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In the paper, a new approach to description of the Timoshenko beam
free and forced vibrations by a single equation is proposed. The solution
to such an equation is a function of vibration amplitudes. The boundary
conditions corresponding to such a description of the beam vibration are
also given.
It was proved that the form of solution to the differential equation de-
pends on the vibration frequency. The change of the solution form occurs
when the frequency crosses a specific value ω =

√
GkA/(ρI).

The correctness of proposed description was checked through the analysis
of free vibration frequencies and amplitudes of forced vibrations with
different boundary conditions as well as comparison with the results of
finite element analysis.
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1. Introduction

Beam vibrations described by the Timoshenko model have been studied over
the years by many authors (Stephen and Puchegger, 1982; Kaliski, 1992; Zhu
et al., 2006; Si et al., 2007). This has been always a description through a
system of second order differential equations, in which the vibration amplitude
and the angle due to pure bending were the searched functions. Boundary
conditions related to the initial-boundary value problem under consideration
were described by a proper differential equation of both or only one of those
functions. In the book Kaliski (1992), the free vibration equation is written in
the form of a single equation depending only on a single function – vibration
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amplitude. However, there is a remark that such a description concerns only
a simply supported beam. This remark arises from the fact that in the case
of the simply supported beam the boundary conditions are described by the
same differential equations as in the case of the Euler-Bernoulli beam.

In this paper, a method to derive a single differential equation of the fourth
order describing free and forced vibrations of a Timoshenko beam is given.
In addition, the equations formed during this derivation serve to define the
boundary condition equations.

It was also shown that the solution form of the vibration differential equ-
ation depends on the examined vibration frequency. The change of the solution
form occurs when the frequency crosses a specific value. This value is known
from literature as the cut-off frequency (Stephen and Puchegger, 2006) or
critical one (Chan et al., 2002).
The correctness of such a description for the Timoshenko beam vibrations

was checked through the analysis of free vibration frequencies with different
boundary conditions and amplitudes of vibrations excited by a harmonic force
and through comparison with the results of finite element analysis.
Construction of the dynamic Green functions was proposed to solve the

problem of forced vibration amplitudes of the beam, excited by an arbitrary
function of time t and applied to a beam in an arbitrary way, as a function
of the spatial coordinate x. This is the function of beam vibration amplitudes
forced by the harmonic unit force. The methods of determining this function,
described in literature (Kukla, 1997; Lueschen et al., 1996), consist in defining
the Green matrix. This is necessary for description of the beam vibration by
a system of two equations.
The single-equation description of vibrations substantially facilitates deve-

loping the inverse models, which (for the Euler-Bernoulli beam) are used by
the present author for diagnostic (Majkut, 2004, 2005a,b, 2006) and structural
modification (Majkut, 2008; Majkut and Michalczyk, 2002).

2. Equations of vibration of the Timoshenko beam

The Timoshenko model is an extension of the Euler-Bernoulli model by taking
into account two additional effects: shearing force effect and rotary motion
effect.

In any beam except one subject to pure bending only, a deflection due
to the shear stress occurs. The exact solution to the beam vibration problem
requires this deflection to be considered. So, the angle ∂y(x, t)/∂x between
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the beam axis and x axis is a sum of the angle Θ(x, t) due to pure bending
and the shear angle γ(x, t) i.e.: ∂y(x, t)/∂x = Θ(x, t) + γ(x, t).

Another factor that affects the lateral vibration of the beam, neglected
in Euler-Bernoulli’s model, is the fact that each section of the beam rotates
slightly in addition to its lateral motion when the beam deflects. The influence
of the beam section rotation is taken into account through the moment of
inertia, which modifies the equation of moments acting on an infinitesimal
beam element: dMB(x, t) = −Iρ∂2Θ(x, t)/∂t2dx, where: ρ is density of the
beam material, I – the second moment of area.

By applying d’Alembert’s principle, the system of coupled differential equ-
ations for transverse vibration of the uniform Timoshenko beam with a con-
stant cross section is given by

−∂Q(x, t)
∂x

+ ρA
∂2y(x, t)

∂t2
= q(x, t)

(2.1)

−∂M(x, t)
∂x

+Q(x, t)− Iρ∂
2Θ(x, t)

∂t2
= 0

where: Q(x, t) = kGAγ(x, t) is the shear force, M(x, t) = EI∂Θ(x, t)/∂x –
bending moment, k – Timoshenko shear coefficient depending on the cross-
section of the beam (Stephen and Puchegger, 2006; Rubin, 2003), G – shear
modulus, A – cross sectional area, EI – bending stiffness, y(x, t) – vibration
amplitude, q(x, t) – external force.

The system of differential Eqs. (2.1) describes the Timoshenko beam vi-
bration, where the searched functions are the vibration amplitude y(x, t) and
the angle due to pure bending Θ(x, t).

3. Free vibrations described by the single equation

The Fourier method of variable separation is employed to find functions satis-
fying system of Eqs. (2.1). It is assumed that each function y(x, t) and Θ(x, t)
can be presented in the form of a product of a function dependent on the spa-
tial coordinate x and a function dependent on time t (with the same time
function).

y(x, t) = X(x)T (t) Θ(x, t) = Y (x)T (t) (3.1)



196 L. Majkut

With such an assumption, after several simple transformations of system
(2.1), it can be rewritten as

X ′′(x) + aX(x)− Y ′(x) = 0
Y ′′(x) + bY (x) + cX ′(x) = 0 (3.2)

T̈ (t) + ω2T (t) = 0

where

a =
ω2ρ

kG
b =
ρω2

E
− c c =

GkA

EI

and ω – vibration frequency.
By eliminating the function Y (x) from the first two equations of system

(3.2)

Y (x) = −1
b
[X ′′′(x) + (a+ c)X ′(x)] (3.3)

one can get an equation for the transverse displacement X(x). So, the single
Timoshenko beam equation of free vibration is obtained in the form

X(4)(x) + dX ′′(x) + eX(x) = 0 (3.4)

where

d = a+ b+ c =
ω2ρI

(
1 + E

Gk

)

EI
e = ab =

ω2
(
ω2ρ2 I

Gk
− ρA

)

EI

In the next section of the paper, the solution to Eq. (3.4) will be searched.
The function Y (x) (Eq. (3.3)) depends on derivatives of the vibration

amplitude function X(x). This equation will be used to define boundary con-
ditions dependent only on the vibration amplitude function X(x) and its
derivatives.

4. Solution to the Timoshenko beam differential equation

The characteristic equation of Eq. (3.4) has the form

r4 + dr2 + e = 0 (4.1)

Replacing r2 = z̃, Eq. (4.1) can be rewritten in the form

z̃2 + dz̃ + e = 0
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Its roots are

z̃1 =
1

2
(−d+

√
∆) z̃2 =

1

2
(−d−

√
∆)

where

∆ = d2 − 4e = ω4ρ2I2
(
1− E
kG

)2
+ 4EIω2ρA

It is easy to observe that ∆ > 0 ∀ω (for all ω).
Now one should carry out a discussion about signs of the roots z̃1 and z̃2

as the frequency function

z̃2 < 0 ∀ω

z̃1 > 0 ⇔
√
d2 − 4e > d ⇒ e < 0 for ω2 <

GkA

ρI

z̃1 < 0 for ω >

√
GkA

ρI

Two possible solutions to Eq. (3.4) come from the above discussion:

• For ω <
√
GkA/(ρI)

The roots of Eq. (4.1) are

r1 =
√
z̃1 r2 = −

√
z̃1 r3 = i

√
−z̃2 r4 = −i

√
−z̃2

This gives a solution in the form

X(x) = C1e
√
z̃1x + C2e

−

√
z̃1x + C3e

i
√
z̃2x + C4e

−i
√
z̃2x (4.2)

With the use of Euler’s formulae, solution (4.2) may be also expressed
in the form of trigonometric and hyperbolic functions

X(x) = P1 coshλ1x+ P2 sinhλ1x+ P3 cos λ2x+ P4 sinλ2x (4.3)

where

λ21 = |z̃1| =
−d+

√
∆

2
λ22 = |z̃2| =

d+
√
∆

2

• For ω >
√
GkA/(ρI)

In this case, the roots of Eq. (4.1) are

r1 = i
√
−z̃1 r2 = −i

√
−z̃1 r3 = i

√
−z̃2 r4 = −i

√
−z̃2
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and the solution for free vibration of a Timoshenko beam (Eq. (3.4)) for
such frequencies has the form

X(x) = Q1 cos λ1x+Q2 sinλ1x+Q3 cos λ2x+Q4 sinλ2x (4.4)

where

λ21 = |z̃1| =
d−
√
∆

2
λ22 = |z̃2| =

d+
√
∆

2

The integration constants Pi and Qi (i = 1, . . . , 4) depend on the bo-
undary conditions associated with the initial-boundary value problem
under consideration.

5. Boundary conditions for the Timoshenko beam model

The boundary conditions are described in such a way that the letters (ã) and
(b̃) denote their physical models, and the letters (ai) and (bi) denote their
mathematical models after separation of variables.

1. Hinged end (xi = 0 or xi = l) or internal support at xi

(ã) y(xi, t) = 0 (b̃) M(xi, t) = EI
∂Θ(xi, t)

∂x
= 0

The conditions (a) and (b) after separation of variables and taking into
account Eq. (3.3) have the forms

(a1) X(xi) = 0 (b1) Y
′(xi) = 0⇔ X ′′(xi) + aX(xi) = 0

2. Fixed clamped end (xi = 0 or xi = l)

(ã) y(xi, t) = 0 (b̃) Θ(xi, t) = 0

after separation of variable

(a2) X(xi) = 0 (b2) Y = 0⇔ X ′′′(xi) + (a+ c)X ′(xi) = 0

3. Free end (xi = 0 or xi = l)

(ã) M(xi, t) = EI
∂Θ(xi, t)

∂x
= 0

(b̃) Q(xi, t) = GkA
(∂y(xi, t)
∂x

−Θ(xi, t)
)
= 0
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after separation of variables

(a3) X
′′(xi) + aX(xi) = 0 (b3) dX

′(xi) +X
′′′(xi) = 0

4. Generally supported beam

— at x = 0 – Fig. 1a

(ã) Q(0, t) = −kT y(0, t) (b̃) M(0, t) = kR
∂y(0, t)

∂x

after separation of variable

(a4) GkA[(a + b+ c)X
′(0) −X ′′′(0)] + kTX(0) = 0

(b4) X
′′(0) + aX(0) − kR

EI
X ′(0) = 0

— at x = l – Fig. 1b

(ã) Q(l, t) = kT y(l, t) (b̃) M(l, t) = −kR
∂y(l, t)

∂x

after separation of variable

(a4) GkA[(a + b+ c)X
′(l)−X ′′′(l)]− kTX(l) = 0

(b4) X
′′(l) + aX(l) +

kR
EI
X ′(l) = 0

Fig. 1. General boundary conditions of the beam (a) at x = 0 (b) at x = l

The thus described boundary conditions will be used for determining na-
tural frequencies of the beam with different boundary conditions.
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6. Determination of the natural frequencies

The choice of the beam model (Euler-Bernoulli or Timoshenko), which should
be used in the analysis of transverse vibrations of a given beam, depends
on the ratio of its height h to half of the wavelength corresponding to the
vibration frequency (the distance between two adjacent nodes l). Because the
difference between the free vibration frequencies for h/l ≈ 8% is equal to 5%
and increases with increasing h/l, it is accepted that Timoshenko model should
be employed for beams and frequencies for which this ratio is larger than 10%.
Such beams are called stocky beams, while the beams for which the Euler-
Bernoulli model is sufficient are called the slender ones. But the Timoshenko
beam model must be taken in the analysis of high-frequency vibration of all
beams.

To check correctness of the proposed description of beam vibrations, the
calculations were carried out both for a slender beam (small differences in the
free vibration frequencies obtained from both models of the beam) and for a
stocky beam, for which these differences should be larger.

The calculations were carried out for the beam with: E = 2.1 · 1011 Pa,
G = 8.1 · 1010 Pa, ρ = 7860 kg/m3, length l = 1m and cross-section
b × h = 0.02 × 0.08m2 (stocky beam) and b × h = 0.02 × 0.03m2 (slender
beam). In order to check the correctness of free vibration frequencies calcu-
lations, FEM analysis was carried out by the author with the use of proper
one-dimensional finite elements (Cheung and Leung, 1991).

6.1. Simply supported beam

The boundary conditions for a simply supported beam are: at x = 0,
X(0) = 0 and X ′′(0)+aX(0) = 0; at x = l, X(l) = 0 and X ′′(l)+aX(l) = 0.

The form of the solution to the vibration equation depends on the interval
to which the searched natural frequency belongs:

• For ω <
√
GkA/(ρI), the solution to Eq. (3.4) has form (4.3).

From the boundary conditions at x = 0, the following equations are
obtained

P1 + P3 = 0 λ21P1 − λ22P3 = 0

This system of equations is satisfied when P1 = P3 = 0, or in the case
when λ21 + λ

2
2 = 0, i.e. when

√
d2 − 4e = 0, and this is possible only

when ω = 0, which describes motion of the beam as a rigid body, what
is the impossible because of the boundary conditions.
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So, the boundary conditions at x = 0 require that P1 = P3 = 0, which
corresponds to the similar solution for the Euler-Bernoulli beam.

The boundary conditions at x = l are expressed by the matrix equation

[
sinhλ1l sinλ2l
λ21 sinhλ1l −λ22 sinλ2l

] [
P2
P4

]
=

[
0
0

]
(6.1)

The nontrivial solution to Eq. (6.1) is obtained from the condition that
the main matrix determinant is equal to zero.

• Solution to Eq. (3.4) for ω >
√
GkA/(ρI) has form (4.4).

From the boundary conditions at x = 0, the following equations are
obtained:

Q1 +Q3 = 0 λ21Q1 + λ
2
2Q3 = 0

This system of equations is satisfied either for Q1 = Q3 = 0 or for
λ21 − λ22 = 0. Fulfilling the second condition is possible only when
ω = 0, which describes motion of the beam as a rigid body, what is
the impossible because of the boundary conditions.

Therefore, the boundary conditions at x = 0 require that Q1 = Q3 = 0.

The boundary conditions at x = l are expressed in the matrix form

[
sinλ1l sinλ2l
λ21 sinλ1l −λ22 sinλ2l

] [
Q2
Q4

]
=

[
0
0

]
(6.2)

The roots of the main matrix determinant are the eigenvalues of the
initial-boundary value problem under consideration.

Table 1 contains the first five natural frequencies of the stocky beam to-
gether with the corresponding frequencies calculated for the Euler-Bernoulli
model. In order to check the correctness of the proposed approach, the frequ-
encies were compared with the results of FEM analysis carried out with the
use of proper 1-D finite elements (Cheung and Leung, 1991).
Table 2 contains the natural frequencies for the slender beam.

The results presented in Tables 1 and 2 prove correctness of the proposed
description of the Timoshenko beam vibration. The relative difference in the
values of the free vibration frequencies determined with the use of different
models for the slender beam is equal to 0.2% for the first free vibration fre-
quency and increases to 5.4% for the fifth frequency. The difference increases
because the wavelength decreases (the ratio h/l increases) with the growth of
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Table 1. Natural frequencies of the stocky simply supported beam

Timoshenko beam E-B beam Timoshenko beam E-B beam
(analytical method) (analytical method) (FEM) (FEM)

1 1159.4 1178.1 1160.5 1178.1

2 4436.8 4712.6 4447.4 4712.6

3 9357.6 10603.3 9386.1 10603.0

4 15410.0 18850.0 15439.0 18850.0

5 22163.0 29453.5 22183.0 29454.0

Table 2. Natural frequency of the slender simply supported beam

Timoshenko beam E-B beam Timoshenko beam E-B beam
(analytical method) (analytical method) (FEM) (FEM)

1 440.8 441.8 440.8 441.8

2 1751.3 1767.2 1752.2 1767.2

3 3897.4 3976.2 3901.2 3978.2

4 6825.5 7068.8 6736.9 7068.9

5 10473.2 11045.0 10494.0 11045.0

the free vibration frequency. In the case of the stocky beam, the differences in
the determined frequencies are from 1.6% up to 33%. In both cases. there are
no significant differences in the frequency values obtained from the proposed
description and from the FEM analysis.

6.2. Cantilever beam

Boundary conditions for the cantilever beam are: at x = 0, X(0) = 0 and
X ′′′(0)+(a+c)X ′(0) = 0; at x = l, dX ′(l)+X ′′′(l) = 0 and X ′′(l)+aX(l) = 0.

The form of the solution for the free vibration problem depends on the
interval to which the searched natural frequency belongs:

• For ω <
√
GkA/(ρI), the solution to Eq. (3.4) has form (4.3), the bo-

undary conditions are expressed by a matrix equation

AC = 0

where
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A =




1 0 1 0
0 λ1(λ

2
1 + a+ c) 0 a24

(λ21 − d)λ1 sinhλ1l (λ21 − d)λ1 coshλ1l (λ22 + d)λ2 sinλ2l a34
(λ21 + a) cosh λ1l (λ21 + a) sinhλ1l (−λ22 + a) cos λ2l a44




C
⊤ = [P1, P2, P3, P4]

and

a24 = λ2(−λ22 + a+ c) a34 = (−λ22 − d)λ2 cos λ2l
a44 = (−λ22 + a) sinλ1l

The coefficients a, b, c, d and e are defined in Section 3.

Natural frequencies of the beam are determined from the equation:
detA = 0.

• For frequencies ω >
√
GkA/(ρI) (the so-called second spectrum of the

beam (Stephen and Puchegger, 1982)), the solution has form (4.4), and
the main matrix is

A =




1 0 1 0
0 λ1(−λ21 + a+ c) 0 a24

(λ21 + d)λ1 sinλ1l (−λ21 − d)λ1 cos λ1l (λ22 + d)λ2 sinλ2l a34
(−λ21 + a) cos λ1l (−λ21 + a) sin λ1l (−λ22 + a) cos λ2l a44




Table 3 contains the first five natural frequencies of the cantiilever beam
together with the corresponding frequencies calculated for the Euler-Bernoulli
model of the beam.

Table 3. Natural frequency of the stocky cantilever beam

Timoshenko beam E-B beam Timoshenko beam E-B beam
(analytical method) (analytical method) (FEM) (FEM)

1 424.1 419.6 424.1 419.3

2 2653.7 2666.8 2656.8 2630.6

3 7145.3 7387.3 7148.1 7367.6

4 13016.0 14284.0 13024.0 14443.0

5 19645.0 23383.0 19653.0 23886.0

Table 4 contains results obtained for the slender beam.
The results presented in Tables 3 and 4 prove correctness of the proposed

description of the Timoshenko beam vibration and the boundary condition
equations.
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Table 4. Natural frequency of the slender cantilever beam

Timoshenko beam B-E beam Timoshenko beam E-B beam
(analytical method) (analytical method) (FEM) (FEM)

1 157.6 153.6 159.2 154.7

2 987.7 962.6 993.5 986.5

3 2752.5 2695.3 2761.4 2762.8

4 5344.2 5281.6 5350.0 5416.0

5 8716.1 8730.9 8741.1 8957.4

7. Forced vibrations

The forced vibrations for the Timoshenko beam model, written in the form of
two differential equations, are as follows

ρA
∂2y(x, t)

∂t2
−GkA

(∂2y(x, t)
∂x2

− ∂Θ(x, t)
∂x

)
= q(x, t)

EI
∂2Θ(x, t)

∂x2
+GkA

(∂y(x, t)
∂x

−Θ(x, t)
)
− Iρ∂

2Θ(x, t)

∂t2
= 0

After several transformations, similar to transformation of the homogene-
ous equation, it is possible to obtain an equation for the Timoshenko beam
forced vibrations in a form dependent only on the function of the displacement
y(x, t)

EI
∂4y(x, t)

∂x4
−
(EIρ
Gk
+ Iρ
)∂4y(x, t)
∂x2∂t2

+
Iρ2

Gk

∂4y(x, t)

∂t4
+ ρA

∂2y(x, t)

∂t2
=

(7.1)

= q(x, t)− EI
GkA

∂2q(x, t)

∂x2
+
Iρ

GkA

∂2q(x, t)

∂t2

This is the equation of transverse vibrations of the Timoshenko beam with
an arbitrary exciting function q(x, t) (the excitation is an arbitrary function
of time t and spatial coordinate x). It is impossible to find its solution in the
general case.

In the paper, a different approach to the problem of solution for the beam
forced vibrations is proposed. In the proposed method, the beam can be excited
by an arbitrary function of time t applied to the beam in an arbitrary way, as
a function of the spatial coordinate x.

The problem of time variability of the exciting function is proposed to
be solved in the following way: to transform the excitation function from the
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time domain into frequency domain, then to find the system response in the
frequency domain and employ the inverse Fourier transform, finding in this
way the vibration amplitudes function y(x, t) in the time domain.
The spatial distribution of the forcing function can be taken into account

by using an integral equation, i.e. by using the superposition rule. The kernel
of the integral equation is the Green function.
It comes, form the above discussion, that finding the dynamic Green func-

tion is enough to find the forced vibrations function y(x, t) of the beam with
an arbitrary excitation function.
The dynamic Green function is a function of the beam vibration amplitudes

excited by the unit harmonic force.

7.1. Dynamic Green function

To determine the dynamic Green function, one should find the solution
to inhomogeneous differential equation (7.1), in which the excitation function
has the form q(x, t) = 1 exp(iωwt)δ(x−xf ), where δ(x−xf ) is the Dirac delta
function and 1 – unit excitation. In such a case, the function being its solution
in the steady state, can be expressed in the form y(x, t) = G(x, xf ) exp(iωwt).
The function G(x, xf ) is the searched dynamic Green function, in which

xf is the coordinate of the point where the force is applied to the beam.
Comment: In the paper, both internal and external damping of the beam

was neglected. This is not a problem in the case of determining the eigenfre-
quencies and eigenvectors. In the case of forced vibration, especially of high
frequency, the negligence of damping leads to large errors in the determined
vibration amplitudes. Because of that, the solution to the forced vibration
equation was searched only for frequencies below the cut-off frequency, i.e. for
ω <
√
GkA/(ρI).

The function G(x, xf ) will be determined as a sum of the general solution
to the related homogeneous equation and the particular solution

G(x, xf ) = G0(x) +G1(x, xf )H(x− xf ) (7.2)

The function G0(x) is the solution to the homogeneous equation in form
(4.3), for x ∈ (0, l), where G1(x, xf ) is the solution to the inhomogeneous
equation determined for x > xf . H(x− xf ) is the step function.
The solution to the inhomogeneous equation G1(x, xf ) can be expressed

in the form

G1(x, xf ) = R1 cosh[λ1(x− xf )] +R2 sinh[λ1(x− xf )] +
+R3 cos[λ2(x− xf )] +R4 sin[λ2(x− xf )]
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The constants Ri were determined from the continuity conditions and the
jump condition at x = xf :

G(x+f , xf )−G(x−f , xf ) = 0 Θ(x+f )−Θ(x−f ) = 0
M(x+f )−M(x−f ) = 0 Q(x+f )−Q(x−f ) = 1

The relationships between the individual physical quantities and the Green
function are given in the description of the boundary conditions (see Section 5).
The constants of integration, determined from the continuity conditions,

are: R1 = R3 = 0

R2 = 1
b

GkA

λ22 − a− c
λ1(λ

2
1 + λ

2
1)(a+ c+ d)

R4 = 1
b

GkA

λ21 + a+ c

λ2(λ21 + λ
2
1)(a+ c+ d)

Finally, the dynamic Green function for the Timoshenko beam has the
form

G(x, xf ) = P1 cosh λ1x+ P2 sinhλ1x+ P3 cos λ2x+ P4 sinλ2x+
(7.3)

+R2 sinh[λ1(x− xf )]H(x− xf ) +R4 sin[λ2(x− xf )]H(x− xf )
In Fig. 2, one can see the functions of amplitudes for the forced vibra-

tions determined for the simply supported beam with: E = 2.1 · 1011 Pa,
G = 8.1 · 1010 Pa, ρ = 7860kg/m3, length l = 1m and cross-section
b× h = 0.02 × 0.08 (stocky beam) – Fig. 2a and b× h = 0.02 × 0.03 (slender
beam) – Fig. 2b. In both figures, the solid line (—) denotes the amplitude for
the Timoshenko beam model, while the dashed line (- -) denotes the amplitu-
de for the Euler-Bernoulli model of beam. There are no significant differences
in values of vibration amplitudes obtained from the proposed description and
FEM analysis.
The functions of amplitudes for the forced vibrations determined for the

cantilever beam with the same data are shown in Fig. 3, those determined
for the stocky beam are shown in Fig. 3a and those for the slender beam –
in Fig. 3b. In both figures, the solid line (—) denotes the amplitude for the
Timoshenko beam model, while the dashed line (- -) denotes the amplitude
for the Euler-Bernoulli model of beam. There are no significant differences in
values of vibration amplitudes obtained from the proposed description and
FEM analysis.
The graphs of the harmonically excited vibration amplitudes, shown in

Fig. 2 and Fig. 3 prove correctness of the proposed description of the Timo-
shenko beam vibration and the boundary condition equations.
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Fig. 2. Vibration amplitudes of the simply supported beam (a) stocky beam (b)
slender beam

Fig. 3. Vibration amplitudes of the cantilever beam (a) stocky beam (b) slender
beam

8. Summary

In the paper, the method to derive a single equation for free and forced vi-
brations of the Timoshenko beam model was proposed. The solution to such
an equation is a function of vibration amplitudes. Searching for the function
describing the angle due to pure bending, necessary in descriptions of the Ti-
moshenko beam vibration known so far in the literature, is unnecessary when
using such an approach. The boundary conditions corresponding to such a
description of the beam vibration were also given.

It was proved that the form of solution to the differential equation depends
on the examined vibration frequencies. The change of the solution form occurs
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when the frequency crosses a specific value, determined in the paper, which de-
pends on the material properties and the beam cross-section ω =

√
GkA/(ρI).

The correctness of such a description of the Timoshenko beam vibrations
was checked by analysis of free vibrations of the beam with different boundary
conditions. The results presented in Tables 1-4 indicate correctness of the
proposed method. The maximal differences between the values of free vibration
frequencies determined with the use of the Timoshenko beam model and those
determined with the use of the Euler-Bernoulli beam model are 33% for the
stocky beam and 5.4% for the slender one. There are no significant differences
in the frequency values obtained from the proposed description and FEM
analysis.

Construction of the dynamic Green functions was proposed to solve the
problem of vibration amplitudes excited by an arbitrary function of time t
and applied to the beam in an arbitrary way, as a function of the spatial
coordinate x. This is a function of beam vibration amplitudes forced by the
harmonic unit force.

Knowing the dynamic Green function, one can determine the frequency
response function of the system (i.e. system transmittance) and next, by em-
ploying the inverse Fourier transform, the impulse response function.

The dynamic response of the beam to the point force with an arbitrary
change in time can be found by using convolution of this time function and
the impulse response of the beam.

Another possibility is to transform the time function of the excitation
from the time domain into the frequency domain and next to find the system
response in the frequency domain for the excitation by each of the frequency
component. For this purpose, the dynamic Green function can be used (the
frequencies and the corresponding amplitudes of the excitation are known).
Next, the inverse Fourier transform can be employed to obtain in this way the
vibrations in the time domain.

The spatial distribution of the excitation can be taken into account by
using the superposition rule, i.e. the beam integral equation. The kernel of the
integral equation is the Green function.

Form the above discussion, it can be conducted that finding the dynamic
Green function is enough to find the forced vibrations function of time t and
spatial coordinate x i.e. the function y(x, t) due to an arbitrary excitation
function.

Acknowledgement

This investigation was supported by the Ministry of Science and Higher Education

of Poland under research grant No. N 504042 32/3443.



Free and forced vibrations of Timoshenko beams... 209

References

1. Chan K.T., Wang X.Q., So R.M.C., Reid S.R., 2002, Superposed standing
waves in a Timoshenko beam, Proceedings of the Royal Society A, 458, 83-108

2. Cheung Y.K., Leung A.Y.T., 1991, Finite Element Methods in Dynamic,
Science Press, Beijing, New York, Hong Kong

3. Gere J.M., Timoshenko S.P., 1984, Mechanics of Materials, 2 ed., PWS
Engineering, Boston

4. Kaliski S., 1992, Vibrations and Waves, Elsevier

5. Kukla S., 1997, Application of Green functions in frequency analysis of Timo-
shenko beams with oscilators, Journal of Sound and Vibration, 205, 3, 355-363

6. Lueschen G.G.G., Bergman L.A., McFarland, D.M., 1996, Green’s func-
tions for uniform Timoshenko beams, Journal of Sound and Vibration, 194,
93-102

7. Majkut L., 2004, Crack identification in beams with well-known boundary
conditions, Diagnostyka, 32, 107-116

8. Majkut L., 2005a, Identification of crack in beams using forced vibrations
amplitudes, Mechanics, 24, 199-204

9. Majkut L., 2005b, Identification of crack in beams with eigenvalue,Mechanics,
24, 21-28

10. Majkut L., 2006, Identification of beam boundary conditions in ill-posed pro-
blem, Theoretical and Applied Mechanics, 44, 91-106

11. Majkut L., An eigenvalue based inverse model of a beam for structural mo-
dification and diagnostics, submitted to Journal of Vibration and Control

12. Majkut L., Michalczyk J., 2002, ”Nodalised beam” method for vibroisu-
lation of manually operated tools, The Archive of Mechanical Engineering,
XLIX, 3, 215-229

13. Rubin M.B., 2003, On the quest for the timoshenko shear coefficient, Journal
of Applied Mechanics, 70, 154-157

14. Si Y., Kangsheng Y., Cheng X., Wiliams F.W., Kennedy D., 2007,
Exact dynamic stiffness method for non-uniform Timoshenko beam vibrations
and Bernoulli-Euler column buckling, Journal of Sound and Vibration, 303,
526-537

15. Stephen N.G., Puchegger S., 1982, The second frequency spectrum of Ti-
moshenko beams, Journal of Sound and Vibration, 80, 578-582

16. Stephen N.G., Puchegger S., 2006, On the valid frequency range of Timo-
shenko beam theory, Journal of Sound and Vibration, 297, 1082-1087



210 L. Majkut

17. Zhu X., Li T.Y., Zhao Y., Liu J.X., 2006, Structural power flow analysis of
Timoshenko beam with an open crack, Journal of Sound and Vibration, 297,
215-226

Drgania własne i wymuszone belki Timoshenki opisane jednym

równaniem różniczkowym

Streszczenie

W pracy zaproponowano, nowe podejście do opisu drgań własnych i wymuszonych
belki Timoshenki przez jedno równanie różniczkowe. Rozwiązaniem takiego równania
jest funkcja amplitud drgań. Podano również równania opisujące warunki brzegowe
odpowiednie do takiego opisu drgań.
Udowodniono, że forma rozwiązania równania różniczkowego zależy od analizo-

wanej częstości drgań. Zmiana formy rozwiązania zmienia się, gdy częstość osiąga
określoną w pracy wartość ω =

√
GkA/(ρI).

Poprawność zaproponowanego opisu sprawdzono przez analizę częstości drgań
własnych i amplitudy drgań wymuszonych belek z różnymi warunkami brzegowymi
i porównaniem z wynikami otrzymanymi z analizy MES belki.
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