin model, based on these two modes, is structurally unstable. It is
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incapable of representing the dynamics of even small perturbations from the
attractor, or to predict its amplitude. Six POD modes capture 99.9% TKE
but still lead to structurally unstable GM. The inclusion of eight POD modes,
capturing the first four harmonics of the attractor, suffices to achieve nearly
perfect resolution and structurally stable GS. Yet the correct prediction of
dynamics of the system with this model is limited to a small neighborhood of
the attractor, and to relatively small Reynolds number perturbations (Deane
et al., 1991; Noack et al., 2003).

As can be seen from the quoted examples, the quality of prediction can be
improved by increased number of modes. The approach based on a union of
modes to extend the dynamic bandwidth of the model is often used. Ma and
Karniadakis (2002) add modes of 2D vortex shedding to 20 POD of the 3D
flow to resolve the transition from 2D to 3D wake dynamics. The narrow ban-
dwidth of POD-based Galerkin model is even more pronounced for controlled
flow and under changing operating conditions. One example of operating con-
dition is the Reynolds number. The deviation from the Reynolds number for
which the Galerkin approximation is made results in poor properties of the Ga-
lerkin model. Deane et al. (1991) showed that the POD modes determined for
Re = 100 can resolve only 35% of the fluctuation energy at Re = 150. Pre-
serving adequate dynamics for model-based MISO control with the use of
Galerkin flow model (Bergmann et al., 2005), necessities about 40 POD mo-
des obtained of transient forced data while only 2 POD modes are required
for natural flow.

With control-oriented models, significant increase of the number of modes
is not possible because the high-dimensional model requires the computatio-
nal effort comparable with DNS and is useless in online, real life prediction of
flow state. The increase of modes basis with single modes is possible but the
modes have to be chosen carefully and POD basis is not the optimal choice.
The key enabler of ROMs in control-oriented applications is the shift-mode
concept (Gerhard et al., 2003; Noack et al., 2003). Further improvement can
be obtained with hybrid mode basis (Noack et al., 2003). Continuous mode in-
terpolation is an alternative way of construction of least-dimensional Galerkin
approximation.

4. Improvements of Galerkin model

4.1. Mean-field correction: The shift mode

Stabilization of the GM can be obtained with the shift mode (Gerhard et al.,
2003; Noack et al., 2003) as suggested by the mean-field theory (Stuart, 1958).
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Shift mode is a normalized difference u0 − us where u0 is the mean flow
solution and us is the (unstable) steady solution. Examples of the stabilizing
effect of mean field corrections are shown also by Siegel et al. (2003), Zielinska
and Wesfreid (1995).

The inclusion of the shift mode reduces model sensitivity to parameter
variations and is an enabler for the low-dimensional representation of transient
manifolds, such as the one connecting the unstable steady solution to the
attractor. The dynamics of the minimum Galerkin Model with a shift mode
is compared with DNS in Fig. 5 and Fig. 6. Shift mode is the key enabler for
construction of transient, control-oriented models.

Fig. 5. Galerkin model with shift-mode and 2 POD modes (left), 8 POD modes
(middle) and continuous mode interpolation (2 modes); (a) dynamics of the first
three Fourier coefficients of the Galerkin model, (b) mismatch between direct

numerical simulation (DNS) and Galerkin system; transients of a3 as a function of r

Fig. 6. Transients of Galerkin models; (a) traditional POD-based models,
(b) improvement of GM dynamics – hybrid model and continuous mode

interpolation
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4.2. Hybrid model employing stability modes

Different shape of the wake structures at the onset of instability and at the
limit cycle precludes a uniformly accurate minimal Galerkin model for the en-
tire transient, from steady to the periodic solution. While the Galerkin model
based on Karhunen-Loève modes predict much better the fluctuation near the
limit cycle, the one employing two stability eigenmodes properly describes the
vicinity of steady solution. In order to combine the strength of the both mo-
dels a hybrid model is constructed with two KL modes, two stability modes
and the shift-mode.
In this model POD resolve the attractor and stability eigenmodes reso-

lve the linearized dynamics. Thus, dynamic transient and post-transient flow
behavior was accurately predicted. The concept of hybrid model reduces si-
gnificantly the number of necessary degrees of freedom of the system. The
transients of the hybrid models are compared with DNS in Fig. 6. The hybrid
model combines the advantages of both reduced models. It converges to the
limit cycle preserving initially the growth rate predicted by global stability
analysis.

5. Phase-invariant Galerkin flow model

Galerkin system for dominant oscillatory flow dynamics may be nearly inde-
pendent of the oscillation phase. The independence of phase for the control-
oriented model can be obtained without noticeable loss of accuracy by phase
averaging of the Galerkin system. The phase of the model θ is determined by
the angle between a1 and a2, θ = arctan(a1/a2). In the phase-invariant mo-
del the coefficients lij and qijk in (3.3) must remain constant for any rotation
of the coordinate system. Rotation of the space span by Fourier coefficients
(vector) around a3 axis by the angle of θ is given by











1
a1
a2
a3











=











1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1





















1
aθ1
aθ2
aθ3











(5.1)

We assume that

a1 = A sin(ωt) a2 = A cos(ωt) (5.2)

If the desired system is phase-invariant (independent of θ), the coefficients
of ”rotated” and original system must be the same as the original one

lθij = lij qθijk = lijk (5.3)
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Coefficients lθij and q
θ
ijk resulting from rotation (5.1) are given by

lθij =
3
∑

l=1

3
∑

m=0

TlillmTmj

(5.4)

qθijk =
3
∑

l=1

3
∑

m=0

3
∑

n=0

TliqlmnTmjTnk

Further we average in time all the coefficients

l⋆ij =
1

2π

2π
∫

0

lθij dθ

(5.5)

q⋆ijk =
1

2π

2π
∫

0

qθijk dθ

With this operation, many of the coefficients are vanishing due to presence of
functions sin and cos under the integral.
The resulting phase-invariant system reads

ȧ1 = (σr − βa3)a1 + (ω + γa3)a2

ȧ2 = (σr − βa3)a2 − (ω + γa3)a1 (5.6)

ȧ3 = −σ∆a3 + δ0 + δ2a
2
3 + α(a

2
1 + a

2
2)

where σr, β, ω, γ, σ∆, δ0, δ2 are computed with (non-zero) lij and qijk. It
should be noted that now the system is described only by 6 parameters, in
comparison to 60 parameters of the original one.
We now want to formulate our phase-invariant Galerkin model in terms

of amplitude r, phase θ and shift mode amplitude a∆ = a3. With
r2(t) = a21(t)+a

2
2(t) and θ = arctan(a1/a2), the time derivative of the equation

r2(t) = a21(t) + a
2
2(t) is

2rṙ = 2a1ȧ1 + 2a2ȧ2 (5.7)

The phase angle derivative θ̇ is given by

θ̇ =
a2ȧ1 − a1ȧ2
a21 + a

2
2

(5.8)

so our phase-invariant model in polar coordinates can be written

ṙ = (σr − βa∆)r θ̇ = ω + γa∆
(5.9)

ȧ∆ = −σ∆a∆ + δ0 + δ2a
2
∆ + αr

2
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If we assume small amplitude of a∆ and take into account that δ0 can be
set to zero for steady flow base solution u0, the equations further simplifies.
Additionally we can assume slow variation in time of a∆, so ȧ∆ = 0 and the
third equation reduces to algebraic expression for a∆ as a function of r

a∆ =
α

σ∆
r2 (5.10)

Post-transient solution of the system (5.6) reads

a1 = A sin(ωt) a2 = A cos(ωt) a∆ = B (5.11)

The transients can be described by the Kryloff-Bogoliubov ansatz allowing for
slow variation of the amplitudes A, B and frequency ω in time.

Actuation in (5.6) can be mimicked with the right-hand side volume force.
Considering, for example, actuation with transverse oscillation of the cylinder
(Tadmor et al., 2004) the model (5.6) reads







ȧ1
ȧ2
ȧ3






=







σr −(ω + γa3) −βa1
(ω + γa3) σr −βa2
αa1 αa2 −σ∆













a1
a2
a3






+







g1
g2
0






Γ (5.12)

where g1, g2 are new coefficients and Γ = −ÿcyl = ȧc. Here ac denotes
amplitude of the actuation mode. Different control strategies can be tested
with this model as presented by Gerhard et al. (2003), Noack et al. (2004),
Tadmor et al. (2004).

6. Interpolated modes

The ”ideal” set of modes should not only adequately represent the flow dyna-
mics and transients but also ”adapt itself” to the controlled flow conditions.
The idea of mode parameterization instead of increasing the number of POD
modes is pursued by several groups. Luchtenburg et al. (2006) employ a pa-
rameterization based on control. Further improvement of the Galerkin model
for control purposes is presented in Lehmann et al. (2005). The POD modes
are derived from the controlled flow subjected to moderate or aggressive for-
cing. In this way the dominant modes change along the transients is taken into
account. The concept of interpolated POD modes used for circular cylinder
flow control is elaborated in details in Lehmann et al. (2005). While retaining
relatively large number of modes (about 40) only 3 Fourier coefficients have to
be dynamically estimated in the controller. Siegel et al. (2006) employ short
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time sampling of transient flows to improve the dynamical properties of the
model.

In Morzyński et al. (2006a,b) a novel continuous mode interpolation tech-
nique is proposed. The mode interpolation smoothly connects not only diffe-
rent operating conditions, but also stability and POD modes. In addition, the
extrapolation of modes outside the design conditions is possible. Interpolated
modes enable the ’least-order’ Galerkin models keeping the dimension from
a single operating condition but resolving several states. These models are
especially well suited for control design.

To demonstrate the continuous mode interpolation we assume that Ao is
a linearized Navier-Stokes operator or the FEM discretization as stability ma-
trix. A linear interpolation of the underlying eigenproblems can be performed
with κ as the interpolation parameter. Here, κ = 0 for the steady flow and
stability eigenmodes, and κ = 1 for the periodic flow and POD modes.

The simplest form of local linearization can be obtained by linear interpo-
lation of matrices Ao and As at two different states

A(κ) = As + κ(Ao − As) (6.1)

The As matrix refers to the steady flow conditions and Ao – to the periodic
limit cycle.

In practice this technique is adequate only for mode interpolation of the
same basis. The stability matrix with non-normal eigenvectors and complex
eigenvalues requires special treatment to be interpolated with symmetric Fre-
dholm kernel, hermitian eigenvalue problem with real eigenvalues. Details of
this procedure can be found in Morzyński et al. (2006a).

6.1. Interpolation between POD and stability eigenmode basis

The method presented in Section 6 is tested in Morzyński et al. (2006a,b) on
interpolation of the POD and stability eigenmode basis. For practical control
applications, more important than simple linear interpolation between bases
of the same mode is a more complex problem of different mode basis.

Fig. 7 shows the results of the corresponding interpolated modes uκi . The
detail results can be found in Morzyński et al. (2006a).

For interpolation, the real part of the most unstable stability mode and
the first POD mode is applied. Interpolation, performed for the wake behind a
circular cylinder at Re = 100, is shown in Fig. 7. The modes change smoothly
from one operating state to another. Thereby, the maximum of fluctuation level
moves to the outflow. A similar observation has been made by Lehmann et al.
(2005) for the flow subjected to increasingly aggressive stabilizing control.
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Fig. 7. Interpolated modes; (a) streamlines of the mode continuously changing
with κ, (b) interpolated modes for κ = 1.0 (the most energetic POD mode),
κ = 0.75, κ = 0.50 and κ = 0.25, κ = 0 (real part of the dominant eigenvector)

7. Galerkin models based on interpolated modes

7.1. General methodology

Adopting the concept of continuous mode interpolation, the low-dimensional
Galerkin model can be derived in a straightforward manner (Noack et al.,
2005) assuming a slowly varying κ

d

dt
aκi =

1

Re

N
∑

j=0

lκija
κ
j +

N
∑

j,k=0

qκijka
κ
j a
κ
k +

Nb
∑

l=1

gκilbl

(7.1)

d

dt
κ = F (κ,aκ, b)

The Galerkin system coefficients lκij and q
κ
ijk depend on the operating

condition κ. During a natural transient of an oscillatory flow, uκ0 may be the
phase-averaged velocity and κ may be identified with the shift-mode ampli-
tude (Noack et al., 2003). Moreover, (7.1)2 is derived from the Navier-Stokes
equation filtered with the phase average 〈·〉 and projected onto the mean-field
correction. During an actuated transient, κ may be identified with a forcing
amplitude or frequency. In this case, (7.1)2 is replaced by a prescribed dyna-
mics of κ.
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In a simple case, the Galerkin system coefficients may be linearly interpo-
lated between two closely operating conditions identified by κ = 0 and κ = 1

lκij = l
0
ij + κ(l

1
ij − l

0
ij)

(7.2)

qκijk = q
0
ijk + κ(q

1
ijk − q

0
ijk)

Model (7.1) targets the least-dimensional representation of the flow. With
only two interpolated modes, shift mode and the parameter κ, the flow is
represented in the very wide range of significantly different operating condi-
tions. From the point of view of the flow control practice, this is of the highest
importance.

In the same time the described method can be a crucial step toward con-
struction of the fully a priori model of the time-averaged flow, based only
on the steady solution of the Navier-Stokes equations and physical stability
eigenmodes.

7.2. Least-dimensional model for oscillatory flows

In this section, the Galerkin model based on continuously interpolated modes
(described in Section 7.1) is presented and compared with the commonly used
POD Galerkin models and DNS.

In the model two mode sets are included. For the state corresponding to the
fixed point, the two most unstable eigenmodes of global stability analysis are
used. For limit cycle dynamics, two first POD modes have been chosen. Base
flow and shift mode remain unchanged, while two remaining modes depend on
the operating conditions.

In Galerkin model, constructed as in (7.1), the interpolation parameter κ
is identified with shift-mode amplitude a3

κ =
a3
a•3
− 1 (7.3)

where a•3 represents amplitude of the shift mode for periodic solution. In
this way κ changes continuously, allowing proper interpolation of the used
modes and Galerkin system coefficients (7.1)2. Since the interpolated modes
are matching the transients of the flow better than POD modes, the dynamical
behavior of minimummodel based on interpolated modes (represented in Fig. 6
by the turbulent kinetic energy of fluctuation K) is much closer to DNS results
than in case of POD-only models.

Presented model, containing only 3 degrees of freedom (two interpolated
modes and shift-mode), is more accurate than the 7-dimensional POD model
(Fig. 5 and Fig. 6).
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8. A priori model of the flow

A major step towards a priori flow model would be prediction of POD modes
on the basis of stability eigenmodes. Global flow stability analysis predicts
exactly the periodic flow behavior near the fixed point, only with the ste-
ady base flow. Composition of this predictive feature with continuous mode
interpolation should accomplish the desired solution.

In Fig. 8 extrapolation of physical modes to approximate empirical ones
is shown. Starting points are eigenmodes computed from a global stability
analysis of the steady solution and of time-averaged flow. The POD mode
shall be expressed in terms of these physical modes (stability eigenmodes)
only.

Fig. 8. Computed (a) and approximated on the basis of stability eigenmodes (b)
POD mode for Re = 100

In Fig. 9 the flow field reconstructed with the use of extrapolated POD
mode is shown. In the near wake it is close to the one based on POD modes.
As the near wake is particularly important for flow control, the results of the
a priori mode interpolation are encouraging.

9. Conclusions

In the current study, reduced order modeling for control design is discussed
and exemplified for the cylinder wake. Starting point is the standard POD
Galerkin model utilizing its low dimension by construction. The price for low
dimension is an over-optimization for a single reference condition, i.e. a small
dynamic bandwidth. This dynamic bandwidth is significantly increased by
additional expansion modes provided by mean-field considerations. A hybrid
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Fig. 9. A priori Galerkin model based on flow stability eigenmodes. Vorticity (a)
and streamlines (b) are depicted for Re = 100

model with 8 POD modes and 3 mean-field modes describes well the transient
from the steady to periodic flow.

The order of the hybrid model can be significantly reduced, realizing that
transient oscillatory fluctuations may be resolved by 2 base-flow dependent
modes. The deformation between stability eigenmodes near the steady solu-
tion and 2 POD modes for the limit cycle dynamics, is resolved by a novel
continuous mode interpolation technique. Thus, a 3-dimensional ’least-order’
model is constructed which has an accuracy comparable to the 11-dimensional
hybrid model, but has a significantly increased robustness. Intriguingly, conti-
nuous mode interpolation can be employed for interpolation and extrapolation
between modes at different Reynolds numbers, angle of attack, and other pa-
rametric changes.

In the final step, an a priori generalized mean-field model is constructed
in which all modes are derived from the stability analysis, from the Rey-
nolds equation and from the continuous mode interpolation. In particular,
the shift mode and the POD are approximated from Navier-Stokes conside-
rations without the need for empirical input. The authors currently pursue
applications of this generalized mean-field models for control design, including
multi-frequency physics.
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Globalna analiza stabilności i modelowanie niskowymiarowe

w zastosowaniu do sterowania opływem ciał

Streszczenie

W pracy przedstawiono grupę modeli niskowymiarowych przeznaczoną do stero-
wania opływem ciał. Wymagania dotyczące modelu, takie jak prostota, dokładność
i odporność wymagają ograniczenia liczby wymiarów. Standardowe modele Galerkina
oparte o mody POD okazują się nieprzydatne do projektowania kontrolera, stąd ja-
ko rozwiązanie problemu zaproponowano modele hybrydowe oparte o mody globalnej
analizy stabilności, mody POD i mod przesunięcia. Dodatkowo zaprezentowano no-
wą koncepcję interpolacji modów, przez co możliwa jest konstrukcja parametrycznego
modelu przepływu charakteryzującego się najmniejszą z możliwych liczbą wymia-
rów i płynną zmianą w zależności od stanu sterowanego przepływu. Metoda ciągłej
interpolacji modów została zastosowana do konstrukcji modelu a priori przepływu,
opartego jedynie o mody globalnej analizy stabilności.
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