
JOURNAL OF THEORETICAL

AND APPLIED MECHANICS

46, 2, pp. 269-290, Warsaw 2008

THE INFLUENCE OF MATERIAL PROPERTIES ON THE
Q-STRESS VALUE NEAR THE CRACK TIP FOR

ELASTIC-PLASTIC MATERIALS

Marcin Graba

Kielce University of Technology, Faculty of Mechatronics and Machine Design, Kielce, Poland

e-mail: mgraba@tu.kielce.pl

In the paper, the values of the Q-stress determined for various elastic-
plastic materials for single edge notched specimens in bending (SEN(B))
are presented. The influence of the yield strength, the work-hardening
exponent and the crack length on the Q-parameter is tested. The nume-
rical results are approximated by closed form formulas.
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1. Introduction

In 1968 J.W. Hutchinson (Hutchinson, 1968) published a fundamental work,
which characterized stress fields in front of a crack for the non-linear Ramberg-
Osgood (R-O) material in the form

σij = σ0
( J

ασ0ε0Inr

) 1

1+n

σ̃ij(θ, n) (1.1)

where r and θ are polar coordinates of the coordinate system located at
the crack tip, σij are components of the stress tensor, J is the J-integral,
n – R-O exponent, α – R-O constant, σ0 – yield stress, ε0 – strain related to
σ0 through ε0 = σ0/E. The functions σ̃ij(n, θ), In(n) must be found by solving
the fourth order non-linear homogenous differential equation independently
for the plane stress and plane strain (Hutchinson, 1968). Equation (1.1) is
commonly called the ”HRR solution”.
The HRR solution includes the first term of the infinite series only. The

numerical analysis showns that results obtained using the HRR solution are
different from the results obtained by the finite element method (FEM). To
eliminate this difference, it is necessary to use more terms in the HRR solution.
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Fig. 1. The crack opening stress distribution for elastic-plastic materials, obtained
using the HRR solution (own calculation); E = 206000MPa, n = 5, σ0 = 315MPa,

ν = 0.3, ε0 = 0.00153, θ = 0

Li and Wang (1985) using two terms in the Airy function obtained the
second term of the asymptotic expansion for the two materials described by
n = 3 and n = 10. Next, they compared their results with the HRR fields
and FEM results. Their analysis showed that using the two term solution to
describe the stress field near the crack tip brings closer analytical results to
the FEM results. Two term solution much better describes the stress field near
the crack tip, and the value of the second term, which may not be negligible
depending on the material properties and geometry of the specimen.

Fig. 2. A comparison of the FEM results and HRR solution for plane stress and
plane strain for a single edge notched specimen under bending (SEN(B)) (own
calculation); a/W = 0.5, W = 40mm, E = 206000MPa, n = 5, σ0 = 315MPa,

ν = 0.3, ε0 = 0.00153, θ = 0
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Yang et al. (1993) using the Airy function with the separate variables in
the infinite series form, proposed that the stress field near the crack tip may
be described by Eq. (1.2) in an infinite series form

σij
σ0
=
+∞∑

k=1

Akr
sk σ̃
(k)
ij (θ) (1.2)

where k is the number of series terms, Ak is the amplitude for the k-th series
term, r is the normalized distance from the crack tip, sk is the power exponent

for the k-th series term, and σ̃
(k)
ij is the ”stress” function.

When limited to three terms only, Eq. (1.2) may be written in the following
form

σij
σ0
= A1r

sσ̃
(1)
ij (θ) +A2r

tσ̃
(2)
ij (θ) +

A22
A1
r2t−sσ̃

(3)
ij (θ) (1.3)

where the σ̃
(k)
ij functions must be found by solving the fourth order non-

linear homogenous differential equation independently for the plane stress and
plane strain (Yang et al., 1993), s is the power exponent, which is identical
to one in the HRR solution (s may be calculated as s = −1/(n + 1)), t is
the power exponent for the second term of the asymptotic expansion, which
must be found numerically by solving the fourth order non-linear homogenous
differential equation independently for the plane stress and plane strain (Yang
et al., 1993), r is the normalized term of the asymptotic expansion, which
must be found numerically by solving the fourth order non-linear homogenous
differential equation independently for the plane stress and plane strain (Yang
et al., 1993), r is the normalized distance from the crack tip calculated as
r = r/(J/σ0), A1 is the amplitude of the first term of the infinite series
evaluated as A1 = 1/(αε0In)

n+1, and A2 is the amplitude of the second term,
which is calculated by fitting Eq. (1.3) to the numerical results of the stress
fields close to the crack tip.
Shih et al. (1993) proposed a simplified solution. They assumed that the

FEM results are exact and computed the difference between the numerical
and HRR results. They proposed that the stress field near the crack tip may
be described by the following equation

σij
σ0
=
( J

αε0σ0Inr

) 1

n+1

σ̃ij(θ, n) +Q
( r
J/σ0

)q
σ̂ij(θ, n) (1.4)

where σ̂ij(θ, n) are functions evaluated numerically, q is the power exponent,
whose value changes in the range (0, 0.071), and Q is a parameter, which is
the amplitude of the second term in the asymptotic solution.
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Fig. 3. The influence of the work hardening exponent on the power exponents

s(k) (a) and the ”stress” functions σ̃
(k)
ij (b) for three terms of the asymptotic

solution (own graphs based on results presented in Yang et al. (1993))

Fig. 4. J-Q trajectories for a centrally cracked plate under tension (CC(T)):
(a) plane stress; (b) plane strain (own calculation); W = 40mm, a/W = 0.5,

σ0 = 315MPa, ν = 0.3, E = 206000MPa, n = 5

O’Dowd and Shih (1991, 1992) tested the Q-parameter in the range
J/σ0 < r < 5J/σ0 near the crack tip. They showed that the Q-parameter
weakly depends on the crack tip distance in the range of the ±π/2 angle.
O’Dowd and Shih proposed only two terms to describe the stress field near
the crack tip

σij = (σij)HRR +Qσ0σ̂ij(θ) (1.5)
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Fig. 5. J-Q trajectories for a single edge notched specimen under bending (SEN(B)):
(a) plane stress; (b) plane strain (own calculation); W = 40mm, a/W = 0.5,

σ0 = 315MPa, ν = 0.3, E = 206000MPa, n = 5

Fig. 6. A comparison of J-Q trajectories (a) and Q = f(log[J/(aσ0)])
trajectories (b) for CC(T) and SEN(B) specimen (own calculation); W = 40mm,
a/W = 0.5, σ0 = 315MPa, ν = 0.3, E = 206000MPa, n = 5, r = 2J/σ0

To avoid the ambiguity during the calculation of the Q-stress, O’Dowd and
Shih suggested, where the Q-stress may be evaluated. It was assumed that the
Q-stress should be computed at r = 2J/σ0 in the θ = 0 direction. O’Dowd
and Shih postulated that for θ = 0 the function σ̂θθ(θ = 0) is equal to 1. That
is why the Q-stress may be calculated from the following relationship

Q =
(σθθ)FEM − (σθθ)HRR

σ0
for θ = 0 and

rσ0
J
= 2 (1.6)
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where (σθθ)FEM is the stress value calculated using FEM, and (σθθ)HRR is
the stress value evaluated form the HRR solution. During analysis, O’Dowd
and Shih showed that in the range of θ = ±π/4, the following relationships
take place: Qσ̂θθ ≈ Qσ̂rr, σ̂θθ/σ̂rr ≈ 1 and Qσ̂rθ ≈ 0 (because Qσ̂rθ ≪ Qσ̂θθ).
Thus, the Q-stress value determines the level of the hydrostatic stress. For the
plane stress, the Q-parameter is equal to zero, but for the plane strain, the
Q-parameter is, in most cases, smaller than zero.

2. Discussion about J-A2 and J-Q theory

To describe the stress field near the crack tip for elastic-plastic materials, the
HRR solution is most often used, Eq. (1.1). However, the results obtained are
usually overestimated and the analysis is conservative.

A lot of analyses, which were carried out in the nineties, proved that the
multi-terms description using three terms of the asymptotic solution is better
than O’Dowd’s approach. The A2 amplitude, which is used in the J-A2 theory
suggested by Yang et al. (1993) is nearly independent of the distance of its
determination in contrast to the Q-stress, which depends on the place where
it is calculated. But the J-A2 theory sometimes is very burdensome, because
an engineer must solve a fourth order nonlinear differential equation to deter-

mine the σ̃
(k)
ij function and the power exponent t. Next, the engineer using

FEM results calculates the A2 amplitude by fitting Eq. (1.3) to the numerical
results.

For using the O’Dowd approach, the engineer needs the Q-stress only
(calculated numerically). That is why the O’Dowd approach is easier and
more convenient to use in contrast to the J-A2 theory. The J-Q theory found
application in European Engineering Programs, like SINTAP or FITNET.
The Q-stress is applied for formulation of the fracture criterion and to the
assessment of the fracture toughness of the structural component. Thus the
O’Dowd theory has practical application in engineering issues.

Sometimes, the application of the J-Q theory may be limited, because
there is no value of the Q-stress for a given material and specimen. Using
any fracture criterion, for example proposed by O’Dowd (1995), or another
criterion, the engineer can estimate the fracture toughness quite fast, if the
Q-stress is known. The literature does not announce a Q-stress catalogue
and Q-stress valuea as a function of the external load, material properties or
geometry of the specimen. In some papers, the engineer may find J-Q graphs
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Fig. 7. The influence of the work-hardening exponent (a) and the yield strength (b)
on Q-stress values for CC(T) specimens (own calculation); W = 40mm, a/W = 0.5,

ν = 0.3, E = 206000MPa

for a certain group of materials. The best solution would be a catalogue of
J-Q graphs for materials characterized by various yield strengths and different
work-hardening exponents. Such a catalogue should take into consideration
the influence of the external load, kind of the specimen (SEN(B) specimen –
bending, CCT specimen – tension) and geometry of the specimen, too.

In the next part of this paper, values of the Q-stress will be determined
for various elastic-plastic materials for single edge notched specimens under
bending (SEN(B)). All results will be presented in a graphical form Q = f(J)
and Q = f(log[J/(aσ0)]). Next, the numerical results will be the approximated
by closed form formulas.

3. Details of numerical analysis

In the numerical analysis, the single edge notched specimens in bending
(SEN(B)) were used (Fig. 8). Dimensions of the specimens satisfy the ASTM
E 1820-05 standard requirements. Computations were performed for plane
strain using small strain option. The relative crack length was a a/W =
{0.05; 0.20; 0.50; 0.70} where a is a crack length and the width of specimens
W was equal to 40mm. The choice of the SEN(B) specimen was intentional,
because the SEN(B) specimens are used in the laboratory test in order to
determine the critical values of the J-integral, which may be treated as the
fracture toughness, if some conditions are satisfied.
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Fig. 8. A single edge notched specimen under bending (SEN(B))

The computations were performed using ADINA SYSTEM 8.3. Due to
symmetry, only a half of the specimen was modeled. The finite element mesh
was filled with 9-node plane strain elements. The size of the finite elements in
the radial direction was decreasing towards the crack tip, while in the angular
direction the size of each element was kept constant. The crack tip region was
modeled using 36 semicircles. The first of them was 20 times smaller than the
last one. It also means that the first finite element behind the crack tip is smal-
ler 2000 times than the width of the specimen. The crack tip was modeled as a
quarter of the arc whose radius was equal to rw = 5·10

−6m (0.000125W ). The
whole SEN(B) specimen was modeled using 323 finite elements and 1490 no-
des. An example of the finite element model for SEN(B) specimen is presented
in Figure 9.

Fig. 9. (a) The finite element model for the SEN(B) specimen; (b) the crack tip
model of the SEN(B) specimen; (c) the contour for calculation of the J-integral
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In FEM simulation, the deformation theory of plasticity and the von Mis-
ses yield criterion were adopted. In the model, the stress-strain curve was
approximated by the relation

ε

ε0
=

{
σ/σ0 for σ ¬ σ0

α(σ/σ0) for σ > σ0
(3.1)

where α = 1. The tensile properties of materials which were used in the nume-
rical analysis are presented below in Table 1. In FEM analysis, the calculations
were done for sixteen materials, which differed by the yield stress and the work
hardening exponent.
The J-integral were calculated using two methods. The first method, called

the ”virtual shift method”, uses the concept of the virtual crack growth to
compute the virtual energy change. The second method is based on the J-
integral definition

J =

∫

C

[
w dx2 − t

( ∂u
∂x1

)]
ds (3.2)

where w is the strain energy density, t is the stress vector acting on the
contour C drawn around the crack tip, u denotes the displacement vector
and ds is the infinitesimal segment of the contour C.
In the numerical analysis, 64 SEN(B) specimens were used, which differed

by the crack length (different a/W ) and material properties (different ratio
σ0/E and values of the power exponent n).

Table 1.Mechanical properties of the materials used in the numerical analysis

σ0 [MPa] E [MPa] ν ε0 = σ0/E α n σ̃θθ(θ = 0) In

315

206000 0.3

0.00153

1

3 1.94 5.51
500 0.00243 5 2.22 5.02
1000 0.00485 10 2.50 4.54
1500 0.00728 20 2.68 4.21

4. Numerical results

The analysis of the obtained results was made in the range J/σ0 < r < 6J/σ0
near the crack tip. The results showed that:

• the Q-stress decreases if the distance from the crack tip increases
(Fig. 10a);
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• if the external load increases, the Q-stress decreases and the differen-
ce between the Q-stress calculated in subsequent measurement points
increases (Fig. 10a);

• if the crack length decreases, then the Q-stress reaches a more negative
value for the same J-integral level (Fig. 10b).

Fig. 10. (a) ”The J-Q family curves” for SEN(B) specimen calculated at six
distances r; (b) ”The J-Q family curves” for SEN(B) specimen for different crack
lengths (plane strain); W = 40mm, E = 206000MPa, σ0 = 315MPa, n = 5

For the sake of the fact that the Q-parameter, which is used in the fracture
criterion and calculated at a distance equal to r = 2J/σ0, it is necessary to
notice that:

• if the yield stress increases, the Q-parameter increases too, and this
applies to all SEN(B) specimens with different crack lengths a/W ;

• for smaller yield stresses, the J-Q trajectories shape up much lower
and faster changes of the Q-parameter are observed if the external load
increases;

• comparing the J-Q trajectories for different values of σ0/E, one ob-
serves, that the biggest differences are characterized for materials with
small work-hardening exponents (n = 3 – strongly work-hardening ma-
terials) and the smallest for materials characterized by a large work-
hardening exponent (n = 20 – weakly work-hardening materials); if the
crack length increases, this difference somewhat increases too;
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• for smaller values of the work-hardening exponent n (e.g. n ¬ 5), the
Q-stress becomes more negative;

• if the yield stress decreases, the differences between the J-Q trajecto-
ries characterized for materials described by different work-hardening
exponents are bigger;

• for longs cracks, the Q-stress drops more rapidly than for short ones;
in the range of small external loads, the J-Q trajectories for specimens
with short cracks shape the lowest; if the external load increases, the J-Q
trajectories for specimens characterized by different a/W ratios intersect
each other; this detail is especially seen for materials characterized by
large σ0/E ratios (σ0/E = 0.00485 and σ0/E = 0.00728).

Fig. 11. The influence of: (a) the yield stress on J-Q trajectories; (b) the
work-hardening exponent on J-Q trajectories; (c) the crack length on J-Q
trajectories for SEN(B) specimens; W = 40mm, E = 206000MPa, ν = 0.3
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5. Approximation of numerical results

In the literature, mathematic formulas for calculation of the Q-stress taking
into consideration the level of the external load, material properties and geo-
metry of the specimen are not known in most of the cases. The presented in
the paper numerical computations provided the reader with the J-Q cata-
logue and universal formula (5.1) which allows one to calculate the Q-stress
and take into consideration all parameters influencing the Q-stress. All results
were presented in the Q = f(log[J/(aσ0)]) graphs. Next, all graphs were ap-
proximated by simple mathematical formulas, taking the material properties,
external load and specimen geometry into consideration. All the approxima-
tions were made for the results obtained at the distance r = 2J/σ0.

Fig. 12. The influence of the work-hardening exponent on Q = f(log[J/(aσ0)])
trajectories for SEN(B) specimen (W = 40mm, ν = 0.3, E = 206000MPa):
(a) a/W = 0.20, σ0 = 315MPa; (b) a/W = 0.50, σ0 = 1500MPa;

(c) a/W = 0.70, σ0 = 500MPa
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Each obtained trajectory Q = f(log[J/(aσ0)]) was approximated by a
third order polynomial in the form

Q(J, a, σ0) = A+B log
J

aσ0
+ C
(
log
J

aσ0

)2
+D
(
log
J

aσ0

)3
(5.1)

where the A, B, C, D coefficients depend on the work-hardening exponent n,
yield stress σ0 and crack length a/W . The rank of fitting formula (5.1) to
numerical results for the worst case was equal R2 = 0.990. All the coefficients
A, B, C and D are functions of the work-hardening exponent, and they may
be evaluated as

A,B,C,D = ai
(
ln
1

n

)3
+ bi
(
ln
1

n

)2
+ ci ln

1

n
+ di (5.2)

for i = 1, . . . , 4. In this case, the polynomial was fitted to the numerical results
with the accuracy R2 = (0.950-1.000). The obtained coefficients are functions
of the yield stress

(ak)
−1 = A+B

(σ0
E

)3
bk, ck, dk =

A+B ln σ0
E

1 +C ln σ0
E

(5.3)

In this case: R2 = (0.980-0.999). For different ratios a/W , which were not
included in the numerical analysis, the coefficients ak, bk, and dk may be eva-
luated using a linear or quadratic approximation. The results of approximation
using formulas (5.2) and (5.3) are not published in this paper.

Fig. 13. Fig. 13. Comparision of the numerical results and their approximation for
J-Q trajectories for SEN(B) specimens (W = 40mm, a/W = 0.50, ν = 0.3,

E = 206000MPa): (a) σ0 = {315, 500}MPa, n = {5, 10}; (b) σ0 = 1500MPa, n = 20
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Table 2. The coefficients of equation (5.1) for SEN(B) specimen with the
crack length a/W = 0.05

n A B C D R2

σ0 = 315MPa σ0/E = 0.00153

3 −2.91785 −3.54091 −2.49273 −0.65324 0.991

5 −2.49198 −2.41498 −1.44267 −0.30917 0.992

10 −2.13915 −1.87664 −1.27680 −0.34125 0.995

20 −1.66154 −0.70105 −0.70105 −0.07864 0.991

σ0 = 500MPa σ0/E = 0.00243

3 −2.60090 −3.13553 −2.15010 −0.52678 0.992

5 −2.49503 −2.87049 −1.99305 −0.49037 0.993

10 −1.97971 −1.54825 −0.93643 −0.21897 0.996

20 −1.72018 −0.94662 −0.54570 −0.14425 0.993

σ0 = 1000MPa σ0/E = 0.00485

3 −1.94316 −1.92526 −1.22276 −0.29192 0.996

5 −1.82250 −1.23157 −0.54551 −0.10531 0.993

10 −1.66826 −0.73998 −0.17472 −0.02837 0.99

20 −1.58000 −0.52871 −0.06815 −0.01236 0.99

σ0 = 1500MPa σ0/E = 0.00728

3 −1.72349 −1.72747 −1.20275 −0.31647 0.99

5 −1.66343 −0.96989 −0.34106 −0.05949 0.992

10 −1.63267 −0.73176 −0.14559 −0.01541 0.994

20 −1.54170 −0.42219 −0.06755 0.02001 0.992

Table 3. The coefficients of equation (5.1) for SEN(B) specimen with the
crack length a/W = 0.20

n A B C D R2

σ0 = 315MPa σ0/E = 0.00153

3 −3.9926 −5.22237 −3.04511 −0.63285 0.998

5 −2.09657 −1.59313 −0.71813 −0.14071 0.995

10 −1.84608 −1.42745 −0.72125 −0.15826 0.998

20 −1.4627 −0.91555 −0.46832 −0.11808 0.999

σ0 = 500MPa σ0/E = 0.00243

3 −3.1047 −3.42843 −1.70853 −0.30561 0.996

5 −2.34474 −2.10125 −0.94347 −0.16697 0.996

10 −1.69941 −0.98858 −0.28985 −0.04633 0.996
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20 −1.28801 −0.28564 0.117374 0.028002 0.993

σ0 = 1000MPa σ0/E = 0.00485

3 −2.47715 −2.74622 −1.33979 −0.23502 0.996

5 −2.20049 −2.00271 −0.86885 −0.14412 0.997

10 −1.75836 −1.15235 −0.33195 −0.04095 0.998

20 −1.48466 −0.63018 −0.00471 0.021371 0.998

σ0 = 1500MPa σ0/E = 0.00728

3 −2.33113 −2.45212 −1.19385 −0.20655 0.997

5 −2.15026 −2.03706 −0.91519 −0.15153 0.997

10 −1.87289 −1.46808 −0.54416 −0.07959 0.998

20 −1.33695 −0.67611 −0.10224 0.100436 0.999

Table 4. The coefficients of equation (5.1) for SEN(B) specimen with the
crack length a/W = 0.50

n A B C D R2

σ0 = 315MPa σ0/E = 0.00153

3 −5.66457 −5.8778 −2.22163 −0.28531 0.996

5 −3.84704 −3.65795 −1.3143 −0.1674 0.997

10 −2.55848 −1.89569 −0.49284 −0.04543 0.996

20 −1.57524 −0.4334 0.228869 0.067355 0.996

σ0 = 500MPa σ0/E = 0.00243

3 −6.5155 −7.35971 −2.96692 −0.40099 0.997

5 −4.77859 −5.10234 −1.98063 −0.26344 0.999

10 −2.77426 −2.24203 −0.62248 −0.05688 0.995

20 −1.55052 −0.45388 0.241521 0.076159 0.992

σ0 = 1000MPa σ0/E = 0.00485

3 −6.13566 −7.07014 −2.88461 −0.38886 0.998

5 −5.33059 −6.13258 −2.51146 −0.34355 0.999

10 −4.25404 −4.57013 −1.74088 −0.22273 0.998

20 −3.76093 −3.813 −1.34863 −0.15913 0.996

σ0 = 1500MPa σ0/E = 0.00728

3 −6.12 −7.29514 −3.09044 −0.4342 0.996

5 −5.66199 −6.78101 −2.88054 −0.40432 0.998

10 −4.96361 −5.78437 −2.38746 −0.32693 0.998

20 −4.84995 −5.59442 −2.26773 −0.30484 0.997
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Table 5. The coefficients of equation (5.1) for SEN(B) specimen with the
crack length a/W = 0.70

n A B C D R2

σ0 = 315MPa σ0/E = 0.00153

3 −16.3214 −19.749 −8.32577 −1.19313 0.995

5 −7.50229 −7.69853 −2.76341 −0.33713 0.994

10 −4.9541 −4.53575 −1.42694 −0.15244 0.996

20 −3.68993 −2.83418 −0.6574 −0.04004 0.997

σ0 = 500MPa σ0/E = 0.00243

3 −13.8302 −15.5698 −5.98127 −0.7642 0.994

5 −10.1979 −11.2564 −4.2635 −0.54169 0.996

10 −8.4831 −9.10651 −3.34215 −0.41403 0.997

20 −6.88802 −6.8907 −2.32203 −0.26282 0.997

σ0 = 1000MPa σ0/E = 0.00485

3 −12.7605 −14.4196 −5.54031 −0.70258 0.996

5 −10.4778 −11.7531 −4.48806 −0.56847 0.999

10 −9.63775 −10.7617 −4.07619 −0.51445 0.999

20 −9.57785 −10.6301 −3.98443 −0.49841 0.997

σ0 = 1500MPa σ0/E = 0.00728

3 −16.02 −20.18 −8.74 −1.27 0.997

5 −14.99 −18.85 −8.11 −1.16 0.996

10 −12.68 −15.38 −6.34 −0.87 0.998

20 −11.94 −14.17 −5.69 −0.76 0.998

6. Conclusions

In the paper, values of the Q-stress were determined for various elastic-plastic
materials for single edge notched specimens undergoing bending (SEN(B)).
The influence of the yield strength, the work-hardening exponent and the crack
length on the Q-parameter was tested. The numerical results were approxi-
mated by closed form formulas. The most important results are summarized
as follows:

• the Q-stress depends on geometry and the external load; different values
of the Q-stress are obtained for a centrally cracked plate under tension
(CC(T)) and different for SEN(B) specimens which are characterized by
the same material properties;
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• the Q-parameter is a function of material properties; its value depends
on the work-hardening exponent n and the yield stress σ0;

• if the crack length increases, the J-Q trajectories are characterized by
faster changes with the increasing external load.

Appendix A. Numerical results for the SEN(B) specimen in the
plane strain state with the crack length a/W = 0.05

Fig. 14. The influence of the yield stress on J-Q trajectories for SEN(B) specimens
with the crack length a/W = 0.05 for different power exponents in the R-O
relationship (W = 40mm, n = 3, ν = 0.3, E = 206000MPa):

(a) n = 3; (b) n = 5; (c) n = 10; (d) n = 20
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Appendix B. Numerical results for the SEN(B) specimen in the
plane strain state with the crack length a/W = 0.20

Fig. 15. The influence of the yield stress on J-Q trajectories for SEN(B) specimens
with the crack length a/W = 0.20 for different power exponents in the R-O
relationship (W = 40mm, n = 3, ν = 0.3, E = 206000MPa):

(a) n = 3; (b) n = 5; (c) n = 10; (d) n = 20
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Appendix C. Numerical results for the SEN(B) specimen in the
plane strain state with the crack length a/W = 0.50

Fig. 16. The influence of the yield stress on J-Q trajectories for SEN(B) specimens
with the crack length a/W = 0.50 for different power exponents in the R-O
relationship (W = 40mm, n = 3, ν = 0.3, E = 206000MPa):

(a) n = 3; (b) n = 5; (c) n = 10; (d) n = 20
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Appendix D. Numerical results for the SEN(B) specimen in the
plane strain state with the crack length a/W = 0.70

Fig. 17. The influence of the yield stress on J-Q trajectories for SEN(B) specimens
with the crack length a/W = 0.70 for different power exponents in the R-O
relationship (W = 40mm, n = 3, ν = 0.3, E = 206000MPa):

(a) n = 3; (b) n = 5; (c) n = 10; (d) n = 20
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Wpływ stałych materiałowych na rozkład naprężeń Q przed
wierzchołkiem pęknięcia w materiałach sprężysto-plastycznych

Streszczenie

W pracy przedstawione zostaną wartości naprężeń Q wyznaczone dla szeregu ma-
teriałów sprężysto-plastycznych dla próbek trójpunktowo zginanych (SEN(B)), któ-
re powszechnie wykorzystuje się do wyznaczania odporności na pękanie w warun-
kach laboratoryjnych. Omówiony zostanie wpływ granicy plastyczności i wykładnika
umocnienia na wartość naprężeń Q, a także wpływ długości pęknięcia. Wyniki ob-
liczeń numerycznych aproksymowano formułami analitycznymi. Rezultaty pracy sta-
nowią podręczny katalog krzywych J-Q, możliwy do wykorzystania w praktyce inży-
nierskiej.
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