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We investigated the influence of elastic material compressibility on parameters of
the expanding spherical stress wave. The material compressibility is represented by
Poisson’s ratio v. The stress wave is generated by pressure created inside the sphe-
rical cavity. The isotropic elastic material surrounds this cavity. Analytical closed
form formulae determining the dynamical state of mechanical parameters (displace-
ment, particle velocity, strains, stresses, and material density) in the material have
been derived. These formulae were obtained for surge pressure p(t) = pp = const
inside the cavity. From analysis of these formulae it results that Poisson’s ratio v
substantially influences the course of material parameters in space and time. All
parameters intensively decrease in space together with increase of the Langrangian
coordinate 7. On the contrary, these parameters oscillate versus time around the-
ir static values. These oscillations decay with a lapse of time. We can mark out
two ranges of the parameter v values in which vibrations of the parameters are
damped with a different degree. Thus, a decrease in Poisson’s ratio in the range
v < 0.4 causes an intense decay of oscillation of parameters. On the other hand,
in the range 0.4 < v < 0.5, i.e. in quasi-compressible materials the damping of
parameters vibrations is very low. In the limiting case when v = 0.5, i.e. in the
incompressible material damping vanishes, and the parameters harmonically oscil-
late around their static values. The abnormal behaviour of the material occurs in
the range 0.4 < v < 0.5. In this case an insignificant increment of Poisson’s ratio
causes considerable an increase of the parameters vibration amplitude. The speci-
fic influence of Poisson’s ratio on the parameters of the expanding spherical stress
wave in elastic media is the main result of this paper. As we see it, this fact may
be the contribution supplementing the description of properties of the expanding
spherical stress wave in elastic media.
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1. Introduction

In some theoretical analyses of dynamics of liners driven by explosives, the
compressibility of their materials is neglected. On one hand, this assumption
makes analytical solution to many boundary value problems possible (Walters
and Zukas, 1989; Cole, 1948; Kaliski et al., 1992; Gurney, 1943, 1947; Taylor,
1961; Trebinski et al., 1988a,b, 1989a; Wlodarczyk and Zielenkiewicz, 2008).
On the other hand, this simplification in a real physical system neutralises the
wavy course of the process in this system. On the contrary, results of theore-
tical analyses (Lambour and Harley, 1965; Vidart et al., 1965; Knoepfel, 1970;
Trebinski et al., 1989b) and experimental studies (Gimenez et al., 1985; Deren-
towicz et al., 1984) show that wave phenomena have substantial quantitative
and qualitative influence on the driving process of solids.

Bearing in mind the results of these publications and the needs of explosion
mechanics, the influence of the elastic material compressibility on parameters
of the expanding spherical stress wave has been theoretically investigated in
this paper. The stress wave has been generated by pressure dynamically cre-
ated inside the spherical cavity. The isotropic linear-elastic material surrounds
this cavity. The material compressibility is represented by Poisson’s ratio v.

The paper consists of two parts. An analytical solution to the considered
problem and its introductory analysis are placed in the first part. In turn, the
vast quantitative and qualitative analysis of mechanical parameters (displace-
ment, particle velocity, strains, stress, and material density) of the expanding
spherical stress wave in the compressible isotropic linear-elastic material versus
the Lagrangian coordinate r and time t are presented in the second part.

The results of analysis presented in this paper can be used, among other
things, to research spherical ballistic casings (Wlodarczyk and Zielenkiewicz,
2008). From our point of view, the results of this analysis are a modest con-
tribution of knowledge to the theory of propagation of stress waves in solids.

2. Formulation of the problem

Propagation of the expanding spherical stress wave in an unbounded elastic
material is considered. The material is isotropic and compressible. The stress
wave has been generated by a time—dependent pressure created inside the
spherical cavity (Fig.1). The symbol ry placed in Fig.1 denotes the initial
radius of the cavity.
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Fig. 1. Physical scheme of the boundary value problem

Taking into account spherical symmetry of the problem, it can be consi-
dered as a one-dimensional boundary value problem. Independent variables
of the problem are the Langrangian coordinate r and time t. The states of
stress and strain in the material are represented by the following components:
o, — radial stresses, o, = 0y — circumferential stresses, ¢, — radial strain and
£, = g9 — circumferential (tangential) strains.

The rest of components of the stress and the strain tensors are equal to
zero in the considered coordinate system.

According to the linear elasticity theory (Nowacki, 1970), we have

ou u ou
57«—5 €§0—€9—; U—E (21)
and
ou U
or =2uer + Mep +264) = 2u+ Ner +2Xep, = 2u+ A) o= + 27—
or r
(2.2)
u ou
0o =2uc, + Aer +2e5) =2(n+ Nep + e = 2(u + )\); + )\E

where u is the radial displacement, v is the radial particle velocity, A and u
are Lame’s constants, namely

vE FE

A= T r ) P o+

(2.3)

In turn, the symbols E and v denote Young’s modulus and Poisson’s ratio,
respectively.
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For an element of the linear-elastic material, the equation of motion can
be written in the form
0’u 0o 2(0, — 0
oo = 220 2(or —0y) (2.4)
ot or r
where pg is the initial density of the material.
Through substitution of expressions (2.2) into Eq. (2.4) and simple trans-
formations, we obtain

Pu 0% orlO0u u
—a— + 20 (== — — 2.
oz~ ¢ o Tea (r or 7‘2) (25)
where
1—-v E
2 2 2
S ST T ) R (26)

The quantity a denotes the velocity of stress wave propagation.
Equation (2.5) has been solved for the following boundary conditions

u(r,t) =0 for r=ro+at (2.7)
and
ou(r,t) u(r,t) B
oo, 1) = { (2u+ N) 5 + 2\ = —p(t) for r=rg p(t)>0
or(r,t) =0 for r=o00
(2.8)

According to the mass conservation law, the equation of medium continuity
can be written as follows

U 2 ou
(1+5) (1+5,) = p(/:,)t) (29)

where p(r,t) is current density of the material.
For small strains, Eq. (2.9) can be transformed into the form

ou u o po
1+ —+4+2—=— 2.10
+ or + r p ( )

The structure of the analytical solution to the problem formulated above
has been presented below.
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3. General analytical solution to the problem

The general solution of Eq. (2.5) has the following form (Achenbach, 1975;
Broberg, 1956; Graff, 1975; Hopkins, 1960; Kaliski et al., 1992)
O(r—ro—at) o(r—ro—at)

u(r,t) = . — - (3.1)

where the symbol ¢’ denotes derivative of the function ¢ with respect to its
argument.

For p(00) # oo and ¢'(00) # oo solution (3.1) fulfils also boundary con-
dition (2.8).

Boundary condition (2.7) and solution (3.1) yield

¢'(0) = ¢(0) =0 (3.2)

where r — rg — at = 0 is the equation of the wave front propagating from the
cavity (Fig.1).

The numerical values of the independent variables r and ¢ are contained
within the intervals

r—7To

ro ST < 00 P (3.3)
Expression (3.1) and condition (2.7); yield
2h 1 (14+v)(1-2v) xo
1 / _ 40
©"(z0) — 2h¢' (z0) + r—ow(wo) =-3 T Top( » ) (3.4)
where Lo 1
h = "2 >0 xo = —at (3.5)
1—vry

Straightforward integration of Eq. (3.4) together with initial conditions
(3.2) results in

xo
(1+v)v1—-2v 2/ Y =20\ hy ..
— — d 3.6
T 7’00 p( - )& sin(wy) dy (3.6)

p(x0) =

where
_V1I=2v
(I —=v)ro
The function ¢ and its derivatives ¢’ and ¢” uniquely determine all pa-
rameters of the considered problem.
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If the spherical cavity surface is loaded by the pressure p = py = const
created in a statical way, then Eq. (2.5) can be written in the form

d?ug (1 dug us) _0

a2 o T (37)
with boundary conditions
dug Ug
or(ro) = (2p+A) +2)0— = —py po >0
dr r=ro To
(3.8)
or(00) =0
The general solution to Eq. (3.7) has the form
D
us(r) = Cr + 2 (3.9)

From relationships (2.3), boundary conditions (3.8) and solution (3.9) it
follows that C' =0, and D = (1 + v)rdpo/(2E).

Finally, the parameters determining the statical state of the material are
defined by the formulae

us(r) = 1 —12_ V%ro(%oy
() = (1 )2 (1) cslr) = 21 o)

o) = -m(72) relr) = B (7)

4. Particular solution to the problem for surge pressure inside
the cavity

Integration of Eq.(3.6) for p(t) = po = const and differentiation of the func-
tion ¢(x) yield

o(x) = 1 ; v 3p0 [1 + V1 = 2veh® sin(wz) — " cos(wz)]
O (x)=—-1+v)V1-— 21/7‘(2]%ehm sin(wz) (4.1)
o'(z) = — (1+ ]I)Ely_ 2v) To%ehx

[V1—2vsin(wz) + cos(wx)]
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where

_@(r 1_¢ )

(1+v)(1—2v

1—-2v < r 1—v aot)
hx = ——1- —
1—v \ro (1+v)(1—2v) r
In order to simplify the quantitative analysis of the stress wave parameters,
the following dimensionless quantities have been introduced

(4.2)

T - aot _u
1 T g
Ug v P
U = — V = — = —
’ 70 ao Po (4.3)
Oy Ors Oy ’
Sr - rs — Sgp -
Po Po Po
g Po
S, = —22 P==
T po E

The dimensionless variables ¢ and 7, according to relationships (3.3), (2.6)
and (4.3) are contained within the intervals

l<e<oo n>\/<””)“‘2”)<s—1> (4.4)

1—v
The above-mentioned formulae determining the stress wave parameters,

expressed by dimensionless quantities (4.3), can be written as follows

Ul = = {1 = [VI=20(26 = 1)sin(wz) + cos(wa)le")

V(fﬂ?)zg{{(l_Q Lty —V1—-v2= }Smw:r

& 1—-v
+\/(1 il q)ily_ 2v) cos(w:r)}ehw
e (&n)=—-1+v)P { {\/1—2l/(ﬂl—21 )Sln(wl‘)—l—
e 3 v e'a
1 1-201 N
—(? T g) cos(wx)}eh }
1+v P . hx
ep(&,m) = 5 5—3{1 — [V1—=2v(26 — 1) sin(wz) + cos(wx)]e } (4.5)
R(E.m) = 1

1+ e.(€m) + 2e,(&,m)
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S (6m) = —533{1 b (€= D)WVT=20(€ — 1) sin(wa) + (€ + 1) cos(wa)]e"}

Se(&,m) = 2—23{1 + {M(—lz_—yyg —2£+ 1) sin(wz) +

—( 2 £ + 1) cos(w:n)}ehx}

1—v
where
Vv1-—2v 1 1-—2v 1-—2v
wr= o) m 0y = (6= 1)~y [
(4.6)

On the cavity surface, i.e. for £ = 1, from these formulae we obtain

U(1,n) = 1;Vp[1 — mexp (—H%n) sin(—\/ll__yzn—ka)}

1—-2v 1
V(l,n) =+v1- I/2PeXp (- mn) sm(ﬁn + Oév)
202 [1—2v \ . 1
er(1,m) = —(1+ I/)P[l —\[ T, &P (— mn) Sln(—mﬁ + a)}
530(1777) = U(lm) (4.7)
2 1—-2v
R(1,m) = [1 —(1+v)(1-2v) = VPeXp (—Umn> .
. 1 -
.s1n(— mn + a)
Sr(1,m) = =1 — boundary condition
1 v+1 1-2v . 1
Sell) =5 = A=) P <_ \ m") sin - il " @)
where
t ! ¢ Loz (4.8)
anq = —— anqy = —— .
Vi—2v v v

In the limiting case when v = 0.5, i.e. for an incompressible material,
formulae (4.6) and (4.8) yield

Wwr = ——— hr =0 o= — ay =0 4.9
\/377 |4 ( )
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In this case from formulae (4.5) we obtain

3

2
Ulen = 1Pe (1—008%?7)
V3 1 .2
V(En) = 5 P? smﬁn
er(&,m) = ;Pg—lg (1 — Cos %7])
3.1 2
eo(&,m) = 4P£3 (1 cos %n) (4.10)
1 , 2
S(Em) = — gz |1+ (€~ 1 cos

Sel6.m) = 51— (€2 + 1) cos o]

The expressions analogous to formulae (4.10) have been obtained for a
spherical casing in Wlodarczyk and Zielenkiewicz (2008), namely

35 g1 2 f+1

U = 1P|t eos (51 + )]

3
V(g,n):§Pﬁf_1 1+5;1§12 m(% 1+5;21n>

3
5@(5,17)_%Pﬁfilé[l—cos<%”1+%n>]
R n) =1 (4.11)
Sr(€,m) —531 1{(?)3—1+
_[(f) (ﬁ2+ﬁ+1)(§ 1)—1}cos<\/_ 1+ﬁ+1 >}

B

Se(&sm) = ﬁ{Q + (2)3 +

—[(%)3 +2(82 +8+1)(F -

MQ
—
SN~—
_l’_
=S
(@]
]
»n
.
=
_|_
@
R+
~

=
N——
—



136 E. WLODARCZYK, M. ZIELENKIEWICZ

where 3 = ri/rg. The symbols r; and rg denote the outer and inner radii of
the casing, respectively.

From the analysis of formulae (4.10) and (4.11) it follows that by their
means, for § > 5, we obtain comparable numerical results. The differences are
smaller than 1%.

5. Introductory analysis of the problem

We consider parameters of the stress wave which has been created by surge
pressure p(t) = pg = const inside the spherical cavity. From introductory ana-
lysis of the formulae derived above it results that all parameters of the stress
wave intensively decrease in space together with an increase of the distance
from the centre of the system. On the contrary, these parameters oscillate ver-
sus time around their static values in the respective spherical sections of the
medium.

Exemplary courses of the relative displacement of the cavity surface,
U(1,n)/P, versus the dimensionless time, 1 = agt/ro, for a few values of
Poisson’s ratio v are depicted in Fig. 2. It is well known that the quantity v
represents compressibility of the medium. As it can be seen, the parameter v
substantially influences the course of function U(1,7)/P versus 7.

1.50 =05
>~ =0.4999
s 1.25F |
= v=0.499
= ‘

v=0.49

0.75F

0.50

0.25

Fig. 2. Calculated relative displacement of the cavity surface U(1,7n)/P versus
dimensionless time 7 for selected values of Poisson’s ratio v



INFLUENCE OF ELASTIC MATERIAL COMPRESSIBILITY... 137

We can mark out two ranges of the values v in which vibration of the cavity
surface is damped with a different degree. Thus, a decrease of the parameter v
in the range v < 0.4 causes an intense decay of the cavity surface vibration.
For these numerical values v, the displacement of the cavity surface attains its
statical value, i.e. Us/P = (14v)/2, during one cycle of the vibration (Fig. 2).
On the other hand, in the range 0.4 < v < 0.5, i.e. in quasi-compressible
media the vibration damping is very low. In the limiting case, when
v = 0.5, i.e. in the incompressible medium, the damping vanishes and the
cavity surface harmonically vibrates around its static position Us/P = 0.75
with the constant amplitude Ay = 0.75 (Fig. 2).

It is necessary to take into account abnormal behaviour of the materials
in the range 0.4 < v < 0.5. In this case, an insignificant increment of the
parameter v causes a considerable increase of the vibration amplitude of the
cavity surface (Fig.3). For example, an increment of the Poisson’s ratio by
Av = 0.5 — 0.4 = 0.1 causes a variation of the relative displacement of the
cavity surface by AU/P =1.5—0.7=0.8.

U(l,m)/P

25 0.1

Fig. 3. Calculated relative displacement of the cavity surface U(1,7n)/P versus
dimensionless time 7 and Poisson’s ratio v

The analysis presented above applies to motion of the cavity surface £ = 1.
Respective spherical sections of the material for £ > 1 displace in an analogous
way. The displacements of these sections are adequately reduced (Fig. 4).

The material density changes insignificantly in both ranges of Poisson’s
ratio (Fig.5). The maximal increment of the relative density AR is smaller
than 0.2%. From presented analysis it follows that the considered material
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Fig. 4. Calculated relative displacement U(&,n)/P versus dimensionless variables &
and 7 for Poisson’s ratio v = 0.3
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Fig. 5. Calculated relative density R versus dimensionless time 7 for £ =1 and
selected values of Poisson’s ratio v

is compressible even though its density changes very little. As it is known,
the compressibility measure of a linear-elastic material is Poisson’s ratio. The
density change is not a measure of the material compressibility.

The phenomenon of specific influence of Poisson’s ratio v on the space r
and time t variability of parameters of the spherical stress wave expanding in
elastic media presented above is the main result of this paper. As we see it,
this paper may be a contribution supplementing the description of properties
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of the spherical stress wave expanding in elastic media and has important
significance for technical problems. According to the author’s knowledge, this
phenomenon has not been described in the available literature yet.

The vast quantitative and qualitative analysis of the mechanical parame-
ters (displacement, particle velocity, strains, stresses and material density) of
the expanding spherical stress wave in the compressible isotropic elastic mate-
rial versus the Langrangian coordinate r and time is presented in the second
part.
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Teoretyczna analiza wplywu $cisliwosci oSrodka sprezystego na
parametry ekspandujacej kulistej fali naprezenia. I. Analityczne
rozwigzanie problemu

Streszczenie

Zbadano wplyw $cisliwo$ci materiatu, reprezentowanej przez wspotczynnik Po-
issona v, na parametry ekspandujacej kulistej fali naprezen, wywolanej ciSnieniem
wewnatrz kulistej kawerny w nieskonczonym izotropowym osrodku sprezystym. Wy-
prowadzono zamkniete wzory okreslajace dynamiczny stan mechanicznych parame-
tréw (przemieszczenia, predkodei przemieszezenia, odksztalcenia, naprezenia oraz ge-
sto$ci materialu) w oérodku dla stalego cisnienia p(t) = pg = const przylozonego
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w spos6b nagly. Z analizy tych wzoréw wynika, ze wspolczynnik Poissona v wplywa
zasadniczo na przebiegi tych parametréw w czasie i przestrzeni. Wszystkie parametry
maleja intensywnie wraz ze wzrostem wspolrzednej Lagrange’a r. Z drugiej strony,
parametry te oscyluja w czasie wokot ich wartosci statycznych. Oscylacje te z cza-
sem zanikaja. Mozemy wyrézni¢ dwa przedzialy wartosci parametru v, w ktorych
tlumienie oscylacji zachodzi z rézna intensywnoscia. Tak wiec dla v < 0.4 tlumienie
jest bardzo intensywne. Natomiast w przedziale 0.4 < v < 0.5, tzn. w materiatach
quasi-$cidliwych, poziom tlumienia jest bardzo niski. W przypadku granicznym dla
v = 0.5, tzn. dla materialéw niescisliwych, ttumienie zanika i parametry mechaniczne
oscyluja wokoét ich wartosci statycznych. Ponadto w przedziale 0.4 < v < 0.5 mozna
zaobserwowa¢ anormalne zachowanie materiatu. Niewielki przyrost wartosci wspoét-
czynnika Poissona skutkuje znaczacym wzrostem amplitudy drgan parametréw. Opis
szczegblnego wplywu wspodlezynnika Poissona na parametry ekspandujacej kulistej
fali naprezenia jest glownym rezultatem niniejszej pracy. Wedlug autoréw moze ona
by¢ uzupelnieniem opisu wlasciwosci ekspandujacej kulistej fali naprezen w osrodku
sprezystym.
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