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A survey as a short review of author’s research results in area of dynamics
of hybrid systems and analytical dynamics of discrete material particle sys-
tem containing creep elements described by fractional order derivatives, is
presented. Free vibrations of a multi-pendulum system intercoupled by stan-
dard light elements and different properties are considered. The correspon-
ding system of an ordinary fractional order as well as integro-differential
equations, described dynamics of the multi-pendulum system, are derived
and analytically solved. For the case of one pendulum and two pendulum
systems containing standard light creep elements with the stress-strain con-
stitutive relation expressed by a fractional order derivative, ordinary diffe-
rential equations are analytically solved. From the analytical solutions, for
the case of the homogeneous two-pendulum system, it is visible that free
vibrations under arbitrary initial conditions contain three modes, one pure
periodic and two aperiodic expressed by time series expansions. The obta-
ined analytical solution modes are numerically analysed and characteristic
vibration modes for different kinetic parameters are graphically presented.
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1. Introduction

Fast development of material science (Rzhanitsin, 1949; Savin and Ruschisky,
1976) and experimental mechanics as well as of methods of numerical analysis
led to the creation of different models of real material bodies (Enelund, 1996)
and methods for studying dynamics and processes which happen in them du-
ring the traveling of a disturbance through deformable bodies.
The interest in the study of coupled systems (Hedrih, 1999, 2003a, 2004b,c,

2005a,b, 2006a,b,e,f, 2007a,c) as new qualitative systems has grown exponen-
tially over the last few years because of the theoretical challenges involved
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in the investigation of such systems with hereditary elements (Goroško and
Hedrih, 2001, 2007a,b; Goroshko and Puchko, 1977) with stress-strain con-
stitutive relations expressed by integral forms as well as with creep elements
with the stress-strain constitutive relation described by fractional order de-
rivatives(Hedrih, 2002a,b, 2003b, 2004c, 2005c, 2006c; Hedrih and Filipovski,
2002).

In the References, monographs by Rzhanitsin (1949) and Savin and Ru-
schisky (1976) as well as by Goroško and Hedrih (2001, 2007a,b) and paper
by Goroshko and Puchko (1977), different approaches to creation of real body
models are given. In basic, these approaches contain physical discretization
of a body or mathematical discretisation from partial to ordinary differen-
tial equations. One such an approach is represented by a model of a discrete
system of material particles (Hedrih, 2001, 2003a, 2004b, 2006a), which are
connected by certain ties. The number of the particles then increased to create
a continuum, their motion and deformable wave propagation is described by
partial differential equations. And then, due to impossibility of solving them
analytically, an approximation method is used for that purpose. The book
by Enelund (1996) contains the same applications with elements of fractional
calculus in structural dynamics.

In the monograph by Gorošhko and Hedrih (2001), analytical dynamics
of discrete hereditary systems and corresponding solutions was first published
as an integral theory such kind of systems. In Goroško and Hedrih (2001,
2007a,b) and Goroshko and Puchko (1977) as well as in the cited monograph,
a standard light hereditary element is defined and used as a connecting or
coupling rheological element between the material particles of the system.

A series of References by Hedrih (2002b, 2006c, 2007b,e), Hedrih and Fili-
povski (2002) and [10] present numerous results of research on the properties
of vibrations of rods, plates, belts made of different materials. Also, in Hedrih
(1999, 2001, 2003a, 2004b, 2005a,b, 2006a,b,e,f, 2007a,c) a series of coupled
subsystems and hybrid systems with different material properties or different
properties of the standard light elements as discrete as well as distributed
coupling elements between deformable bodies, or discrete and continuum sub-
systems (see Hedrih, 2005a, 2006b) are investigated. In a series of the author’s
work (Hedrih, 2003b, 2005c, 2006c, 2007b,e), results of research on vibrations
of deformable bodies with creep properties described by the stress strain con-
stitutive relation expressed by a fractional order derivative, are presented.

All these engineering problems are, also, mathematical problems and are
described by partial differential equations with integral or fractional order
derivative terms which can be discretised into a problem of solving of a system
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of ordinary differential or integro-differential or fractional order differential
equations.

In the last decade, an interest to the applied fractional calculus for de-
scription of material properties rose. Papers by Enelund (1996), Gorenflo and
Mainardi (2000) are recommended as the primary mathematical literature
containing the basics of the fractional calculus.

Hedrih (2006a) studied modes of homogeneous chain signals for different
kinds of homogenous connections between material mass particles in the chain
and different chain boundary conditions. A finite number of coupled fractional
order differential equations of creep vibrations of connected multi-mass partic-
les into a homogeneous chain system has been derived. The mass particles were
connected by standard creeping light elements and the constitutive relations
of the stress-strain state were expressed through terms of the fractional order
derivatives. The analytical solution to the system of coupled fractional order
differential equations of the corresponding dynamical free creep processes was
obtained by using Laplace’s transform method and trigonometrical method
(see Rašković, 1965). By using inverse Laplace’s transform, time series func-
tions as particular mode components of the solution were found. By using
those component visualizations, analysis of the dynamical creep component
processes in mass particle displacements were done. Also, analysis and a com-
parison between signals in the corresponding homogeneous chains with ideal
elastic or visco-elastic standard light elements between the material particles
were pointed out.

2. Light standard elements

The basic elements of a discrete material system with interconnections be-
tween material particles as well as the mathematical multi-pendulum system
considered in this paper, are:

• Material particle with mass mk having one degree of freedom, defined
by the following independent and generalised angular coordinate ϕk, for
k = 1, 2, . . . , n.

• Light standard coupling element of negligible mass in the form of an
axially stressed rod without bending, having the ability to resist defor-
mation under static and dynamic conditions. The constitutive relation
between the restitution force P and elongation x can be written down in
the form fpsr(P, Ṗ , x, ẋ, x

α
t ,D,D

α
t , J, n, c, c̃, µ, α, cα, T, U, . . .) = 0, where
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D, Dαt and J are fractional order differential and integral operators (Go-
roško and Hedrih, 2001; Hedrih, 2006a), which find their justification in
experimental verifications of material behaviour (Goroško and Hedrih,
2001; Rzhanitsin, 1949; Savin and Ruschisky, 1976), while n, c, c̃, µ, cα,
α, . . . are material constants, which are also experimentally determined.

For every single standard coupling light element of negligible mass, we
shall define a specific stress-strain constitutive relation-law of dynamics. This
means that we will define the stress-strain constitutive relation as determinants
of forces and/or changes of forces with distances between two constrained-
coupled material particles and with changes of the distances in time, with
accuracy up to constants which depend on the accuracy of their determination
through an experiment.
The accuracy of those constants, forces and elongations would depend not

only on the nature of an object, but also on the knowledge of very complex
stress-strain relations to be dealt with (see Goroško and Hedrih, 2001; Hedrih,
2006a). In this paper, we shall use three such light standard constraint-coupling
elements, and they will be:

• Light standard ideally elastic coupling element for which the stress-strain
relation for the restitution force as a function of element axial elongation
is given by a linear relation of the form

P = −cy (2.1)

as well as given by a nonlinear relation of the form

P = −cy − ĉy3 (2.2)

where c is the rigidity coefficient or elasticity coefficient for the linear,
and ĉ = εχc for the nonlinear functional stress-strain constitutive rela-
tion between the force and rheological coordinate of axial deformation of
the standard elastic element. In a natural state, non-stressed by a force
and undeformed, the force and deformation of such an element are equal
to zero.

• Light standard hereditary constraint element for which the stress-strain
constitutive relation for the restitution force as a function of element
elongation (rheological coordinate) is given:

— in a differential form

DP = Cy or nhṖ (t) + P (t) = nhchy(t) + c̃hy(t) (2.3)
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where the following differential operators are introduced

D = nh
d

dt
+ 1 C = nhch

d

dt
+ c̃h (2.4)

and nh is the relaxation time and ch, c̃h are rigidity coefficients – mo-
mentary and prolonged.

— in an integral form

P (t) = ch
[
y(t)−

t∫

0

R(t− τ)y(τ) dτ
]

(2.5)

where

R(t− τ) =
ch − c̃h
nhch

exp
[
−
1

nn
(t− τ)

]
(2.6)

is the relaxation kernel (or resolvent).

— in an integral form

y(t) =
1

ch

[
P (t) +

t∫

0

K(t− τ)P (τ) dτ
]

(2.7)

where

K(t− τ) =
ch − c̃h
nhch

exp
[
−
c̃h
nhch
(t− τ)

]
(2.8)

is kernel of rheology (or retardation).

• Light standard creep coupling element for which the stress-strain con-
stitutive relation for the restitution force as a function of element elon-
gation (rheological coordinate) is given by a fractional order derivative
term (see Hedrih, 2006a) in the form

P (t) = −{c0x(t) + cαD
α
t [x(t)]} (2.9)

where Dαt [·] is the fractional order differential operator of the α-th de-
rivative with respect to time t in the following form

D
α
t [x(t)] =

dαx(t)

dtα
= x(α)(t) =

1

Γ
(1− α)

d

dt

t∫

0

x(τ)

(t− τ)α
dτ (2.10)

where c0, cα are rigidity coefficients – momentary and prolonged ones,
and α is a rational number between 0 and 1, 0 < α < 1, depending on
the material properties found experimentally.
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3. Multi-pendulum system with intercoupling by standard light

elements

In this paper, we shall define a discrete continuum mathematical pendulum
chain as a system of material particles intercoupled by the light standard co-
upling elements (elastic, hereditary or creep), presented in Figures 1 and 2,
and which are, in the natural state, on the defined interdistances (when the
coupling elements are unstressed and without prehistory as well as without
memory before the initial moment of the system motion).

The discrete continuum multi-pendulum chain system is an ideally elastic
chain if its material particles are interconnected by light standard ideally ela-
stic coupling elements with the stress-strain constitutive relation expressed by
(2.1) for the linear or (2.2) for the nonlinear case. The discrete continuum
multi-pendulum chain system is a standard hereditary chain if its material
particles are interconnected by light standard hereditary elements with the
stress-strain constitutive relation expressed by one of sets (2.3)-(2.8). The di-
screte continuum multi-pendulum chain system is a standard creep chain if
its material particles are interconnected by light standard creep elements with
the stress-strain constitutive relation expressed by (2.9) and (2.10).

We shall define a discrete homogeneous mathematical multi-pendulum chain
system as a system of discrete material particles, same masses, which can
rotate along corresponding circular arches with the same radius ℓ and centers
on the one horizontal line. All the system is in the vertical plane and in the
gravitational field and the material particles are intercoupled by the same type
of sets of the parallel standard light elements and on the same distance of the
corresponding fixed points of pendula.

The number of degrees of freedom of each of these multi-pendulum chains
is equal to the number of material particles in it since we accept the previously
defined character of the system.

Further, for a special rheolinear case, we introduce a hypotheses about ho-
mogeneity of the discrete continual chain, about small deformations of light
standard coupling elements and small displacements of the material particles.

Also, we introduce a hypothesis that the homogenous discrete continuum
chain, is in natural, non-stressed state, before the initial moment of motion,
i.e. that the light standard coupling elements do not have prehistory nor the
memory of the stress-strain state. With these hypotheses, we shall direct our
research to the dynamics of chain-like homogenous multi-pendulum systems.
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4. Thermo-rheological coupled multi-pendulum system

In Fig. 1, a thermo-rheological system containing a finite number of coupled
pendula is presented. We take into consideration the finite number of coupled
mathematical pendula presented in Fig. 1 as a system with material partic-
les mk with the length ℓk and with finite numbers (n) of degrees of freedom
defined by the generalized coordinates ϕk, k = 1, 2, . . . ,m, and the standard li-
ght thermo-visco-elastic elements thermo-modified by temperature Tk(t), and
the coefficient of thermo-dilatation cTk coupling the pendula at the distan-
ce ℓTk, parallelly coupled but temperature isolated, and with the standard
light nonlinear springs with coefficients of the linear and nonlinear rigidity
respectively denoted by ck, and ĉ = εχkck, where ε is a small parameter.

Fig. 1. System with four pendula interconnected by standard light thermo-modified
hereditary element and nonlinear springs

Now, we take into account that these standard light thermo-visco-
elastic elements, with natural lengths ℓ0k thermo-modified by the tempera-
ture Tk(t) are in a dynamical state, and that we do not neglect the thermo-
modification of the element strain. We can write that the thermo-dilatation is
∆ℓ0k = αTkTk(t)(ℓ0k + xk) and that the constitutive relation of the thermo-
elastic stress-strain state is expressed in the following form

Pher(k)(t) = −cT (k)[∆ℓ0(k) + ℓT (k)(ϕk+1 − ϕk)] =
(4.1)

= −cT (k)ℓT (k)(ϕk+1 − ϕk)[1 + αT (k)T(k)(t)]− cT (k)αT (k)ℓ0(k)T(k)(t)

and the forces of the nonlinear spring between pendula are in the following
form

Pnl(k)(t) = −c(k)[ℓc(k)(ϕk+1 − ϕk) + εχkℓ
3
c(k)(ϕk+1 − ϕk)

3] (4.2)

and the forces of damping are

Pd(k)(t) = −bkℓb(k)(ϕ̇k+1 − ϕ̇k) (4.3)
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For the light standard creep coupling element between two pendula, the stress-
strain relation for the restitution force as a function of the element elongation
is given by fractional order derivatives in the form

Pk.k+1(t) = −{c0k[ℓc(k)(ϕk+1(t)− ϕk(t))] + cαkD
α
t [ℓc(k)(ϕk+1(t)− ϕk(t))]} =

(4.4)

= −{c0kℓc(k)[ϕk+1(t)− ϕk(t)] + cαkℓc(k)〈D
α
t [ϕk+1(t)]− D

α
t [ϕk(t)]〉}

where Dαt [·] is the fractional order differential operator of the α-th derivati-
ve with respect to time t in form (2.10), c0k, cαk are rigidity coefficients –
momentary and prolonged ones, and αk is a rational number 0 < αk < 1.
For the light standard hereditary constraint element between two pendula,

the stress-strain relation for the restitution force as a function of the element
elongation is given by integral term in the form

Pher(k.k+1)(t) = chk
[
ℓc(k)[ϕk+1(t)−ϕk(t)]−

t∫

0

Rk(t−τ)ℓc(k)[ϕk+1(τ)−ϕk(τ)] dτ
]

(4.5)
where

Rk(t− τ) =
chk − c̃hk
nhkc

exp
[
−
1

nhk
(t− τ)

]
(4.6)

is the relaxation kernel (or resolvent), and where chk, c̃hk are momentary and
prolonged rigidity coefficients and nhk is the relaxation time of an element.

5. Governing equations of the multi-pendulum system – general

case

Now, we take into account that the pendula are intercoupled by parallel co-
upled sets of the standard light elements of different properties, as it was
presented in the previous part of this paper. Suppose that there are n pendu-
la, and in the equilibrium state the pendulum system is in the vertical position
as presented in Fig. 1, i.e. when all generalized coordinates are equal to zero,
ϕk,eq = 0.
The generalized forces corresponding to the generalized coordinates ϕk

between two pendula are

Qher(k)(t) = Pher(k,k+1)(t)ℓT (k) =

= −cT (k)ℓ
2
T (k)(ϕk+1 − ϕk)[1 + αT (k)T(k)(t)]− cT (k)αT (k)ℓT (k)ℓ0(k)T(k)(t)
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Qnl(k1)(t) = Pnl(k,k+1)(t)ℓc(k) = −c(k)ℓc(k)[ℓc(k)(ϕk+1 − ϕk) +

+εχkℓ
3
c(k)(ϕk+1 − ϕk)

3]

Qd(k)(t) = Pd(k,k+1)(t)ℓb(k) = −bkℓ
2
b(k)(ϕ̇k+1 − ϕ̇k) (5.1)

Qcr(k)(t) = Pcr(k.k+1)(t)ℓ0(k) =

= −ℓ20(k){c0k[ϕk+1(t)− ϕk(t)] + cαk〈D
α
t [ϕk+1(t)]− D

α
t [ϕk(t)]〉}

Qher(k.)(t) = Pher(k.k+1)(t)ℓh(k) = chkℓ
2
h(k)

[
[ϕk+1(t)− ϕk(t)] +

−

t∫

0

Rk(t− τ)[ϕk+1(τ)− ϕk(τ)] dτ
]

Qg,k =
∂Epϕn
∂ϕk

= mkgℓk sinϕk ≈ mkgℓk
(ϕk
1!
−
ϕ3k
3!
+
ϕ5k
5!
−
ϕ7k
7!
+
ϕ9k
9!
+ . . .

)

The system of governing differential equations of the thermo-rheological
coupled multi-pendulum system presented in Fig. 1, is in the following form

mkℓ
2
kϕ̈k = −cTk−1ℓ

2
Tk−1(ϕk − ϕk−1)[1 + αTk−1Tk−1(t)] +

−cTk−1αTk−1ℓ0l−1ℓTk−1Tk−1(t)− bk−1ℓ
2
bk−1(ϕ̇k − ϕ̇k−1) +

−mkgℓk
(ϕk
1!
−
ϕ3k
3!
+
ϕ5k
5!
−
ϕ7k
7!
+
ϕ9k
9!
+ . . .

)
+

−ck−1ℓck−1[ℓk−1(ϕk − ϕk−1) + εχk−1ℓ
3
ck−1(ϕk − ϕk−1)

3] +

+cTkℓ
2
Tk(ϕk+1 − ϕk)[1 + αTkTk(t)] + cTkαTkℓ0kℓTkTk(t) +

+bkℓ
2
bk(ϕ̇k+1 − ϕ̇k) + ckℓck[ℓck(ϕk+1 − ϕk) + εχkℓ

3
ck(ϕk+1 − ϕk)

3] +

+ℓc(k){c0kℓc(k)[ϕk+1(t)− ϕk(t)] + cαkℓc(k)〈D
α
t [ϕk+1(t)]− D

α
t [ϕk(t)]〉} +

−ℓc(k−1){c0k−1ℓc(k−1)[ϕk(t)− ϕk−1(t)] + (5.2)

+cαk−1ℓc(k−1)〈D
α
t [ϕk(t)]−D

α
t [ϕk−1(t)]〉}+chkℓc(k)

[
ℓc(k)[ϕk+1(t)− ϕk(t)] +

−

t∫

0

Rk(t− τ)ℓc(k)[ϕk+1(τ)− ϕk(τ)] dτ
]
+

−chk−1ℓc(k−1)
[
ℓc(k−1)[ϕk(t)− ϕk−1(t)] +

−

t∫

0

Rk=1(t− τ)ℓc(k−1)[ϕk(τ)− ϕk−1(τ)] dτ
]

where k = 1, 2, . . . , n, ϕ0 = 0, and ϕn+1 = 0.
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Fig. 2. System with ”chain” pendula interconnected by standard light
thermo-modified hereditary elements and creep elements

A secial case is a homogeneous multi-pendulum system shown in Fig. 2 for
all equal lengths ℓ and the same coupling sets with parallelly coupled standard
light elements between the pendula.

After introducing the following notations

ω20 =
c

m
ω20T =

cT
m

ω̃20 =
g

ℓ
γ = αTT0

2δ =
b

m
h0 =

αT ℓ0T0
ℓ

T̃ (t) =
1

T0
T (t) χ̈ = χℓ2

ω200 =
c0
m

ω20α =
cα
m

ω20h =
ch
m

the previous system of equations can be transformed into the following

ϕ̈1 + ω̃
2
0ϕ1 − ω

2
0(ϕ2 − ϕ1)− ω

2
00(ϕ2 − ϕ1)− ω

2
0T (ϕ2 − ϕ1)[1 + γT̃ (t)] +

−2δ(ϕ̇2 − ϕ̇1) = ω
2
0Th0T̃ (t)− ω̃

2
0

(
−
ϕ31
3!
+
ϕ51
5!
−
ϕ71
7!
+
ϕ91
9!
+ . . .

)
+

+εω20χ̃(ϕ2 − ϕ1)
3 + ω20α{D

α
t [ϕ2(t)− D

α
t [ϕ1(t)]} +

+ω20h

[
[ϕ2(t)− ϕ1(t)]−

t∫

0

R(t− τ)[ϕ2(τ)− ϕ1(τ)] dτ
]

. . .

ϕ̈k + ω̃
2
0ϕk + ω

2
0(ϕk − ϕk−1) + ω

2
00(ϕk − ϕk−1)− ω

2
00(ϕk+1 − ϕk) +

−ω20(ϕk+1 − ϕk) + ω
2
0T (ϕk − ϕk−1)[1 + γT̃ (t)] +

−ω20T (ϕk+1 − ϕk)[1 + γT̃ (t)] + 2δ(ϕ̇k − ϕ̇k−1)− 2δ(ϕ̇k+1 − ϕ̇k) =

= −ω20Th0T̃ (t) + ω
2
0Th0T̃ (t) + +ω̃

2
0

(ϕ3k
3!
−
ϕ5k
5!
+
ϕ7k
7!
−
ϕ9k
9!
+ . . .

)
+

−εω20χ̃(ϕk − ϕk−1)
3 + εω20χ̃(ϕk+1 − ϕk)

3−ω20α{D
α
t [ϕk(t)]−D

α
t [ϕk−1(t)]}+
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+ω20α{D
α
t [ϕk+1(t)]− D

α
t [ϕk(t)]} + (5.3)

+ω20hℓ
[
[ϕk+1(t)− ϕk(t)]−

t∫

0

R(t− τ)[ϕk+1(τ)− ϕk(τ)] dτ
]
+

−ω20h

[
[ϕk(t)− ϕk−1(t)]−

t∫

0

R(t− τ)[ϕk(τ)− ϕk−1(τ)] dτ
]

. . .

ϕ̈n + ω̃
2
0ϕn + ω

2
0(ϕn − ϕn−1) + ω

2
0T (ϕn − ϕn−1)[1 + γT̃ (t)] +

+2δ(ϕ̇n − ϕ̇n−1) = −ω
2
0Th0T̃ (t) + ω̃

2
0

(ϕ3n
3!
−
ϕ5n
5!
+
ϕ7n
7!
−
ϕ9n
9!
+ . . .

)
+

−εω20χ̃(ϕn − ϕn−1)
3 − ω20α{D

α
t [ϕn(t)]− D

α
t [ϕn−1(t)]}+

−ω20h

[
[ϕn(t)− ϕn−1(t)]−

t∫

0

R(t− τ)[ϕn(τ)− ϕm−1(τ)] dτ
]

The basic linear ordinary differential equations of the previous system for
the homogeneous case are in the following form

ϕ̈1 + (ω̃
2
0 + ω

2
0 + ω

2
00 + ω

2
0h + ω

2
0T )ϕ1 − (ω

2
0 + ω

2
00 + ω

2
0h + ω

2
0T )ϕ2 = 0

. . .

ϕ̈k − (ω
2
0 + ω

2
00 + ω

2
0h + ω

2
0T )ϕk−1 + (ω̃

2
0 + 2ω

2
0 + 2ω

2
00 + 2ω

2
0h + 2ω

2
0T )ϕk +

−(ω20 + ω
2
00 + ω

2
0h + ω

2
0T )ϕk+1 = 0 (5.4)

. . .

ϕ̈n − (ω
2
0 + ω

2
00 + ω

2
0h + ω

2
0T )ϕ+ (ω̃

2
0 + ω

2
0 + ω

2
00 + ω

2
0h + ω

2
0T )ϕn = 0

By introducing the following notations

ω20cT = (ω
2
0 + ω

2
00 + ω

2
0h + ω

2
0T ) u =

ω̃2 − ω̃20
ω̃20cT

(5.5)

formally for obtaining eigen amplitude vectors of previous system (5.4), it is
possible to write matrix equations (see Hedrih, 2004b, 2006a)

(C̃− uÃ)A =




1− u −1 0 0 0
−1 2− u −1 0 0
0 −1 2− u −1 0
0 0 −1 2− u −1
0 0 0 −1 1− u







A1
A2
A3
A4
A5



= 0 (5.6)
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and by the use of the trigonometrical method (see Rašković, 1965; Hedrih,
2006a), for a free homogeneous coupled pendulum system, one obtains the
eigen numbers in the form

us =
ω2s − ω̃

2
0

ω̃20cT
= 4 sin2

sπ

2n
s = 0, 1, 2, . . . , n − 1 (5.7)

with the eigen frequencies

ωs =

√
ω̃20 + 4(ω

2
0c + ω

2
0T ) sin

2 sπ

2n
s = 0, 1, 2, . . . , n− 1 (5.8)

For a three-pendulum system the eigen-frequencies are

ω2s = ω̃
2
0cTus + ω̃

2
0 =





ω̃20

ω̃20cT + ω̃
2
0

3ω̃20cT + ω̃
2
0

=





ω̃20

ω20T + ω
2
0 + ω̃

2
0 + ω

2
00 + ω

2
0h

3ω20T + 3ω
2
0c + 3ω

2
00 + 3ω

2
0h + ω̃

2
0

(5.9)
and the solution for a free three-pendulum system is in the form

ϕ1(t) = C1 cos(ω1t+ α1) + C2 cos(ω2t+ α2) + C3 cos(ω3t+ α3)

ϕ2(t) = C1 cos(ω1t+ α1)− 2C3 cos(ω3t+ α3) (5.10)

ϕ3(t) = C1 cos(ω1t+ α1)− C2 cos(ω2t+ α2) + C3 cos(ω3t+ α3)

where C1, C2, C3, α1, α2 and α3 are constants.

By the use of different methods of constants variation in the previous
solution to the linear basic system with equations (5.4) corresponding to the
obtained system of governing equations (5.3) with additional restrictions to
the system parameters, it is possible to obtain some partial approximation
of the solution. Also, it is possible to study different dynamical properties of
the system as well as some phenomena in the rheolinear, thermo-visco-elastic,
nonlinear, hereditary or creep properties of the multi-pendulum system defined
in our paper.

In the beginning, we consider solutions of the system with one (Fig. 3a),
and two-pendulum system (Fig. 3b) with only one simpler set of the parallelly
coupled standard light elements.
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Fig. 3. System with one pendulum coupled (a) and with two pendula intercoupled
(b) by standard light creep element

6. Analytical solution to governing equations of the pendulum

system for special cases

6.1. One pendulum oscillator

In the case of one pendulum (Fig. 3a), coupled of a fixed point by a
set of parallel standard light elements: nonlinear spring, hereditary, creep and
thermo-modified by temperature T (t), a differential equation of motion is
given in the following form

ϕ̈1 + (ω̃
2
0 + ω

2
0 + ω

2
00 + ω

2
0h)ϕ1 + ω

2
0T [1 + γT̃ (t)]ϕ1 + 2δϕ̇1 =

(6.1)

= ω20Th0T̃ (t) + ω̃
2
0

(ϕ31
3!

)
− εω20χ̃ϕ

3
1 − ω

2
0αD
α
t [ϕ1(t)] + ω

2
0h

t∫

0

R(t− τ)ϕ1(t) dτ

A solution to a separate case of the previous governing equation, can be ob-
tained through the following simpler tasks:
— Hereditary one pendulum oscillator (Fig. 3a) governed by

ϕ̈1 + (ω̃
2
0 + ω

2
0h)ϕ11 = ω

2
0h

t∫

0

R(t− τ)ϕ1(t) dτ (6.2)

where

R(t− τ) =
ch − c̃h
nc

exp
[
−
1

n
(t− τ)

]

which is analogous to the problem solved approximately, and the solution
is presented in Goroško and Hedrih (2001) and also in Goroško and Hedrih
(2007a,b).
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— Creep one pendulum oscillator (Fig. 3a) governed by an ordinary fractional-
order differential equation in the form

ϕ̈1 + (ω̃
2
0 + ω

2
00)ϕ1 = −ω

2
0αD
α
t [ϕ1(t)] (6.3)

In the case when α ∈ (0, 1), we solve previous ordinary fractional-order
differential equation (6.3) through Laplace’s transformations. After transfor-
ming previous ordinary fractional-order differential equation (6.3) with the
fractional-order derivative and having in mind that we introduced the nota-
tions L{ϕ1(t)} for Laplace’s transformations as well as

L

{dαϕ1(t)
dtα

}
= pαL{ϕ1(t)} −

dα−1ϕ1(t)

dtα−1

∣∣∣
t=0
= pαL{ϕ1(t)} (6.4)

and also having in mind that we accepted the hypothesis that the initial con-
ditions of the fractional order derivatives of the system are given through the
use of: dα−1ϕ1(t)/dt

α−1|t=0 = 0 and that

L

{d2ϕ1(t)
dt2

}
= p2L{ϕ1(t)} − [pϕ01 + ϕ̇01] (6.5)

where ϕ01 and ϕ̇01 are the initial conditions of the system we can write the
following solution to the equation with unknown Laplace’s transform

L{ϕ1(t)} =
pϕ01 + ϕ̇01

p2 + ω20αp
α + ω̃20 + ω

2
00

(6.6)

To obtain the inverse to the Laplace transform, we can use the result by
Gorenflo and Mainardi (2000) as well as by Hedrih (2006a). For that reason
and for the case when ω̃20 +ω

2
00 6= 0, we rewrite the previous expression in the

following form

L{ϕ1(t)} = (pϕ01 + ϕ̇01)
1

p2

[
1 +
ω20α
p2

(
pα +

ω̃20 + ω
2
00

ω20α

)]
−1
=

(6.7)

=
(
ϕ01 +

ϕ̇01
p

)1
p

[
1 +
ω20α
p2

(
pα +

ω̃20 + ω
2
00

ω20α

)]
−1

Then Laplace transform solution (5.7) can be expanded into series by the
following way

L{ϕ1(t)} =
(
ϕ01 +

ϕ̇01
p

)1
p

∞∑

k=0

(−1)kω2k0α
p2k

(
pα +

ω̃20 + ω
2
00

ω20α

)k
(6.8)
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or

L{ϕ1(t)} =
(
ϕ01 +

ϕ̇01
p

)1
p

∞∑

k=0

(−1)kω2k0α
p2k

k∑

j=0

(
k

j

)
pαjω

2(j−k)
0α

(ω̃20 + ω
2
00)
j

(6.9)

In (6.8), it is assumed that the expansion leads to convergent series. The
inverse Laplace transform of the previous transform of solution (6.9) in term-
by-term steps is based on the known theorem, and yields the following solution
to differential equation (6.3) of the time function in the following form of time
series

ϕ1(t) = L
−1
L{ϕ1(t)} =

= ϕ01

∞∑

k=0

(−1)kω2k0αt
2k
k∑

j=0

(
k

j

)
ω2j0αt

−αj

(ω̃20 + ω
2
00)
jΓ (2k + 1− αj)

+ (6.10)

+ϕ̇01

∞∑

k=0

(−1)kω2k0αt
2k+1

k∑

j=0

(
k

j

)
ω−2j0α t

−αj

(ω̃20 + ω
2
00)
jΓ (2k + 2− αj)

or

ϕ1(t) = L
−1
L{ϕ1(t)} =

∞∑

k=0

(−1)kω2k0αt
2k ·

(6.11)

·
k∑

j=0

(
k

j

)
ω2j0αt

−αj

(ω̃20 + ω
2
00)
j

[ ϕ01
Γ (2k + 1− αj)

+
ϕ̇01t

Γ (2k + 2− αj)

]

For two special cases of the solution (for α = 0 and α = 1), we have
classical conservative or nonconservative pendulum oscillators.
By using expression (6.10) obtained for the time solution ϕ1(t) with corre-

sponding particular solutions, we can conclude that the solution contains two
particular solutions in the following forms

T1(t) =
∞∑

k=0

(−1)kω2k0αt
2k
k∑

j=0

(
k

j

)
ω2j0αt

−αj

(ω̃20 + ω
2
00)
jΓ (2k + 1− αj)

(6.12)

T̃1(t) =
∞∑

k=0

(−1)kω2k0αt
2k+1

k∑

j=0

(
k

j

)
ω−2j0α t

−αj

(ω̃20 + ω
2
00)
jΓ (2k + 2− αj)

which are two vibration ”creeping” modes, T1(t, α) and T̃1(t, α), of the
fractional-order dynamical properties of the one-pendulum system. By using
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these particular solutions, we made a numerical experiment for characteristic
cases. The ratio of the pendulum creep system kinetic parameters, coefficient
of creeping standard light element with the constitutive relation expressed by
the fractional-order derivative and the results are presented in Figures 4 and 5.
It is visible that some types of modes are present as in the longitudinal vibra-
tions of the rod with changeable cross-sections and built by a creep material
with the stress strain constitutive relation expressed by the fractional-order
derivative (see Hedrih, 2004c, 2005c).

Fig. 4. Time function surfaces of T1(t, α), (6.12)1, for different kinetic and creep
parameters of the-one pendulum system; (a) for ω2

0α
/(ω̃2
0
+ ω2

00
) = 1,

(b) for ω2
0α
/(ω̃2
0
+ ω2

00
) = 1/16, (c) for ω2

0α
/(ω̃2
0
+ ω2

00
) = 1/9.

(d) for ω2
0α
/(ω̃2
0
+ ω2

00
) = 9

The time functions T1(t, α) and T̃1(t, α) are surfaces found for different pa-
rameters of kinetic and standard light creep elements in the space (T (t, α), t, α)
for the interval 0 ¬ α ¬ 1.

In Fig. 4, numerical simulations and graphical presentations of the parti-
cular solution mode T1(t, α), (6.12)1, of fractional-differential equation (6.3)
for different kinetic parameters are presented.

In Fig. 5, the particular solution T̃1(t, α), (6.12)2, of fractional-differential
equation (6.12)2 of the system for different kinetic parameters in the interval
0 ¬ α ¬ 1 are given.
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Fig. 5. Time function surfaces of T̃1(t, α), (6.12)2, for different kinetic and creep
parameters of the-one pendulum system; (a) for ω2

0α
/(ω̃2
0
+ ω2

00
) = 1,

(b) for ω2
0α
/(ω̃2
0
+ ω2

00
) = 1/16, (c) for ω2

0α
/(ω̃2
0
+ ω2

00
) = 1/9.

(d) for ω2
0α
/(ω̃2
0
+ ω2

00
) = 9

6.2. Creep double pendulum oscillator

Creep double pendulum oscillator (Fig. 3b), is governed by ordinary
fractional-order differential equations in the form

ϕ̈1 + ω̃
2
0ϕ1 − ω

2
00(ϕ2 − ϕ1) = ω

2
0α{D

α
t [ϕ2(t)]− D

α
t [ϕ1(t)]}

(6.13)

ϕ̈2 + ω̃
2
0ϕ2 + ω

2
00(ϕ2 − ϕ1) = −ω

2
0α{D

α
t [ϕ2(t)]− D

α
t [ϕ1(t)]}

An analogy with the result presented for the chain system in Hedrih
(2006a) is useful to obtain the solution. After applying Laplace’s transfor-
mations to previous equations (6.13) and having in mind that we introduced
the notations L{ϕk(t)}, k = 1, 2 as well as that

L

{dαϕk(t)
dtα

}
= pαL{ϕk(t)} −

dα−1ϕk(t)

dtα−1

∣∣∣
t=0
= pαL{ϕk(t)} k = 1, 2

(6.14)
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and also having in mind that we accepted the hypothesis that the ini-
tial conditions of the fractional-order derivatives of the system are given as
(dα−1ϕk(t)/dt

α−1)|t=0 = 0 as well that

L

{d2ϕk(t)
dt2

}
= p2L{ϕk(t)} − [pϕ0k + ϕ̇0k] k = 1, 2 (6.15)

where ϕ0k and ϕ̇0k, k = 1, 2 are the initial conditions of the double-pendulum
system, we can write the following system equations with unknown Laplace’s
transforms

(1 + v)L{ϕ1(t)} − L{ϕ2(t)} =
pϕ01 + ϕ̇01
ω20αp

α + ω200
= h1

(6.16)

−L{ϕ1(t)}+ (2 + v)L{ϕ2(t)} − L{ϕ3(t)} =
pϕ02 + ϕ̇02
ω20αp

α + ω200
= h2

we introduce

v =
p2 + ω̃20
ω20αp

α + ω200
(6.17)

The determinant of the previous system is

∆ =
(p2 + ω̃20 + 2ω

2
0αp
α + 2ω200)(p

2 + ω̃20)

(ω20αp
α + ω200)

2
(6.18)

Solutions to system equations (6.16) with respect to L{ϕk(t)}, k = 1, 2,
i.e. Laplace transforms of fractional-order differential equations (6.13) are in
the following forms

L{ϕ1(t)} =
(pϕ01+ ϕ̇01)(p

2+ ω20αp
α + ω̃20 + ω

2
00) + (pϕ02+ ϕ̇02)(ω

2
0αp
α + ω200)

(p2 + ω̃20 + 2ω
2
0αp
α + 2ω200)(p

2 + ω̃20)
(6.19)

L{ϕ2(t)} =
(pϕ02+ ϕ̇02)(p

2+ ω20αp
α + ω̃20 + ω

2
00) + (pϕ01+ ϕ̇01)(ω

2
0αp
α + ω200)

(p2 + ω̃20 + 2ω
2
0αp
α + 2ω200)(p

2 + ω̃20)

For special cases of the double-pendulum system initial conditions, when
at the initial moment the second pendulum is in the equilibrium position, the
solutions are

L{ϕ1(t)} =
(pϕ01 + ϕ̇01)(p

2 + ω20αp
α + ω̃20 + ω

2
00)

(p2 + ω̃20 + 2ω
2
0αp
α + 2ω200)(p

2 + ω̃20)
(6.20)

L{ϕ2(t)} =
(pϕ01 + ϕ̇01)(ω

2
0αp
α + ω200)

(p2 + ω̃20 + 2ω
2
0αp
α + 2ω200)(p

2 + ω̃20)
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Taking into account that the sum and difference between the solutions to
(6.16), the Laplace transforms of fractional-order differential equations (6.13)
are

L{ξ1(t)} = L{ϕ1(t) + ϕ2(t)} =
pϕ01 + ϕ̇01
p2 + ω̃20

+
pϕ02 + ϕ̇02
p2 + ω̃20 (6.21)

L{ξ2(t)} = L{ϕ1(t)− ϕ2(t)} =
(pϕ01 + ϕ̇01)− (pϕ02 + ϕ̇02)

p2 + ω̃20 + 2ω
2
0αp
α + 2ω200

The inverse Laplace transform to L{ξ1(t)} of the sum ϕ1(t) +ϕ2(t) of so-
lution (6.21)1 yields the following sum of solutions to the system of differential
equations (6.13)

ξ1(t) = ϕ1(t) + ϕ2(t) = L
−1
L{ϕ1(t) + ϕ2(t)} =

(6.22)

=
( ϕ̇01
ω̃0
+
ϕ̇02
ω̃0

)
sin(ω̃0t) + (ϕ01 + ϕ02) cos(ω̃0t)

The inverse Laplace transform to L{ξ2(t)} of the difference ϕ1(t) − ϕ2(t)
of solution (6.21)2 yields the following difference of solutions differential equ-
ations (6.13)

ξ2 = ϕ1(t)−ϕ2(t) = L
−1
L{ϕ1(t)−ϕ2(t)} = L

−1
{p(ϕ01 − ϕ02) + (ϕ̇01 − ϕ̇02)
p2 + 2ω20αp

α + ω̃20 + 2ω
2
00

}

(6.23)
We can see that the obtained Laplace transform L{ϕ1(t) − ϕ2(t)} is the

same as the Laplace transform of the solution for the case of one pendulum
with one creep standard light element expressed by (6.6), and then it is possible
to use previous expression (6.7) and expansions of series (6.8) and (6.9) as well
as (6.10) for obtaining the corresponding solution to the necessary modes for
the double-pendulum system by replacing the following parameters

ϕ01 → ϕ01 − ϕ02 ϕ̇01 → ϕ̇01 − ϕ̇02

ω20α → 2ω
2
0α ω̃20 + ω

2
00 → ω̃

2
0 + 2ω

2
00

In the case when ω̃20 + 2ω
2
00 6= 0, the Laplace transform can be expanded into

following series

L{ξ2} = L{ϕ1(t)− ϕ2(t)} =
(6.24)

=
(
ϕ01 − ϕ01 +

ϕ̇01 − ϕ̇02
p

)1
p

∞∑

k=0

(−1)k2kω2k0α
p2k

k∑

j=0

(
k

j

)
pαj2(j−k)ω

2(j−k)
0α

(ω̃20 + 2ω
2
00)
j
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In (6.24) it is assumed that the expansion leads to convergent series. The
inverse Laplace transform of the previous Laplace transform of solution (6.24)
in term-by-term steps is based on the known theorem, and yields the following
solution to differential equations (6.13) of the time function in the following
form of time series

ξ2(t) = L
−1
L{ϕ1(t)− ϕ2(t)} = (6.25)

= (ϕ01 − ϕ02)
∞∑

k=0

(−1)k2kω2k0αt
2k
k∑

j=0

(
k

j

)
2jω2j0αt

−αj

(ω̃20 + 2ω
2
00)
jΓ (2k + 1− αj)

+

+(ϕ̇01 − ϕ̇02)
∞∑

k=0

(−1)k2kω2k0αt
2k+1

k∑

j=0

(
k

j

)
2−jω−2j0α t

−αj

(ω̃20 + 2ω
2
00)
jΓ (2k + 2− αj)

For two special cases of the solution (for α = 0 and α = 1), we have
classical conservative or nonconservative (Hedrih, 2006d) pendulum oscillators,
respectively.
By using expression obtained for the time solution ξ2(t) with corresponding

particular solutions, we can conclude that the solution contains two particular
solutions in the following forms

T1(t) =
∞∑

k=0

(−1)k2kω2k0αt
2k
k∑

j=0

(
k

j

)
2jω2j0αt

−αj

(ω̃20 + 2ω
2
00)
jΓ (2k + 1− αj)

(6.26)

T̃1(t) =
∞∑

k=0

(−1)k2kω2k0αt
2k+1

k∑

j=0

(
k

j

)
2−jω−2j0α t

−αj

(ω̃20 + 2ω
2
00)
jΓ (2k + 2− αj)

which are two vibration ”creeping” modes, T1(t, α) and T̃1(t, α), of the frac-
tional one-pendulum system oscillations. By using these particular solutions,
we made a numerical experiment for characteristic cases. The ratio of the pen-
dulum creep system kinetic parameters, coefficient of creeping standard light
element with the constitutive relation expressed by the fractional order deri-
vative and the results are presented in Figures 4 and 5. It is visible that some
types of modes is present as in the longitudinal vibrations of the rod with
changeable cross-sections and built by a creep material with the stress strain
constitutive relation expressed by the fractional order derivative presented in
Hedrih and Filipovski (2002).
Time functions T1(t, α) and T̃1(t, α) are surfaces found for different kinetic

and standard light creep element parameters in the space (T (t, α), t, α) for the
interval 0 ¬ α ¬ 1.
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In Fig. 4, numerical simulations and graphical presentations of the particu-
lar solution mode T1(t, α) of fractional-differential equation (6.13) for different
system kinetic parameters are presented. In Fig. 5, the time particular solu-
tion mode, T̃1(t, α), of fractional-differential equation (6.13) of the system for
different system kinetic parameters in the interval 0 ¬ α ¬ 1 are shown.

Solution to the normal modes of the system of fractional-order differential
equations (6.13) are in the form

ξ1(t) = ϕ1(t) + ϕ2(t) = L
−1
L{ϕ1(t) + ϕ2(t)} =

=
( ϕ̇01
ω̃0
+
ϕ̇02
ω̃0

)
sin(ω̃0t) + (ϕ01 + ϕ02) cos(ω̃0t)

(6.27)

ξ2(t) = ϕ1(t)− ϕ2(t) =

=
∞∑

k=0

(−1)k2kω2k0αt
2k
k∑

j=0

(
k

j

)
2jω2j0αt

−αj

(ω̃20 + 2ω
2
00)
j

[ ϕ01 − ϕ02
Γ (2k + 1− αj)

+
(ϕ̇01 − ϕ̇02)t

Γ (2k + 2− αj)

]

Then the solutions to equations (6.13) are

ϕ1(t) =
1

2

[( ϕ̇01
ω̃0
+
ϕ̇02
ω̃0

)
sin(ω̃0t) + (ϕ01 + ϕ02) cos(ω̃0t)

]
+

+
1

2

∞∑

k=0

(−1)k2kω2k0αt
2k
k∑

j=0

(
k

j

)
2jω2j0αt

−αj

(ω̃20 + 2ω
2
00)
j

[ ϕ01 − ϕ02
Γ (2k + 1− αj)

+
(ϕ̇01 − ϕ̇02)t

Γ (2k + 2− αj)

]

(6.28)

ϕ2(t) =
1

2

[( ϕ̇01
ω̃0
+
ϕ̇02
ω̃0

)
sin(ω̃0t) + (ϕ01 + ϕ02) cos(ω̃0t)

]
+

−
1

2

∞∑

k=0

(−1)k2kω2k0αt
2k
k∑

j=0

(
k

j

)
2jω2j0αt

−αj

(ω̃20 + 2ω
2
00)
j

[ ϕ01 − ϕ02
Γ (2k + 1− αj)

+
(ϕ̇01 − ϕ̇02)t

Γ (2k + 2− αj)

]

6.3. Thermo-visco-elastic double pendulum oscillator excited by random

temperature

By using the results by Hedrih (2007e) presented at DSTA 2007, we can
add some discussion with respect to the mode of the thermo-visco-elastic
double-pendulum system with comparison to the one-pendulum system both
excited by random temperature applied to the thermo-elastic standard light
element.
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For the double-pendulum system, the governing rheolinear equations
expressed in terms of normal coordinates of the corresponding linear system
can be obtained in the following form

ξ̈1 + ω̃
2
0ξ1 = 0

(6.29)

ξ̈2 + ω̃
2
0ξ2 + 2ω

2
0ξ2 + 2ω

2
0T [1 + γT̃ (t)]ξ2 + 4δξ̇2 = −2ω

2
0Th0T̃ (t)

with two eigen-frequencies ω21,2 = ω̃
2
0 + ω

2
0 + ω

2
0T ∓ (ω

2
0 + ω

2
0T ) of the linear

system.

Fig. 6. (a) System with one free pendulum. (b) Thermo-rheological system; partial
oscillator 1

For the double pendulum system, the first equation of rheo-nonlinear sys-
tem (6.29) in the linearised form represents a pure partial harmonic oscillator
presented in Fig. 6a and 6b, with the eigen frequency ω21 = ω̃

2
0 = g/ℓ of

free one-mode vibrations. This linearised case is when both pendula oscillate
with the same frequency, ω̃20 = g/ℓ, as the decoupled pendula (single ma-
thematical pendula). Then, the standard light thermo-visco-elastic element
thermo-modified by temperature T (t) does not influence this normal coordi-
nate composed by sum ξ1 = ϕ1 + ϕ2. Along this normal (main) coordinate,
the oscillation in the linearised approximation is free, without temperature
influence. This is right for all cases of the multi-pendulum systems presented
in Fig. 6b.
For the double-pendulum system, the second equation of rheo-nonlinear

system (4.4), on the normal coordinate ξ2 = ϕ1 − ϕ2 in the linearised form
is the Mathieu-Hill equation, and represents mathematical description of the
thermo-rheological oscillator presented in Fig. 7a or 7c, with parallelly coupled
two light standard thermo-visco-elastic elements thermo-modified by the same
temperature T (t) and one linear elastic spring with rigidity c0 = mg/ℓ. For
the coordinate ξ2 = ϕ1−ϕ2, we can separate two main cases. For both cases,
we take into consideration the asymptotic approximation of the amplitude and
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Fig. 7. (a) System with one pendulum coupled by the standard light
visco-thermoelastic element. (b) System with two pendula intercoupled by the
standard light thermorheological element. (c) Thermo-rheological system; partial

oscillator 2

phase of the dynamic process on this coordinate ξ2 = ϕ1 − ϕ2 close around,

firstly, main resonance when Ω ≈ ω2 =
√
ω̃20 + 2(ω

2
0 + ω

2
0T ) and, secondly,

around the parametric resonance when Ω ≈ 0.5ω2 = 0.5
√
ω̃20 + 2(ω

2
0 + ω

2
0T ).

Then, we can conclude that along this coordinate under the corresponding
kinetic parameters, there can appear, firstly, regimes closest to the main reso-
nant state as well as one main resonant state, and secondly, regimes closest to
the parametric resonant state as well as one resonant state under the thermo-
visco-elastic temperature single frequency excitation. This second mode has
the same character as vibration of the one-pendulum system presented in
Fig. 7a. For details, see Hedrih (2007e).

7. Concluding remarks

We can conclude that between multi-pendulum systems and chain dynami-
cal systems there exists a mathematical analogy in descriptions as well as in
vibration phenomena depending on the character of standard light coupling
elements between pendula or, analogously, between material particles in the
chain. Also, there is a mathematical analogy between corresponding modes
in a multi-beam system or multi-plate systems with the corresponding cha-
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racter of a light distributed coupling layer between the beams or plates in
multi-deformable body systems.
The mathematical description leads to the same ordinary differential equ-

ations, or ordinary integro-differential or fractional-order differential equations
governing both analogous types of problems.
For a homogeneous sandwich multi-plate, or a multi-beam system, it is

possible to identify some analogies between with mechanical multi-material
particle chains and multi-pendulum systems with interconnections by standard
light elements of different properties.
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86-7181-054-2
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Dynamika układów wielowahadłowych z efektem pełzania opisanym

elementami ułamkowego rzędu

Streszczenie

W pracy zaprezentowano krótki przegląd rezultatów badań autora nad dynamiką
układów hybrydowych i dyskretnych, złożonych z punktów materialnych sprzęgnię-
tych standardowymi elementami odpowiadającymi za pełzanie w materiale i opisywa-
nych pochodną ułamkowego rzędu. Rozważono drgania swobodne układów wielowaha-
dłowych z elementami o różnych właściwościach zdefiniowanych równaniem pomiędzy
stanem naprężenia a odkształcenia. Wyprowadzone równania różniczkowo-całkowe
ułamkowego rzędu rozwiązano analitycznie. Przedstawiono szczegółowo przypadek
układu z pojedynczym wahadłem i układu dwuwahadłowego zawierającego elementy
pełzania opisane równaniem konstytutywnym stanu naprężenia i odkształcenia o rzę-
dzie ułamkowym. Na podstawie otrzymanych rozwiązań analitycznych zauważono, że
drgania swobodne wykazują charakter okresowy i nieokresowy, przy czym te ostatnie
mają dwa różne przebiegi (w tym przypadku rozwiązanie podano w postaci rozwinięć
w szeregi potęgowe). Wyniki badań teoretycznych i numerycznych różnego rodzaju
drgań przy zmiennych parametrach kinetycznych tych układów przedstawiono gra-
ficznie.
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