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The evaluation of computational results of annular, three-layered plates with
a soft foam core of different thickness under lateral compressive loads acting
in facings planes has been conducted in this work. The values of critical static
loads of plates and the forms of critical buckling corresponding with them
have been the examined results of calculations. The calculations have been
carried out using two approximation methods: finite difference method and
finite element method. The solution to the problem of static stability of plates
presented in both methods concerns the general problem of the loss of plate
stability corresponding to possible circumferential wave forms of plate critical
deformations. The plates with a thick core have been analysed in detail. Eva-
luating the results, it has been noted that the observed significant decrease in
the critical static loads of plates with thick cores. This observation has been
made by carrying out calculations with the help of the finite element method
for plate models differing in the condition of the plate layers connection. The
observed regions of good consistency and of essential differences of the results
obtained using the assumed numerical methods for plates with middle and
thick cores have been the main effect of the examinations. They seem to be
practical importance in the modelling of plate structures.

Key words: annular layered plate, critical static loads, buckling form, finite
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1. Introduction

Calculations of critical, static loads of plates are the fundamental stage of
examinations of their stability. The minimal loads and forms of critical plate
deformations allow for determination of the range of practicable loads, cha-
racter of plate operation and their supercritical behaviour. Static critical pa-
rameters have the essential importance in the evaluation of dynamic stability
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of structures subjected to time-dependent loads. The plate stability problems
are multi-parameter tasks strongly depending on the material and geometri-
cal parameters of the structure. The problem become more complex, when
the examined object is a multi-element structure. In this case, not only the
mentioned parameters, but also the method of connection of components in
the structure and their participation in the operation of the whole object af-
fect the behaviour of such a complex structure. Multi-layer plates and, among
them, widely applied three-layer plates with soft cores are typical objects in
the field of plate structures. Three-layer annular plates analysed in the range
of the loss of its static stability are the subject of the present considerations.
The presented solution has a general form enabling analysis both the particu-
lar axisymmetric form of plate buckling and circumferential wave forms, too.
This solution refers to the solution presented by Pawlus (2006).

The computational results presented in detail eg. by Pawlus (2003a,b, 2004,
2007) concern exactly a special example of a plate, which loses its stability in
a regular, axially-symmetrical form. The results presented in these works in-
dicate significant differences in values of critical loads of plates with thick
cores modelled with differing assumptions on layer deformation. This sensiti-
vity has not been observed in models of plates with thin or medium-thickness
cores. The approach to the evaluation of critical loads found by the presented
methods is the task of this examination. Plate models, whose critical deforma-
tions could be an the unlimited, radial and circumferential wave forms have
been considered.

It can be noticed that the field of undertaken problems for annular, three-
layer plates with thick cores is still really limited. There are works considering
thick annular plates, but with a homogeneous structure (see, Dumir and Shin-
gal, 1985a,b). Numerous works deal with the dynamic stability of sandwich
annular or circular plates. Some of them were presented by Wang and Chen
(2003, 2004), Chen et al. (2006). The dynamic stability problem was also con-
sidered by Pawlus (2005). The structure of the analysed sandwich plate with
thin and medium cores was similar to that presented in this work.

2. Problem formulation

An annular, three-layer plate under a load acting in the surface of its facings
is the object of the analysis. The examined structure of the plate with double
slidable clamped edges is presented in Fig. 1. Examples of plates compressed on
outer or inner edges are considered. The schemes are presented in Fig. 2. Thus
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loaded plate loses its static stability. Forms of the loss of the plate stability,
which correspond to the minimal value of critical loads are various, particularly
for plates compressed on the outer perimeter. The deformation forms strongly
depend on the material and geometrical parameters of the plate.

Fig. 1. Scheme of the analysed plate

Fig. 2. Scheme of the plate loaded: (a) on the outer perimeter, (b) on the inner
perimeter

Particularly, the core thickness has here the significance. The possible forms
of loss of plate stability are global or local and basic, which occur for plates with
thin or thick core, respectively (Romanów, 1995; Stamm andWitte, 1983). The
global form of stability loss is for the global displacement state, which includes
the condition of equal deflections of three plate layers. This condition is not
in force for other forms of the loss of stability, where the general displacement
state exists. Then, the results for critical loads of plates with thick cores are
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lower than the results obtained for the assumed condition of equal deflections of
three plate layers. To some extent, this condition extorts global plate buckling.
The introduction of this condition, particularly for plates with thick cores,
may essentially disturb the correct final result. Above all, it can influence the
increase in values of the critical loads. The evaluation of the effect of taking
into account the coupling between layers or not on computational results of
critical loads is the main problem considered in this work.

The problem has been solved using two approximation methods: finite
difference and finite element. The solution obtained using the finite difference
method is exactly based on the condition of equal deflection of layers, whereas,
in the finite element method, the layers are connected by a surface contact
interaction, which assures continuity of displacement and, additionally, mutual
coupling as well. Results of plates with coupled layers and without coupling
have been compared with the results obtained by making use of the finite
difference method.

Calculations have been carried out for the transverse symmetrical structu-
re of plates with the following geometrical parameters: inner radius ri = 0.2m,
outer radius ro = 0.5m, facing thickness h

′ = 0.0005m and 0.001m, various
core thickness: h2 = 0.005m, 0.01m, 0.02m and 0.04m, 0.06m. In the analy-
sis, the core thickness kept within the range from h2 = 0.005m up to 0.02m is
generally treated as medium. As a thick core, the thickness above h2 = 0.02m
is considered.

3. Numerical calculations

Fundamental numerical calculations have been carried out for plates loaded on
the outer edges of their facings. The plates lose their stability in circumferential
wave forms. Observation of the forms of plate buckling with the evaluation of
minimal critical loads corresponding to them, particularly for plates with thick
cores, are the main goal of the undertaken numerical calculations.

The examined plates are built of steel facings and treated as an isotropic
polyurethane foam core. The material parameters are the following: Young’s
modulus of facings E = 2.1 · 105MPa and Poisson’s ratio ν = 0.3, Kirchhoff’s
moduli of core materials G2 = 5MPa (presented in work by Majewski and
Maćkowski, 1975) and G2 = 15.82MPa (presented by Romanów, 1995). Po-
isson’s ratio of the foam material equal to ν = 0.3 is chosen according to the
standard specification PN-84/B-03230.
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3.1. Calculations using the finite difference method (FDM)

A detailed description of the solution to the formulated problem using the
finite difference method was presented in work by Pawlus (2006). The solution
is based on the assumption of equal values of layer transverse deflections,
the classical theory of sandwich plates with the broken line hypothesis and
the normal distribution of plate stresses on the facings and shearing stresses
carried by the core (Volmir, 1967). This solution comes down to a solution to
the eigen-value problem with determination of the minimal plate load, being
the critical static load pcr.
The basic elements of the solution are as follows:

• formulation of the equilibrium equations for each plate layer

• determination of geometrical relations with equations for angles α, β of
the circumferential and radial core deformation, respectively

• formulation of physical relations of the layer materials using the relations
of Hook’s law,

• on the strength of the equations of the sectional forces and moments
and suitable equilibrium equations determination of the formulas for the
resultant radial Qr and circumferential Qθ forces and the resultant mem-
brane radial Nr, circumferential Nθ and shear Trθ forces determined by
means of the introduced stress function Φ

• usage of the equilibrium equations of projections in the z-direction of
forces loading the plate layers (Fig. 1), formulation of the basic differen-
tial equation describing deflections of the analysed plate, which is in the
following form
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where:

k1 = 2D, k2 = 4Drθ + νk1

D = Eh′3/[12(1− ν2)], Drθ = Gh
′3/12 – flexural rigidities of the outer

layers
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w – plate deflection

δ = u3 − u1, γ = v3 − v1

u1(3), v1(3) – displacements of points of the middle plane of facings in
the radial and circumferential directions, respectively

H ′ = h′ + h2

Φ – stress function

• determination of additional equilibrium equations of projections in the
radial u and circumferential v directions of forces loading the undefor-
med outer plate layers

• determination of the boundary conditions described as follows
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• determination of the following dimensionless quantities
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Φ

Eh2
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w

h
ρ =
r

ro

δ =
δ

h
γ =
γ

h

(3.3)

• assumption that the stress function Φ is a solution to the disk state,

• application of the finite difference method for the approximation of deri-
vatives with respect to the dimensionless radius ρ by central differences
in discrete points and, after transformation, determination of the follo-
wing forms of basic equations in the analysed problem

MAPu+MADd+MAGg = p
∗
MACu

MACPu =MACDd+MACGg (3.4)

MPu =MDd+MGg

where:

p∗ = p/E – dimensionless load

u, d, g – vectors of plate deflections and differences of the radial ui
and circumferential vi displacements of facings
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MAP , MAC , MACD, MACG, MD, MG – matrices of elements composed
of geometric and material parameters of the plate and the quanti-
ty b of the length of the interval in the finite differences method
and the number m of buckling waves

MAD – matrix of geometric parameters and the quantity b

MAG – matrix of geometric parameters and the number m

MACP – matrix with elements described by the quantity b/2

MP – matrix with elements described by the number m

• solution to the eigen-value problem with calculation of the minimal value
of p∗ as the critical static load p∗cr using the equation in the following
form

det [(MAP +MADMATD +MAGMATG)− p
∗
MAC ] = 0 (3.5)

and MATD, MATG – matrices expressed after some transformations by
the matrices MP , MD, MG, MACD, MACG, MACP .

The calculations by means of the finite difference method have been pre-
ceded by selection of the number N of the discrete points, which fulfils the
accuracy of calculation up to 5% of the technical error. The computational
results of critical loads and numbers m of circumferential waves showing the
buckling forms of plates with thick cores (h2 = 0.04m and 0.06m) for dif-
ferent numbers of discrete points: N = 11, 14, 17, 21, 26 are presented in
Tables 1 and 2. Exemplary results of plates with medium core thickness were
presented by Pawlus (2006). The bold print results indicate the form of plate
deformation (the number m of circumferential waves) corresponding to the
minimal critical load pcr, which has been calculated for different numbers of
discrete points N . The number m does not change with the increase in the
number N of discrete points. The number, equal to N = 14 has been accep-
ted in the numerical calculations. The results show an essential increase in the
number m of circumferential waves with the increase in the plate stiffness.
This is exactly presented in Figs. 3 and 4.
Figures 3 and 4 present the distribution of the critical static loads of plates

with different forms of their critical deformation expressed by the number m
of waves in the circumferential direction for plates with the thickness of facing
equal to: h′ = 0.0005m and 0.001m, respectively. The points marked by • in
the diagrams correspond to the minimal critical load for the determined form
of plate buckling. The presented diagrams show an essential increase in the
critical plate loading with an increase in the plate stiffness – it is along with
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Table 1. Critical loads pcr [MPa] for different wave numbers m of the plate
with parameters: G2 = 5MPa, h2 = 0.06m, h

′ = 0.001m

H
H

H
H

HH
m

N
11 14 17 21 26

5 123.49 123.90 124.18 124.43 124.62

6 117.94 118.30 118.54 118.76 118.93

7 114.87 115.18 115.39 115.58 115.74

8 113.44 113.71 113.90 114.06 114.20

9 113.15 113.39 113.55 113.70 113.83

10 113.72 113.92 114.07 114.20 114.31

11 114.95 115.13 115.25 115.37 115.47

12 116.72 116.88 116.99 117.09 117.17

Table 2. Critical loads pcr [MPa] for different wave numbers m of the plate
with parameters: G2 = 15.82MPa, h2 = 0.04m, h

′ = 0.0005m

H
H

H
H

HH
m

N
11 14 17 21 26

19 375.49 376.15 376.59 377.00 377.36

20 374.58 375.23 375.68 376.10 376.47

21 373.96 374.62 375.08 375.50 375.87

22 373.62 374.28 374.74 375.17 375.54

23 373.54 374.20 374.67 375.09 375.47

24 373.71 374.36 374.83 375.26 375.63

25 374.10 374.75 375.21 375.64 376.01

26 374.70 375.34 375.81 376.24 376.61

the increase in the core thickness and Kirchhoff’s modulus of the core material.
The major number of circumferential waves corresponds to the critical buckling
of stiffer plates, too. It is particularly high for plates with thick cores.

For these plates, the critical loads change insignificantly in a wide range
of forms of plate deformations, eg. for plates with parameters: h2 = 0.06m,
h′ = 0.0005m, G2 = 15.82MPa, the fluctuation of critical loads for the forms
of buckling presented by the number m equal from 24 up to 29 are in the
range in 543.54MPa to 543.37MPa with a decrease down to the minimal
value: pcr = 542.70MPa for m = 27. It could be found that these forms
of plate buckling are equivalent to each other. The similar plate behaviour is
observed for other cases presented in Figs. 3 and 4, particularly for plates with
thin (h′ = 0.0005m) facings.
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Fig. 3. Critical static load distributions depending on the number of buckling waves
for the plate compressed on the outer perimeter with facing thickness h′ = 0.0005m

Fig. 4. Critical static load distributions depending on the number of buckling waves
for the plate compressed on the outer perimeter with facing thickness h′ = 0.001m

The distribution of the critical static loads pcr depending on the plate
core thickness is shown in Fig. 5. The presented results are for plates loaded
both on the inner and outer perimeter of facings. It is obvious that the values
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of loads pcr increase with an increase in the plate stiffness, and the curve
for plates with medium core thickness is near to a linear one. The observed,
rather insignificant, decrease in the distribution of the critical loads for plates
with thick cores (above h2 = 0.02m) could arise some questions about their
excessive values. Therefore, the analysis has been supported by calculations
carried out by the finite element method also for plate models without the
simplification, which is connected with the assumption of the equal deflection
of plate layers.

Fig. 5. Critical static load distributions depending on core thickness for plates
compressed on the inner and outer perimeter

3.2. Calculations using the finite element method (FEM)

Simulating numerically the plate models built by means of the finite element
method, it was possible to observe the essential differences in the critical loads
of plates with the thick core. In this observation, the way of the plate layers
connection, i.e. having or not having equal deflection was significant.

Calculations using the finite element method were carried out for plate mo-
dels built of shell and solid elements. The application of the shell elements for
the mesh of facings and the solid elements for the core mesh took into account
different participation of the layers in carrying the plate loading: normal by
the facings and shearing by the core.
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The model is composed of 9-node 3D shell elements and 27-node 3D solid
elements, which create the facing and core mesh, respectively. The outer sur-
faces of facing elements are tied with surfaces of the core elements by surface
contact interaction. The plate model of the full annulus form supported in sli-
dable clamped edges has been used in the analysis. Some results for the plate
loaded on the inner perimeter, have been obtained using a quite simple model
built of axisymmetric elements. The structure of such a plate model could be
based on axisymmetric elements, because the plate loaded on the inner edge
and supported in double slidable clamped edges loses its stability in regular,
axially-symmetric form, which corresponds to the minimal value of the critical
load. This observation has been confirmed by the general solution to the static
stability problem of plates with the wave forms of buckling exactly presented
in the work by Pawlus (2006). The structure of this model is the same as the
annulus plate model. The facing mesh is built of shell 3-node elements but the
core mesh is built of solid 8-node elements. A scheme of both plate meshes is
presented in Fig. 6.

Fig. 6. The scheme of plate mesh: (a) annulus model, (b) model built of
axisymmetric elements

The calculations were carried out at the Academic Computer Center
CYFRONET-Cracow (MNiSW/SGI3700/Płódzka/016/2007) using the
ABAQUS system (ABAQUS, 2000).

Figures 7-10 present results of calculations of critical loads for plates with
various core thickness obtained using the Finite Difference Method (FDM)
and the Finite Element Method (FEM). The calculations in FEM have been
carried out for the full annulus plate model without the condition of equal
deflection of the layers. Figures 7 and 8 present results for plates loaded on
the outer edge, while Figures 9 and 10 concern plates loaded on the inner
edge.

Diagrams presented in Figs. 9 and 10 show the results obtained by FEM
for two kinds of plate models: full annulus – denoted by ”line 1” (see the le-
gend) and the model built of axisymmetric elements – denoted by ”line 2”.
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Fig. 7. Critical static load distribution depending on the core for the plate loaded on
the outer perimeter with facing thickness h′ = 0.0005m

Fig. 8. Critical static load distribution depending on the core for the plate loaded on
the outer perimeter with facing thickness h′ = 0.001m

The consistency of theses curves (lines 1 and 2) informs about the correctness
of the mesh structure, and confirms the observations presented in this work.
A decrease in the critical static loads of plates with the thick core (above
h2 = 0.02m) is observed. Their forms of buckling maintain the global form, or
particularly for plates with thin facings (h′ = 0.0005m) the form are connec-
ted with strong layer deformations. Marked by times points in Figs. 7 and 9
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Fig. 9. Critical static load distribution depending on the core for the plate loaded on
the inner perimeter with facing thickness h′ = 0.0005m

Fig. 10. Critical static load distribution depending on the core for the plate loaded
on the inner perimeter with facing thickness h′ = 0.001m

exactly concern such cases of deformations of plates loaded on the outer and
inner edges, respectively. These forms of deformations are shown in Figs. 11
and 12, respectively.

The observed critical buckling of plates loaded on the outer perimeter has a
form of circumferential waves concentrated near the inner plate perimeter (see
Fig. 11). At the same time, the critical deformation of the plate compressed
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Fig. 11. Critical buckling form of the plate with parameters: h′ = 0.0005m,
h2 = 0.06m and G2 = 15.82MPa, loaded on outer perimeter

Fig. 12. Critical buckling form of the plate with parameters: h′ = 0.0005m,
h2 = 0.06m and G2 = 15.82MPa, loaded on inner perimeter and built: (a) as full

annulus, (b) of axisymmetric elements

on the inner perimeter has a form of a strongly, radially deformed structure
in the region of the loaded edge (Fig. 12) with the observed local form of the
loss of stability (see Fig. 12b).

Table 3 presents detailed results of calculations by FDM and FEM for the
plate with facing thickness equal to: h′ = 0.001m compressed on the outer
perimeter.

Exemplary forms of plate buckling are presented in Fig. 13. The results
presented in Table 3 show consistency in the critical loads pcr and forms
of plate deformations found by numerical methods: FDM and FEM for pla-
tes with medium cores. For plates with the core thickness above 0.02m, one
can observe a decrease in the critical loads obtained through the finite ele-
ment method. For some plates, e.g. characterised by parameters: h2 = 0.04m,
G2 = 15.82MPa, it is also observed that the number of circumferential buc-
kling waves is lower for plate models calculated by FEM (the number m is 10)
than by FDM (m = 11).
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Table 3. Critical loads of plates with facing thickness h′ = 0.001m calculated
by FDM and FEM

h2 [m] / G2 [MPa]
FDM FEM

pcr [MPa] m pcr [MPa] m

0.005 / 5.0 20.52 5 16.48 5

0.005 / 15.82 46.53 6 35.04 6

0.02 / 5.0 46.95 7 43.71 7

0.02 / 15.82 125.11 9 115.10 9

0.04 / 5.0 80.68 8 76.29 8

0.04 / 15.82 224.50 11 207.65 10

0.06 / 5.0 113.39 9 102.86 9

0.06 / 15.82 320.63 12 274.23 12

Fig. 13. Exemplary critical buckling forms of plates loaded on the outer perimeters

Table 4 presents the critical loads of plates with thin facings (h′ =
= 0.0005m) and medium cores of the thickness h2 = 0.02m. The values
are consistent, whereas the forms of buckling found by FEM mostly have a
lower number of circumferential waves than in plates solved by FDM.

The results of calculations by FEM of plate models with coupled layers and
the results obtained by FDM are presented in Figs. 14-17. Figures 14 and 15
show the results for plates loaded on the outer edge, but Figures 16 and 17
present the results of plates compressed on the inner edge with the facing thick-
ness equal to h′ = 0.0005m and h′ = 0.001m, respectively. The introduction
of the condition of equal deflections of three layers essentially changed the
critical results of plates with thick cores. Strong critical deformations did not
occur and the correspondence of results obtained by the two computational
methods really increased.
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Table 4. Critical loads of plates with the facing thickness h′ = 0.0005m
calculated by FDM and FEM

h2 [m] / G2 [MPa]
FDM FEM

pcr [MPa] m pcr [MPa] m

0.005 / 5.0 22.37 8 19.16 7

0.005 / 15.82 61.51 9 52.03 9

0.01 / 5.0 38.56 9 35.53 9

0.01 / 15.82 109.75 13 101.72 10

0.02 / 5.0 69.49 12 66.56 10

0.02 / 15.82 200.62 18 193.15 12

Fig. 14. Critical load distribution depending on the core for the plate with equal
layer deflections, loaded on the outer perimeter and with facing thickness

h′ = 0.0005m

Tables 5 and 6 present the critical loads and critical forms of buckling of
plates with coupled layers compressed on the outer perimeter and with facing
thickness equal to h′ = 0.001m and h′ = 0.0005m, respectively.

The presented results indicate a tendency of the number m of circum-
ferential waves for critical buckling of plates calculated with coupled layers
to decrease. It is particularly observed for plate models calculated by FEM.
Exemplary forms of deformation are presented in Fig. 18 for plates with para-
meters: h′ = 0.0005m, h2 = 0.06m, G2 = 5MPa and G2 = 15.82MPa.

Detailed computational results for plates compressed on the inner perime-
ter were presented by Pawlus (2007). This study includes analysis of other
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Fig. 15. Critical load distribution depending on the core for the plate with equal
layer deflections, loaded on the outer perimeter and with facing thickness

h′ = 0.001m

Fig. 16. Critical load distribution depending on the core for the plate with equal
layer deflections, loaded on the inner perimeter and with facing thickness

h′ = 0.0005m

than annulus plate models. The models are in the form:

• of an annular sector with a single or double layer of core elements

• of a model built of axisymmetric elements with a single, double or qu-
aternary layer of core elements.
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Fig. 17. Critical load distribution depending on the core for the plate with equal
layer deflections, loaded on the inner perimeter and with facing thickness

h′ = 0.001m

Table 5. Critical loads of plates with equal layer deflections calculated by
FDM and FEM, with facing thickness h′ = 0.001m

h2 [m] / G2 [MPa]
FDM FEM

pcr [MPa] m pcr [MPa] m

0.005 / 5.0 20.52 5 16.49 5

0.005 / 15.82 46.53 6 35.06 6

0.02 / 5.0 46.95 7 43.97 7

0.02 / 15.82 125.11 9 116.31 8

0.06 / 5.0 113.39 9 111.60 8

0.06 / 15.82 320.63 12 318.34 10

The observations of these plates are similar to those of the plates loaded on the
outer edge. The global form of critical buckling for the minimal critical load of
plates compressed on the inner edge is regular axially-symmetric (m = 0). This
form for the full annulus plate model and for the model built of axisymmetric
elements, which was used in FEM calculations (presented in Figs. 16, 17 and
by line 2 in Figs. 9, 10), is shown in Fig. 19.

Generally, it could be noticed that the examinations indicate quantitative
and qualitative compatibility of the results for critical loads of plates with
medium core thickness (in the range of h2 around 0.02m). For these plates,
the introduction of the condition of equal layer deflections or its absence do
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Table 6. Critical loads of plates with equal layer deflections calculated by
FDM and FEM, with facing thickness h′ = 0.0005m

h2 [m] / G2 [MPa]
FDM FEM

pcr [MPa] m pcr [MPa] m

0.005 / 5.0 22.37 8 19.18 7

0.005 / 15.82 61.51 9 52.10 8

0.02 / 5.0 69.49 12 67.39 9

0.02 / 15.82 200.62 18 198.65 12

0.06 / 5.0 185.68 17 189.45 12

0.06 / 15.82 542.70 27 571.69 14

Fig. 18. Critical buckling form of the plate loaded on the outer perimeter with equal
layer deflections and with parameters h′ = 0.0005m, h2 = 0.06m: (a) G2 = 5MPa,

(b) G2 = 15.82MPa

Fig. 19. Axially-symmetric buckling form of the plate compressed on the inner edge:
(a) full annulus model, (b) model built of axisymmetric elements

not significantly influence the obtained results. At the same time, this con-
dition really influences the final results for plates with core thickness above
h2 = 0.02m.
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Table 7. Comparison of values of critical loads pcr [MPa] obtained for different
plate models

h2 [m] / G2 [MPa] / h
′ [m] I II III

0.005 / 5.0 / 0.0005 57.52 57.48 57.84

0.005 / 15.82 / 0.001 119.94 119.92 120.30

0.02 / 5.0 / 0.001 144.16 143.20 143.77

0.02 / 15.82 / 0.001 328.30 324.01 326.41

0.06 / 5.0 / 0.001 317.34 292.68 293.90

I – Plate model built of axisymmetric elements with coupled layers

II – Plate model built of axisymmetric elements without coupled layers

III – Annulus plate model without coupled layers

Additionally, while evaluating the correctness of the plate structure, analy-
sis of critical loads convergent for different numbers of mesh elements has been
undertaken. The plate model built of axisymmetric elements has been exami-
ned. The results are given for the plate loaded on the inner perimeter. The
plate parameters are as follows: h2 = 0.02m, G2 = 5MPa, h

′ = 0.001m. A

Fig. 20. Convergence of critical loads

diagram presented in Fig. 20 shows results for two analysed plate models: with
coupled layers and without this condition. The convergence has been achie-
ved for 15 elements in the radial direction. In the calculations, 30 elements
have been accepted. The comparison and good correspondence of the results
of plates modelled in the form of full annulus and composed of axisymmetric
elements are presented in Table 7. The results are given for the plate loaded
on the inner perimeter.
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4. Conclusions

Numerical results of the critical static loads of three-layer annular plates with
a foam core of medium thickness and a thick core are presented in this paper.
The solution to the static stability problem is general. It includes circumfe-
rential wave forms of the critical buckling, observed in particular in plates
compressed on the outer perimeter. The critical loads of such plates have been
specially considered. The calculations have been carried out by means of the
finite difference and finite elements method. The model of plate calculated
by the finite difference method uses the classical theory of sandwich plates
with the broken line hypothesis and the assumption on the equal deflection
of three plate layers. The plate models built for the finite element method
have essentially an annular plate structure and differ by condition of equal
layer deflections. The influence of this condition on the critical loads in thick-
core plates is very significant. The results for plates with core thickness above
h2 = 0.02m, treated as thick, indicate a great decrease in the critical loads and
the possibility of occurrence of different buckling forms than those obtained
in models of plates calculated by the finite difference method or models built
for the finite element method with coupled layers. It could be stated that the
critical loads of plates with thick cores obtained with the use of the finite dif-
ference method are too high. Particularly, it is observed for plates with greater
Kirchhoff’s modulus (G2 = 15.82MPa) and thinner facings (h

′ = 0.0005m).
Generally, it could be determined that the presented numerical results show
sensitivity of analysed plates to their geometric and material parameters. He-
re, the thickness of the foam core has the main importance. For thinner cores,
the use of the simplifying condition of equal layer deflections in the solution
is possible, whereas for thicker cores this simplification may cause incorrect
results. It can be taken into consideration in the modeling of sandwich plates.
This fact was pointed out by Romanów (1995) who indicated the necessity of
implementing a hyperbolic form of deformation of plates with thicker cores.
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Ocena krytycznych obciążeń statycznych pierścieniowych płyt
trójwarstwowych o różnych grubościach rdzenia

Streszczenie

W pracy poddano ocenie wyniki obliczeń pierścieniowych płyt trójwarstwowych
z miękkim, piankowym rdzeniem o różnej grubości. Płyty obciążano równomiernie
rozłożonym ciśnieniem ściskającym wewnętrzny lub zewnętrzny obwód okładzin pły-
ty. Badanymi wynikami obliczeń są wartości krytycznych obciążeń statycznych płyt
i odpowiadające im postaci deformacji krytycznych. Analizie poddano płyty o syme-
trycznej strukturze poprzecznej i utwierdzonych przesuwnie krawędziach. Obliczenia
prowadzono dwoma metodami przybliżonymi: metodą różnic skończonych i meto-
dą elementów skończonych. Przedstawione w obu metodach rozwiązanie zagadnienia
stateczności statycznej dotyczy ogólnego problemu utraty stateczności płyty, w któ-
rym możliwe formy krytycznej deformacji określa liczba m-fal poprzecznych na jej
obwodzie. Szczegółowej analizie poddano płyty z rdzeniem traktowanym jako gru-
by. Oceniając wyniki, zwrócono uwagę na obserwowany znaczący spadek wartości
obciążeń krytycznych płyt właśnie z rdzeniem grubym. Spostrzeżenia te ujawniły wy-
niki obliczeń prowadzone metodą elementów skończonych modeli płyt różniących się
wprowadzeniem dodatkowego, upraszczającego warunku wiążącego warstwy płyty za-
łożeniem ich jednakowych ugięć. Założenie to należy do formuł opisujących globalny
stanu przemieszczeń płyty, której deformacja krytyczna ma postać globalną. Inne spo-
dziewane właśnie dla płyt z rdzeniem grubym formy utraty stateczności występują
dla ogólnego stanu przemieszczeń pozbawionego upraszczającego warunku równości
ugięć trzech warstw płyty. Wpływ tego warunku na wyniki krytyczne płyt zbadano
prowadząc obliczenia numeryczne modeli płyt w obu metodach. Obserwacja obszarów
dobrej zgodności oraz istotnych różnic wyników płyt odpowiednio z rdzeniem średniej
grubości i grubym jest zasadniczym efektem podjętej analizy, która w zagadnieniach
modelowania struktur płyt może mieć istotne znaczenie praktyczne.
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